r e goldstein

29
R E Goldstein www.damtp.cam.ac.uk/user/gold www.youtube.com/Goldsteinlab III. Flagellar Synchronization and Eukaryotic Random Walks

Upload: min

Post on 06-Jan-2016

35 views

Category:

Documents


1 download

DESCRIPTION

III. Flagellar Synchronization and Eukaryotic Random Walks. R E Goldstein. www.damtp.cam.ac.uk/user/gold www.youtube.com/Goldsteinlab. Metachronal Waves in Volvox (Side View). Huygens’ Clock Synchronization (1665). Pendulum clocks hung on a common wall synchronize out of phase!. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: R E Goldstein

R E Goldstein

www.damtp.cam.ac.uk/user/gold www.youtube.com/Goldsteinlab

III. Flagellar Synchronization and Eukaryotic Random Walks

Page 2: R E Goldstein

Metachronal Waves in Volvox (Side View)

Page 3: R E Goldstein

Huygens’ Clock Synchronization (1665)Pendulum clocks hung on a commonwall synchronize out of phase!

Modern version of experiment confirmsthat vibrations in the wall cause thesynchronization.

Schatz, et al. (Georgia Tech)

Page 4: R E Goldstein

Bacterial Swimming (E. coli)

Turner, Ryu and Berg (Harvard)

Page 5: R E Goldstein

sporadic asynchronies

different frequencies

Early Study of Flagella Synchronisation in Chlamydomonas

%

For different cells:

Rüffer and Nultsch, Cell Motility and the Cytoskeleton 7, 87 (1987)

cis

trans

complete synchrony

Page 6: R E Goldstein

22

11

dt

ddt

d

)](cos[A)(

)](cos[A)(

222

111

ttS

ttS

“Phase oscillator” model used in e.g. circadian rhythms, etc.

t2121

strokes offlagella

amplitudes “phases”or angles

naturalfrequencies

Historical Background• R. Kamiya and E. Hasegawa [Exp. Cell. Res. (‘87)] (cell models – demembranated) intrinsically different frequencies of two flagella

• U. Rüffer and W. Nultsch [Cell Motil. (‘87,’90,’91,’98)] short observations (50-100 beats at a time, 1-2 sec.) truly heroic – hand drawing from videos synchronization, small phase shift, occasional “slips”

Without coupling, the phase difference simply grows in time

So, is this seen?

Key issue:control ofphototaxis

Page 7: R E Goldstein

The Experiment

Polin, Tuval, Drescher, Gollub, Goldstein, Science (this Friday) (2009)

Goldstein, Polin, Tuval, submitted (2009)

Page 8: R E Goldstein

Noisy Synchronization

Polin, Tuval, Drescher, Gollub, Goldstein, in press (2009)

Experimental methods:• Micropipette manipulation with a rotating stage for precise alignment• Up to 2000 frames/sec• Long time series (50,000 beats or more)• Can impose external fluid flow

Micropipette

Cell body

Frame-subtraction

Page 9: R E Goldstein

Goldstein, Polin, Tuval, submitted (2009)

A Phase Slip

Page 10: R E Goldstein

Interflagellar phase difference Δ of a Chlamydomonas cell at 500 frames/sec

Δ

driftsynchrony

slips

Polin, Tuval, Drescher, Gollub, Goldstein, in press (2009)

Page 11: R E Goldstein

Model for Phase Evolution

)()2sin(2 t

Niedermayer, Eckhardt, and Lenz, Chaos (2008)

Spheres forced in circularorbits by an azimuthal force,with elasticity to maintain orbit radius, and sphere-spherehydrodynamic interactions(deterministic)

)(2)()(

0)(

stTst

t

eff

We see clear evidence of stochasticity …which suggests the stochastic Adler equation:

Intrinsicfrequencymismatch

couplingStrength

(hydrodynamics?)

Quasi-universalform for phase oscillators

(Kuramoto)

biochemical noise

Page 12: R E Goldstein

Model for Phase Evolution

diffusion

Δ

Veff(Δ)

Slips

Δ(t2) Δ(t1)

Synchrony

Relative probability of +/- slips

Yields the frequency difference Amplitude and autocorrelation function of fluctuations in the synchronised state yields Teff and B

Page 13: R E Goldstein

Model Parameters

expected value for intrinsic frequency

difference

estimate of hydrodynamic coupling

Two “gears”

33 al

r

RLr

Page 14: R E Goldstein

Direct Demonstration of Chlamydomonas Diffusion

Dexp ~ (0.68±0.11)x10-3 cm2/s

Polin, T

uval, Drescher, G

ollub, Goldstein, in press (2009)

2~ uDSince and u~100 µm/s, there must be a time ~10 s

Page 15: R E Goldstein

Dual-View Apparatus Free of Thermal Convection

Drescher, Leptos, Goldstein, Review of Scientific Instruments 80, 014301 (2009)

White LED& shutter

White LED& shutter

Capable of imaging protists from 10 μmto 1 mm, with tracking precision of ~1 micron, @ 20 fps.

Page 16: R E Goldstein

Tracking in Detail – A Sharp Turn

Page 17: R E Goldstein

Statistics of Sharp Turns: Origin of Diffusion

Turns and drifts have identical statistics,much longer than slips.

Mean free-flight timeis ~11 s

Page 18: R E Goldstein

Geometry of Turning

beat

rad4.0

beats16~

2

cos13

2

uD

s

beats10-5

s1-0.5

beats5025

driftT

Turning angle (degrees)90

Pro

bab

ility

(a

ngle

)

Chlamy w/single flagellum,rotating near a surface

Angle per beat -

Frequency difference -

“Drift” duration-

rad/s 4-2

90rad21driftT

Angular velocity

Angular change

Dest ~ (0.47±0.05)x10-3 cm2/s

beat

rad4.0

beats16~

2

Page 19: R E Goldstein

Details of Slips

Page 20: R E Goldstein

Details of Slips

Page 21: R E Goldstein

A Phototurn (V. barberi)

Dre

sch

er,

Le

pto

s, G

old

ste

in, R

ev.

Sci

. In

stru

m. (

200

9)

Page 22: R E Goldstein

Adaptive Flagellar Dynamics and the Fidelity of Multicellular Phototaxis

Drescher, Goldstein, Tuval, preprint (2009)

Page 23: R E Goldstein

Flagellar Response and Eyespot Size

eye

spo

t dia

me

ter

(mic

rons

)

angle from anterior (degrees)

flag

ella

r re

spo

nse

pro

ba

bilit

y

Page 24: R E Goldstein

Dynamic PIV Measurements – Step Response

Page 25: R E Goldstein

Angular Dependence of the Transient Response

anterior is sensitiveposterior is not

Page 26: R E Goldstein

Velocity Ratio vs. Radius

Page 27: R E Goldstein

Systematics of Volvox

Upswimming speed

Settling speed

Spinning frequency

Reorientation time

Drescher, Leptos, Tuval, Ishikawa, Pedley, Goldstein, PRL (2009)

Page 28: R E Goldstein

Frequency-Dependent Response

PhototacticColonies haveRotational Frequencies In this band

Tuning!

Page 29: R E Goldstein

Metachronal Waves in Volvox (Side View)