propiedades de las soluciones 2009-1[1]

36
Gas Líquido Sólido Gas Líquid o Sólido Mezclas Propiedade s de las soluciones Mezclas Heterogéneas Homogéneas (solucione s) Soluto- Solvente Coligativas Costitutivas Profesora: Clara Turriate M.

Upload: gitanodefe

Post on 03-Jan-2016

37 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Propiedades de Las Soluciones 2009-1[1]

GasLíquidoSólido

GasLíquidoSólido

Mezclas

Propiedades de las soluciones

MezclasHeterogéneasHomogéneas

(soluciones)

Soluto-Solvente

Coligativas

Costitutivas

Profesora: Clara Turriate M.

Page 2: Propiedades de Las Soluciones 2009-1[1]

Son aquellas propiedades físicas de las soluciones que no dependen de la naturaleza de las partículas sino del número de partículas presente en la disolución

El número de partículas se determina por la fracción mol:

XA

nA…

nA + nB +nC + ….=

PROPIEDADES COLIGATIVAS

Page 3: Propiedades de Las Soluciones 2009-1[1]

Fracción molar () (cont.).

• nsoluto + ndisolvente soluto + disolvente = ————————— = 1 nsoluto + ndisolvente

• Si hubiera más de un soluto siempre ocurrirá que la suma de todas las fracciones molares de todas las especies en disolución dará como resultado “1”.

Page 4: Propiedades de Las Soluciones 2009-1[1]

Propiedades coligativas

•Descenso de la presión de vapor

•Presión osmótica

•Descenso crioscópico

•Ascenso ebulloscópico

Page 5: Propiedades de Las Soluciones 2009-1[1]

Importancia de las propiedades coligativas

• Separar los componentes de una solución por un método llamado destilación fraccionada.

• Formular y crear mezclas frigoríficas y anticongelantes.

• Determinar masas molares de solutos desconocidos.

• Formular soluciones de nutrientes especiales para regadíos de vegetales en general.

• Etc.

Son importantes en la vida común, en las disciplinas científicas y tecnológicas.

Page 6: Propiedades de Las Soluciones 2009-1[1]

Disminución de la presión de vapor

Cuando se agrega un soluto no volátil a un solvente puro, la presión de vapor de éste en la solución disminuye.

P solución < P° solvente

puro

P = P° - P

Page 7: Propiedades de Las Soluciones 2009-1[1]

Temperatura (°C)

Pre

sió

n d

e v

ap

or

de

l d

iso

lve

nte

(at

m)

Vapor

Líquido

Hielo

0 100 374

1

Agua

Solución 1

Solución 2

2∆P{

Page 8: Propiedades de Las Soluciones 2009-1[1]

Ley de Raoult

P1 = P° 1

La presión de vapor del solvente en presencia de un soluto es proporcional a la

fracción molar del solvente.

Una solución que cumple la ley de Raoult a cualquier concentración es una solución

ideal.

Page 9: Propiedades de Las Soluciones 2009-1[1]

Pre

sió

n d

e va

po

r d

el d

iso

lven

te

1

disolvente

P1 = P° 1

X = 1

P1 = Pº

DISOLUCION IDEAL (cumple la Ley deRaoult)

Page 10: Propiedades de Las Soluciones 2009-1[1]

Descenso de la presión de vapor

A partir de: P1 = P° 1

P = P° - P1 = P° 2

(Ley de Raoult)

P = P° 2X1: fracción molar del solvente

X2: fracción molar del soluto no volátil

P = descenso de la presión de vapor

Page 11: Propiedades de Las Soluciones 2009-1[1]

La presión de vapor sobre el agua pura a 120°C es 1480 mmHg. Si se sigue la Ley de Raoult ¿Que fracción de etilenglicol (CH2OHCH2OH) debe agregarse al agua para reducir la presión de vapor de este solvente a 760 mmHg?

Sol.PºA - PA = PºA XB

Cálculo de la fracción molar de etilenglicol (XB)1480 mmHg-760 mmHg = (1480 mmHg) XB

XB = 0,486

Aplicación

Page 12: Propiedades de Las Soluciones 2009-1[1]

Para una solución ideal:

Si los componentes son los líquidos A y B:

Psolución = P°A XA + P°B XB

Psolución : Presión de la solución ideal

P°A y P°B : Presiones de vapor de A y B puros

XA y XB : Fracciones molares de A y B

Page 13: Propiedades de Las Soluciones 2009-1[1]

PA = PA . XA

PB = PB . XB

Ley de Raoult para una solución

ideal de dos componentes volátiles.

XA = 1 XA = 0

XB = 0 XB = 1

PBPA

PB

PA P = P

A + PB

Pi Xi

Pi = k Xi

Xi = 1

Pi = Pi

Page 14: Propiedades de Las Soluciones 2009-1[1]

El Benceno presenta una presión de vapor de 75 mmHg y el Tolueno 22 mmHg a 20°C.Para una solución formada por 1 mol de Benceno y 2 moles de Tolueno, determinar: a) La fracción molar de Benceno y Tolueno, (b) La presión parcial de cada componente y la presión de vapor de la solución.

Sol.1) fracción molar de Benceno y Tolueno:

Xbenceno = 1 = 0,33 XTolueno = 2 = 0,671 + 2 1 + 2

2) presión parcial de cada componente y la presión de vapor de la solución:

Pbenceno = Xbenceno Pºbenceno Ptolueno = Xtolueno Pºtolueno

Pbenceno = ( 0,33 ) ( 75 mmHg ) Ptolueno = ( 0,67 ) ( 22 mmHg )Pbenceno = 25 mmHg Ptolueno = 15 mmHg

PTOTAL = Pbenceno + Ptolueno PTOTAL = 25 mmHg + 15 mmHg

Aplicación

PTOTAL = 40 mmHg

Page 15: Propiedades de Las Soluciones 2009-1[1]

Desviaciones de la Ley de Raoult

Desviación positiva

A-B < A-A ó B-B

Desviación Negativa

A - B > A-A ó B-BDebiles Fuertes

Page 16: Propiedades de Las Soluciones 2009-1[1]

El punto de ebullición es la temperatura a la cual la presión de vapor de un líquido

es igual a la presión externa.

presión de vapor

↓↓↓

punto de ebullición ↑↑↑

Disolución:

Ascenso ebulloscópico

Page 17: Propiedades de Las Soluciones 2009-1[1]

Pre

sión

de

vap

or d

el s

olve

nte

(tor

r)

760

SólidoLíquido

Gas

Tc Te

Temperatura (°C)

Tf solución Tf solvente puro

Solución

Solvente puro

Te solvente puro Te solución

DIAGRAMA PUNTO FUSIÓN Y PUNTO EBULLICIÓN SOLVENTE PURO - SOLUCIÓN

Page 18: Propiedades de Las Soluciones 2009-1[1]

Ascenso ebulloscópico ( Te)

Te = Tes -Te° =kem

Te = ke m

m = molalidad

ke = Constante molal ebulloscópico

(° / molalidad )

Page 19: Propiedades de Las Soluciones 2009-1[1]

El punto de fusión de un sólido o el punto de congelación de un líquido es la temperatura a la cual las fases

sólida y líquida coexisten en equilibrio.

Las partículas de soluto inhiben la congelación

El punto de congelación ↓

Disolución:

•Descenso crioscópico

Page 20: Propiedades de Las Soluciones 2009-1[1]

Descenso crioscópico ( Tc)

Tc = T°c - Tcs

= kc m

Tc = kc m

kc = Constante molal de descenso crioscópico(° / m)m: molalidad (mol/Kg)

Page 21: Propiedades de Las Soluciones 2009-1[1]

Tabla de Ke y Kc a 1 atm

Disolvente Te (°C)  Ke (°C/m) Tc (°C) Kc (°C/m)

Agua 100 0.512 0 1.86

Benceno 80.1 2.53 5,5 5.12

Etanol 78.4 1.22 -117.3 1.99

Acido Acético 117.9 2.93 16.6 3.9

Ciclohexano 80.7 2.79 6.5 20

Page 22: Propiedades de Las Soluciones 2009-1[1]

¿Cuál es el punto de congelación de una disolución que contiene 478 g de etilenglicol (anticongelante) en 3202 g de agua? La masa molar de etilenglicol es 62.01 g.

Tc = Kc m

m =moles de soluto

masa del disolvente (kg)= 2.41 m=

3.202 kg disolvente

478 g x 1 mol62.01 g

Kc agua = 1.86 0C/m

Tc = Kc m= 1.86 0C/m x 2.41 m = 4.48 0C

Tc = T c – Tc0

Tc = T c – Tc0 = 0.00 0C – 4.48 0C = -4.48 0C

Aplicación

Page 23: Propiedades de Las Soluciones 2009-1[1]

Presión osmótica es la presión requerida para detener la ósmosis. Osmosis es el paso selectivo de moléculas disolventes a través de una membrana porosa de una disolución diluida a una más Concentrada. .

Page 24: Propiedades de Las Soluciones 2009-1[1]

Presión osmótica ()

n R T V =

C R T =

= Presión Osmótica (atm)V = Volumen de la solución (L)R = (0,082 L atm/ °K mol)n = Número de moles de solutoT = Temperatura (°K)

Como n/V es molaridad (M), = C

Page 25: Propiedades de Las Soluciones 2009-1[1]

Dos soluciones que tengan la misma concentración se denominan isotónicas.

Si la concentración de las soluciones es diferente, la más concentrada se denomina hipertónica y la más diluida hipotónica.

Presión Osmótica ( )

isotónica hipotónica hipertónica

Page 26: Propiedades de Las Soluciones 2009-1[1]

La presión osmótica promedio de la sangre es 7,7 atm a 25 °C. ¿Qué concentración de glucosa, C6H12C6 será isotónica con la sangre?Sol. = C R T = 7,7 atm

7,7 atmC = = = 0,31 molar

R T (0,082 L atm/ K mol)(298 °K)

Aplicación:

Page 27: Propiedades de Las Soluciones 2009-1[1]

• Un electrolito es una sustancia que disuelta en agua conduce la corriente eléctrica. (son electrolitos aquellas sustancias conocidas como ácidos, bases y sales).

• Para las disoluciones acuosas de electrolitos es necesario introducir en las ecuaciones, el factor i

NaCl (s) Na+ (ac) + Cl- (ac)

0.1 m NaCl disolución 0.2 m iones en disolución

Propiedades coligativas de disoluciones de electrólitos

Page 28: Propiedades de Las Soluciones 2009-1[1]

Factor i de Van´t Hoff

“i” es una medida del grado de disociación o de ioniación de un soluto en agua.

i = 1 El soluto no sufre modificaciones (Ej. urea)

i > 1 El soluto sufre disociación molecular (NaCl, i = 2 (teórico) , i = 1,9 (experimentalMgSO4, i = 2 (teórico), i = 1,3 (experimental)

“ i” medido experimentalmente ≠ de “i” calculado, debido a la formación de pares iónicos en las

soluciones.

Page 29: Propiedades de Las Soluciones 2009-1[1]

Propiedad coligativa experimental

Propiedad coligativa teóricai =

Factor i de Van’t Hoff

i = 1 + α ( ۷ - 1 )

α = corresponde a la proporción de partículas

disociadas cuando la concentración inicial del

soluto es uno molal (o 1M)

۷ = número de partículas

Page 30: Propiedades de Las Soluciones 2009-1[1]

Soluto Concentración de las soluciones

0,001 m 0,01 m

NaCl 1,97 1,94

MgSO4 1,82 1,53

K2SO4 2,84 2,69

AlCl3 3,82 3,36

Factor i de Van’t Hoff para distintos solutos en solución acuosa

Page 31: Propiedades de Las Soluciones 2009-1[1]

Elevación del punto de ebullición

Te = i Kem

Disminución del punto de congelación

Tc = i Kcm

Presión osmótica () = I CRT

Propiedades coligativas de disoluciones de electrólitos

P = i P° 2Descenso de la presión de vapor

Page 32: Propiedades de Las Soluciones 2009-1[1]

Se vertió en 200 g de agua, una cierta cantidad de NaCl. La solución resultante hirvió a 100,30 °C ¿Cuánta sal se había vertido en el agua? ۷ = 2, Ke = 0,512/molal, masa molar de NaCl = 58,5 .Sol. Te = Te - Tºe Te = 100,3 °C - 100 °C

Te = 0,3 °C Te = i Ke m 0,3 °C = 2 (0,512) m

m = 0,293 m = moles de soluto/masa de sol(kg)

moles de soluto = 0,293(0,20) = 0,0586

masa de soluto =0.0586x58,5 =3,428 gX = 3,428g de NaCl

Aplicación

Page 33: Propiedades de Las Soluciones 2009-1[1]

Determinar el descenso crioscópico de una solución acuosa 0,010 molal de ácido monoprotico (HX), si la disociación es de 3,76 %. Rta. -0.0193 ºC

La presión de vapor del agua pura a una temperatura de 25°C es de 23,69 mmHg. Una solución preparada con 5,5 g de glucosa en 50 g de agua tiene una presión de vapor de 23,42 mmHg. Suponiendo que la Ley de Raoult es válida para esta solución, determine la masa molar de glucosa.

Rta. Masa molar = 177,42 g/mol

Ejercicios

Page 34: Propiedades de Las Soluciones 2009-1[1]

...Ejercicios• Calcule el descenso de la presión de vapor de agua,

cuando se disuelven 5.67 g de glucosa, C6H12O6, en 25.2 g de agua a 25°C. La presión de vapor de agua a 25°C es 23.8 mm Hg ¿Cuál es la presión de vapor de la solución?

• Calcule el descenso de la presión de vapor de agua, cuando se disuelven 5.67 g de glucosa, C6H12O6, en 25.2 g de agua a 25°C. La presión de vapor de agua a 25°C es 23.8 mm Hg ¿Cuál es la presión de vapor de la solución?

• Una solución líquida consiste en 0,35 fracciones mol de dibromuro de etileno, C2H4Br2, y 0,65 fracciones mol de dibromuro de propileno, C3H6Br2. Ambos son líquidos volátiles; sus presiones de vapor a 85°C son 173 mm Hg y 127 mm Hg, respectivamente. Calcule la presión de vapor total de la solución

Page 35: Propiedades de Las Soluciones 2009-1[1]

….Ejercicios ¿Qué presión osmótica ejercerá una solución de urea

(NH2CONH2) en agua al 1%, a 20ºC?. Considere que 1000 g corresponde aproximadamente a 1 L de solución.

¿Qué concentración en g/L habría de tener una solución de anilina en agua, para que su presión osmótica a 18ºC sea de 750 mm Hg? (PM= 93.12)

El naftaleno C10H8, se utiliza para hacer bolas para combatir la polilla. Suponga una solución que se hace disolviendo 0,515 g de naftaleno en 60,8 g de cloroformo CHCl3, calcule el descenso de la presión de vapor del cloroformo a 20°C en presencia del naftaleno. La p de v del cloroformo a 20°C es 156 mm Hg. Se puede suponer que el naftaleno es no volátil comparado con el cloroformo. ¿Cuál es la presión de vapor de la solución?

Page 36: Propiedades de Las Soluciones 2009-1[1]

….Ejercicios• Una solución acuosa de glucosa es 0.0222 m

¿cuáles son el punto de ebullición y el punto de congelación de esta solución?

• ¿Cuántos gramos de etilenglicol, CH2OHCH2OH, se deben adicionar a 37.8 g de agua para dar un punto de congelación de -0.150°C?

• Se disolvió una muestra de 0.205 g de fósforo blanco en 25.0 g de CS2 Se encontró que la elevación del punto de ebullición de la solución de CS2 fue 0.159°C. Cuál es el peso molecular del fósforo en solución? ¿cuál es la fórmula del fósforo molecular?