prof. a. bouscayrol, dr. r.trigui - emrwebsite · hybrid electric vehicles) ... source: apri report...

70
Aalto University 2011 Aalto University Finland May 2011 Aalto University « « G G ENERALITIES ON ENERALITIES ON E E LECTRIC LECTRIC V V EHICLES ( EHICLES ( EV EV s s ) & ) & H H YBRID YBRID E E LECTRIC LECTRIC V V EHICLES ( EHICLES ( HEV HEV s s ) ) » » based on MEGEVH tutorial at IEEE-VPPC 2009 http://l2ep.univ-lille1.fr/megevh.htm Prof. A. BOUSCAYROL, Dr. R.TRIGUI L2EP, University Lille1, LTE, IFSTTAR, MEGEVH network, [email protected] [email protected]

Upload: doxuyen

Post on 28-Jul-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

1

Aalto University 2011

Aalto UniversityFinlandMay 2011

Aalto University

«« GGENERALITIES ONENERALITIES ON

EELECTRIC LECTRIC VVEHICLES (EHICLES (EVEVss) &) &

HHYBRID YBRID EELECTRIC LECTRIC VVEHICLES (EHICLES (HEVHEVss)) »»

based on MEGEVH tutorial at IEEE-VPPC 2009

http://l2ep.univ-lille1.fr/megevh.htm

Prof. A. BOUSCAYROL, Dr. R.TRIGUIL2EP, University Lille1, LTE, IFSTTAR,

MEGEVH network,[email protected]

[email protected]

2

HEVs& EMR

Aalto University 2011

- Speaker & contributor -

Prof. Alain BOUSCAYROLUniversity of Lille 1, L2EP, FranceCoordinator of MEGEVH, French network on HEVsGeneral Chair of IEEE-VPPC 2010, Lille France

Dr. Rochdi TRIGUIIFSTTAR, LTE, FranceHead of the “HEV group” of IFSTTARMember of the scientific committee of MEGEVH

IFSTTAR (ex INREST & LCP) Institut français des sciences et technologies des transports, de l'aménagement et des réseaux

3

HEVs& EMR

Aalto University 2011

- MEGEVH network -

Lille

Paris

Lyon

Toulouse

Valenciennes

Belfort

LaplaceLaplace LTE

LTN

LAMIHLAMIH

Bordeaux

Coordination:Prof.A. Bouscayrol

6 projects6 PhDs in progress4 PhDs defended

7 industrial partners10 academic Labs

(Energy management ofHybrid Electric Vehicles)

http://l2ep.univ-lille1.fr/megevh.htm

4

HEVs& EMR

Aalto University 2011

HEV 1

MEGEVH-macro

MEGEVH-strategy

MEGEVH-optim

Theoretical level

MEGEVH-storeMEGEVH-FC

Vehicle level

HEV n

Development of methodologies of modelling and

energy management

independently ofthe kinds of vehicles

• co-supersized PhD• collaboration projects

Paper Prize Award of IEEE-VPPC’08

• 6 PhD Defended• 6 PhD in progress• EMR as common tool• generic model of HEV (Prize)

- MEGEVH philosophy -

5

HEVs& EMR

Aalto University 2011

-- Experimental platform, and vehicles Experimental platform, and vehicles --

platform « eV »Real-time energy management

LTE

platform « propulsion »platform « storage devices »

LTE

Toyota Prius II DPE 6x6 3008 HY4

6

HEVs& EMR

Aalto University 2011

IEEE VPPC 2010IEEE VPPC 2010September 1-3, 2010 — Lille, France

Clean Tech for TransportationClean Tech for Transportationhttp://www.vppc2010.org/

IEEE Vehicle Power and Propulsion Conferenceannual joint conference of IEEE-PELS and IEEE-VTS,

organized by MEGEVH

more than 360 registrations from 35 countries

5 Tutorials, 9 Keynotes,

167 oral presentations, 104 posters

15 exhibitors, 2 technical visits, 1 awareness forum

plus “carbon

care” action http://www.vppc2010.orgDocuments and videos available at:

7

HEVs& EMR

Aalto University 2011

- Outline -

1.1. CCONTEXT OF ONTEXT OF EVsEVs AND AND HEVsHEVs

22. . DDIFFERENT IFFERENT KKINDS OF INDS OF EVsEVs AND AND HEVsHEVs

33. . KKEY EY IISSUES OF SSUES OF EVsEVs AND AND HEVsHEVs

RREFERENCESEFERENCES

8

Aalto University 2011

Aalto UniversityFinlandMay 2011

Aalto University

1. Context of 1. Context of EVsEVs & & HEVsHEVs

• Global warming• Petroleum resources• Thermal Vehicle

9

HEVs& EMR

Aalto University 2011

- Global « Warning »! -

Source: APRI report

average air-temperature (northern hemisphere)Green House Gases

Temperature variation(℃)

by thermometer

from tree rings,coral,・・・

Average temp. in 1961~1990

industrial revolution

1000 1200 1400 1600 1800 2000Year

0.0

0.5

-0.5

-1.0

Source: IPCC Report

10

HEVs& EMR

Aalto University 2011

0% 5% 10% 15% 20% 25%

Waste

Energy production

Residential/trade

Agricultural

Industrial Process

Transport

http://www.citepa.org/ http://www.ifen.fr/

Zero Emission Vehicles (ZEV)

for environmental concern

light vehicles 50%

- Source of Green House Gases -

2003

11

HEVs& EMR

Aalto University 2011

km/ / dayCO2 (t)CO2 (g/km)particles (t)NOx (t)CO (t)HC (t)

http://www.inrets.fr/

- Evolution of GHG in France -

12

HEVs& EMR

Aalto University 2011

1970 1980 1990 2000 2010 2020 2030 2040 20500

500

1000

1500

2000

2500

Gb

year

Discovery reserves

CumulativeConsumption

- Petroleum resources -

Remainingreserves

+

current forecast

2038 supply endyear

low consumption vehiclefor energy reserve concern

[Ehsani & al 2005]

13

HEVs& EMR

Aalto University 2011

- Petroleum consumption -

http://www.manicore.com/

ASPO: Association for the Study of Peak OilAIE: International Agency of Energy

consumption

production

2015 2040

Peak Oil

Gb / day

14

HEVs& EMR

Aalto University 2011

0

20

40

60

80

100

120

1990 1995 2000 2005 2010

$ per barrel

Price in August

- Evolution of oil prices -

15

HEVs& EMR

Aalto University 2011

drivenwheelsclutch and

gearbox

differentialICEngine

Fuel tank

low efficiency pollution emission no energy recovery

great autonomyfast energy charge

- Thermal Vehicle -

16

HEVs& EMR

Aalto University 2011

Iso specific consumption (g/kWh )

Pmax=60 ch (45 kW) @ 3750 rpm Tmax=119 Nm @ 3400 rpm

( 1700 cm3 )

Speed (rpm)

Torq

ue (

Nm

)

- Gasoline engine -

Efficiency map

1717

HEVs& EMR

Aalto University 2011

Pmax= 90 ch (66 kW) à 4000 rpm Tmax=214 Nm @ 1900 rpm

( 1997 cm3)

- Diesel engine -

18

HEVs& EMR

Aalto University 2011

Example of an urban drive cycleICE Power (kW)

t (s)

http://www.inrets.fr/

Pmean= 15 kW

Pmax= 60 kW

oversizing

- Power of a thermal vehicle -

P < 0

Energy loss

Interest of a system which:• delivers peak power at high efficiency• enables energy recovery

19

HEVs& EMR

Aalto University 2011

speed (m/s)

78% of pollutant emissions during 14 % of the cycle

Example of a highway drive cycleCO (g/s)

t (s)

- Pollution of a thermal vehicle -

P < 0

Interest of a system which:• enables transients at high efficiency and low emission http://www.inrets.fr/

20

HEVs& EMR

Aalto University 2011

Speed (rpm)

Torque (Nm)

- Operation of an ICE -Urban drive cycle / iso-consumption map

http://www.inrets.fr/mean efficiency 12%

(88% of losses!!)

21

HEVs& EMR

Aalto University 2011

- Operation of an ICE -Extra-urban drive cycle / iso-consumption map

Speed (rpm)

Torque (Nm)

http://www.inrets.fr/mean efficiency 20%

22

HEVs& EMR

Aalto University 2011

- Future Vehicles? -

• Thermal vehicle with bio-fuels(coupling energy & food? water requirement? Etc)

• Electric Vehicles(production of electricity? autonomy reduction? Etc)

• Hybrid Electric Vehicles(increase of cost? need of fossil fuel? Etc)

• Fuel Cell Vehicles(increase of cost? hydrogen production? Etc)

• Etc.

but also• A more reasonable mobility!

(reduction of travels? Increase of common transport? Etc.)

No ideal and unique

solution

23

Aalto University 2011

Aalto UniversityFinlandMay 2011

Aalto University

2. Different kinds of 2. Different kinds of EVsEVs & & HEVsHEVs

• Electric Vehicles• Hybrid Electric Vehicles• Fuel Cell Vehicles

24

HEVs& EMR

Aalto University 2011

neither clutchno gearbox

electricmachine

powerelectronicsBattery

drive Unit

high efficiency no local emission energy recovery

low autonomy long energy charge

- Electric vehicle -

25

HEVs& EMR

Aalto University 2011

- Example of EV -

Long charge

High cost

limited range

Urban vehiclesFullElectricVehicle

Renault Kangoo (2001)

Range: 100 kmMaximal cruising velocity 100 km/hBattery charge: 6hTraction cost: 1€ / 100 km Synchronous machine with field winding

of 22 kWhttp://www.renault.fr

26

HEVs& EMR

Aalto University 2011

thermalengine

fuel TM

Thermal Vehicle:- pollution- low efficiency

PE electricmachineBattery

Electric Vehicle:- long charge- low autonomy

- Thermal and Electric Vehicles -

http://www.thinkev.com/

Think city

27

HEVs& EMR

Aalto University 2011

- Hybrid Electric Vehicles -

fuelHybrid vehicle:- advantage of each technology- higher cost- complex control

Battery PE

thermalengine

TMelectric

machine

Various configurations:• Different power ratios PICE/PEM• Different component organization

Toyota Prius 3

http://www.toyota.com/

http://www.mpsa.com

Peugeot 3008 HY4

28

HEVs& EMR

Aalto University 2011

fuel

Battery

ICE

electricalmachine

EM

PE

- HEVs or EVs? -

http://www.renault.fr

Range extender EV= EV + ICE for

higher mileage range

fuelPlug-in HEV:= HEV + charger

+ plugBattery

ICengine

MTelectricalmachine

http://www.chevrolet.com//PE

Chevrolet Volt

Kangoo electroroad RE

29

HEVs& EMR

Aalto University 2011

H2 PEFC electricalmachine

Fuel cell vehicle := EV with battery replaced by

a fuel cell and a H2 tank

- Fuel Cell vehicles? -

FC vehicle with hybrid storage= another kind of RE-EV

electricalmachine

Battery

H2

PE

FC

http://www.honda.com/

Honda Clarity FX

30

HEVs& EMR

Aalto University 2011

• ICE vehicle: source for traction = fossil or bio fuel• Electric Vehicle (EV): source for traction = electricity

• Hybrid vehicle (HV): two different energy sources for traction• Hybrid Electric Vehicle (HEV): at least 1 electrical energy source

Examples:- EV (Battery + Scaps) ≠ HEV- Tramway “Mitrac” (Supply rail + Scaps) = HEV- Starter/Alternator for HEV = considered as HEV

Classical uses:- automotive application: HEV = ICE (fuel) + EM (Bat)- railway application: HEV = external + internal energy source

- HEVs definitions and uses -

31

HEVs& EMR

Aalto University 2011

- HEV classifications -

• Architecture classification (power flow)

- series HEVs (electric power node)

- parallel HEVs (mechanical power node)

- series/parallel HEVs(electric and mechanical power node)

• Power ratio classification (thermal and electric power)

TV EVmicro HEV

mild HEV

full HEV

thermal power

electrical power

fuel

bat.wheels

fuel

bat.wheels

fuel

bat.wheels

[Chan 07] [Emadi 07]

32

HEVs& EMR

Aalto University 2011

ICE

EM

BAT

EG

Series Parallel HEV

Fuel

- Basic Architectures -

ICE

EM

BAT

Fuel

??

ICE

EM

BAT

Fuel

EG

Series HEV electrical node

ICE

EM

BAT

Fuel

Parallel HEV

mechanical node

power flows

33

HEVs& EMR

Aalto University 2011

- Series HEVs -

powerelectronics

Battery

drive Unit

electricgenerator

ICEngine

Fuel tank electricmachine

ZEV mode energy recoverylow efficiency low emission

high costhigh autonomy low consumption

34

HEVs& EMR

Aalto University 2011

- Example of a series HEV -

high drive train cost

high battery size

high traction machine size

high power transportation systems

(train, truck, bus…)

Series HEV

Mistubishi Canter HEV (1996)

Delivery vehicleMaximum mass of 5.6 tonsMaximum cruising speed of 100 km/hLPG Engine (200 km autonomy)Synchronous generator (20 kW)2 induction motors of 40 kW

http://www.jari.or.jp/ja/denki/nakama/j-carmaker/mitsubisi/hev/canter.html

35

HEVs& EMR

Aalto University 2011

powerelectronicsBattery

drive Unit

electricmachineIC

EngineFuel tank

ZEV mode

energy recovery

medium emission

low consumption

medium efficiency

high costhigh autonomy

- Parallel HEV -

control

36

HEVs& EMR

Aalto University 2011

- Example of a Parallel HEV -

high autonomy

low consumption

high cost

few passenger carswith low hybrid rate

Parallel HEV

torqueaddition

http://www.automobiles.honda.com/

Honda Insight (1999)

2-seat vehicle (0.85 tons) ICE: 49 kW at 5700 rpmPermanent magnets

synchronous motor: 10 kWconsumption: 2.9 l/km

37

HEVs& EMR

Aalto University 2011

Episcicloïdal power train

- Series-parallel HEVs -

electricgenerator

ICEngine

Fuel tank

powerelectronicsBattery electric

machine

same characteristics

more modes

38

HEVs& EMR

Aalto University 2011

- Example of a series-parallel HEVs -

high autonomy

low consumption

high cost

most HEVpassenger cars

SeriesParallel

HEV

http://www.toyota.com/

Toyota Prius II (2003)

4-seat vehicle (1.2 ton) ICE: 53 kW at 4500 rpmPermanent magnets

synchronous motor: 33 kWconsumption: 3.5 l/km

39

HEVs& EMR

Aalto University 2011

• Thermal traction

• Internal battery charge (from ICE)

• Stop and Go (electrical starter)

• Regenerative braking

• Boost (electric support)

• Electric traction (Zero Emission)

• External battery charge (Plug-in HEV)

EM

EV

more electricpower

TV

ICE

ICE EM

ICE EM

ICE EM

ICE

EM

- Operation modes -

40

HEVs& EMR

Aalto University 2011

- Micro-Hybrid vehicles -

ICEngine

Fuel tank

powerelectronicsBattery

drive Unit

EM

Starter Alternator = parallel (torque addition) HEV with a low power electrical machine

Stop and Go mode

medium consumption

medium emissions

Low cost42V compatibility

http://www.sae.org/

41

HEVs& EMR

Aalto University 2011

- Example of a micro-hybrid vehicle -

high autonomy

medium consumption

light cost

Intermediary stepHEVwith

starter-alternator

http://www.citroen.com/

Citroën C3 Sensodrive Stop & Start (2005)

4-seat vehicle (1.1 ton) ICE : 65 kW at 5250 rpmstarter alternator synchronous machine

with permanent magnets: 3.6 kWconsumption : 4.2 l / 100km

(gain of 10% on urban cycles)automatic gearbox

42

HEVs& EMR

Aalto University 2011

- Plug-in HEV -source: Toyota ( http://www.toyota.com/)

43

HEVs& EMR

Aalto University 2011

- Power ratio classification -

TV EVmicro HEV

mild HEV

full HEV

thermal power

electrical power

Stop and Go

Boost + Energy recovery

Pure Electric Traction ZEV mode)

44

HEVs& EMR

Aalto University 2011

City - 25%

Hyb

ridi

zatio

nfu

nctio

ns

Stop & StartRegenerative Braking

Torque AssistanceElectric Drive

FULL HYBRIDand PLUG-INs

MICRO-HYBRID

MICRO - MILD HYBRID

NEDC - 6%

- 12%-15-20%

-20-30%

Stop-Start: basis of hybridization for mass production affordable solutions

MILDHYBRID

source: VALEO (http://www.valeo.com/)

- Consumption reduction -

45

HEVs& EMR

Aalto University 2011

source: Toyota ( http://www.toyota.com/)

- Pollution reduction -

46

HEVs& EMR

Aalto University 2011

ICE

VSI1 EM1

VSI2 EM2

BAT

Trans.R

C

S

Fuel

Split HEV

CarrierSun

Planetary train

Ring

[Chen 2008]

- Basic HEV powertrains -

47

HEVs& EMR

Aalto University 2011

ICE

VSI1 EM1

VSI2 EM2

BAT

Trans.R

C

S

Fuelseries parallelHEV

ICE

VSI1 EM1

VSI2 EM2

BAT Fuel

Parallel HEV

Trans.

ICE

VSI1 EM1

VSI2 EM2

BAT

Trans.

Fuel

Series HEV

- Basic HEV powertrains -

48

HEVs& EMR

Aalto University 2011

ICE

VSI1 EM1

VSI2 EM2

BAT Fuel

Thermal VehicleTrans.

ICE

VSI1 EM1

VSI2 EM2

BAT

Trans.

FuelElectric Vehicle (EV)

ICE

VSI1 EM1

VSI2 EM2

H2

Trans.

Fuel

Fuel-Cell Vehicle

FC

- Other powertrains -

49

HEVs& EMR

Aalto University 2011

- Main operation modes -

Source: http://www.hybridcenter.org

50

HEVs& EMR

Aalto University 2011

- Other Electric Vehicles -

New technologies are also used in various vehicles in order to reduce the ecological footprint of transportation systems!

51

Aalto University 2011

Aalto UniversityFinlandMay 2011

Aalto University

3. Key issues of 3. Key issues of EVsEVs & & HEVsHEVs

• Energy Storage Subsystems• Energy Management• Societal changes

52

HEVs& EMR

Aalto University 2011

High efficiencyPower electronics

Battery Ni-MHHigh energy density

Complex control

Permanent MagnetSynchronous Machines

Power split

GeneratorBattery

Motor

Mechanical power path

Electrical power path

Engine

Inverter Boost

Véhicule PRIUS IIhttp://www.toyota.com/

ECU

Innovations fromElectrical Engineering!

- Prius, success story -

53

HEVs& EMR

Aalto University 2011

- Prius, different gains -

http://www.toyota.com/

54

HEVs& EMR

Aalto University 2011

- Well to Wheel analysis -

HEV

EV

g CO2 / km

?Coal

Coal

Natural Gas

wood

Nuclear

Wind

55

HEVs& EMR

Aalto University 2011

- Electricity Production -

International Energy Agency 2005www.iea.org

but

Wastes andaccident!!

56

HEVs& EMR

Aalto University 2011

SuperCaps

batteries

petrol+ thermal

engineH2

+Fuel

Cell

fly wheel

Energy density (Wh/kg)~ mileage range

Power density (W/kg)

~ acceleration,charge time

- Energy sources -

[Chan 2008]

?

hybrid storage? non-rechargeable

57

HEVs& EMR

Aalto University 2011

- Evolution of batteries -

but

Fossil fuel

11 000 Wh/kg

in development in researchin commerce

Most promisingTechnology forEVs and HEVs

Lead acid

58

HEVs& EMR

Aalto University 2011

Battery Energy

1-2 kWhClassical

HEV

6-12 kWhPlug-inHEV

30-40 kWhEV

SOC0 100

Charge sustaining

neverdischarged

nevercharged

0.2 – 0.6 kWh

Charge depleting

[Pélissier 2009]

- Batteries Management -

59

HEVs& EMR

Aalto University 2011

- Energy charge -

batteries swap station for Electric Busduring the Olympic Games

Beijing 2008

New technologies and developments?but alsoA new way to manage our energy charge?

• slow charge at home / at work (4-8h?)

• ultra-fast charge at specificstation (1/2h?)

• battery swap station(5-10 min?)

60

HEVs& EMR

Aalto University 2011

- Impact on the grid -

http://my.epri.com

V2G

G2V

New concepts for grid management?but alsoA new way to manage our energy price?

(Vehicle to Grid)

61

HEVs& EMR

Aalto University 2011

- Complex control (example) -

BAT

ICE

VSI1 EM1

FuelParallel HEV Trans.

fast subsystemcontrols

EM1control

ICEcontrol

Transcontrol

Energy management(supervision/strategy)

driver request

slow systemsupervision

62

HEVs& EMR

Aalto University 2011

- Energy management methods -

[Salmasi 2007]

Energy management(supervision/strategy)

driver request

Rule-based

deterministic rule-based

fuzzyrule-based

state machine / power follower/ thermostat control…

predictive / adpative /conventional…

Optimization based

global optimization

real-time optimization

Dynamic programming / stochastic DP /Game theory / Optimal control….

Robust control / Model predictive / decoupling control / l control…

63

HEVs& EMR

Aalto University 2011

- Energy management? -

Efficient energymanagement

• Reduction of energy consumption• Reduction of local emissions• Increase of the autonomy range

An energetic modeling is required to take into account the different power flows

and the subsystem’s interactions

But more complex than for Thermal Vehicle• multi-physical devices• more power flows• various interconnected subsystems

(for model-based control)

64

HEVs& EMR

Aalto University 2011

- Day trip Analysis -

Mileage range of a classical EV = 100 to 150 km

50%30%20%

Average values ofdaily trips inEurope in 2007

daily trip < 20 km

daily trip > 60 km

20 km < daily trip < 60 km

Possible uses of EVs?butA new way to manage our mobility?

65

HEVs& EMR

Aalto University 2011

- Fuel Cell Vehicle? -

powerelectronics

Battery

electricgenerator

ICEngine

Fuel tank electricmachine

supercap

powerelectronics

fuelcells

hydrogen

ZEV mode

energy recovery

high efficiencyhigh autonomy

low consumption high battery lifetime

high cost low safetyhigh sizeNowadays

66

HEVs& EMR

Aalto University 2011

- Imagine the future! -

Prototype EPF ZurichMass: 32 kgconsumption: world record 1 litre / 5 400 kmPEM Fuel cell 900 WTank to wheel efficiency: 50%2 in-wheel dc machines 150 WAerodynamics Cx: 0.075

http://www.paccar.ethz.ch/

Shell Eco Marathon• distance 25.272 km• mean speed 30 km/h

67

Aalto University 2011

Aalto UniversityFinlandMay 2011

Aalto University

HEVs and EVs could be valuable complementary vehicles

a limited mileage range could be…a chance…

… forward a more reasonable use of our mobility!

ConclusionConclusion

Technology will not save Automotive industry!The mobility concepts have to be changed!

68

Aalto University 2011

Aalto UniversityFinlandMay 2011

Aalto University

ReferencesReferences

69

HEVs& EMR

Aalto University 2011

- References (1) -[Allègre 09] A. L. Allègre, A. Bouscayrol, R. Trigui, “Influence of control strategies on battery/supercapacitor Hybrid Energy Storage Systems for traction applications", IEEE-VPPC’09, Dearborn (USA), September 2009,(common paper L2EP Lille and LTE-INRETS in the framework of MEGEVH network)

[Boulon 09] L. Boulon, D. Hissel, M. C. Pera, A. Bouscayrol, O. Pape, “Energy based modeling of a 6 wheel drive hybrid heavy truck", IEEE-VPPC’09, Dearborn (USA), September 2009 (common paper FEMTO-ST, L2EP Lille and Nexter Systems in the framework of MEGEVH network)

[Bouscayrol 03] A. Bouscayrol, "Formalismes de représentation et de commande des systèmes électromécaniques multimachines multiconvertisseurs", HDR de l'Université de Lille 1, décembre 2003.

[Chan 07] C.C. Chan: "The state of the art of electric, hybrid, and fuel cell vehicles“, Proc. of the IEEE, April 2007, Vol. 95, No.4, pp. 704 - 718.

[Chan 09] C.C. Chan, Y. S. Wong, A. Bouscayrol, K. Chen, "Powering Sustainable Mobility: Roadmaps of Electric, Hybrid and Fuel Cell Vehicles", Proceedings of the IEEE, to be published in vol. 97, no. 4, April 2009, (common paper University of Hong-Kong and L2EP Lille).

[Chan 10] C. C. Chan, A. Bouscayrol, K. Chen, “Electric, Hybrid and Fuel Cell Vehicles: Architectures and Modeling", IEEE transactions on Vehicular Technology, vol. 59, no. 2, February 2010, pp. 589-598 (common paper of L2EP Lille and Honk-Kong University).

[Chen 08] K. Chen, A. Bouscayrol, A. Berthon, P. Delarue, D. Hissel, R. Trigui, “Global modeling of different vehicles, using Energetic Macroscopic Representation to focus on system functions and system energy properties”, IEEE Vehicular Technology Magazine, vol. 4, no. 2, June 2009, pp. 80-89 (common paper L2EP Lille, FEMTO-ST and LTE-INRETS according to MEGEVH project)

[Cheng 09] Y. Cheng, K. Chen, C.C. Chan, A. Bouscayrol, S. Cui, “Global modelling and control strategy simulation for a Hybrid Electric Vehicle using Electrical Variable Transmission”, IEEE Vehicular Technology Magazine, vol. 4, no. 2, June 2009, pp. 73-79 (common paper Harbin Institute of technology and L2EP Lille)

70

HEVs& EMR

Aalto University 2011

- References (2) -

[Emadi 05] A. Emadi, K. Rajashekara, S. S. Willaimson, S.M. Lukic, “Topological overview of Hybrid Electric and Fuel Cell vehicula power systems architectures and configurations”, IEEE Trans. on Vehicular Technology, May 2005, Vol. 54, No. 3, pp. 763-770.

[Eshani 05] M. Eshani, Y. Gao, S. E. Gay, A. Emadi, "Modern electric, hybrid electric and fuel cell vehicles", CRCPress, New York, 2005.

[Lhomme 08] W. Lhomme, R. Trigui, P. Delarue, B. Jeanneret, A. Bouscayrol, F. Badin, "Switched causal modeling of transmission with clutch in hybrid electric vehicles”, IEEE Transaction on Vehicular Technology, Vol. 57, no. 4, July 2008, pp. 2081-2088, (common paper L2EP Lille, LTE-INRETS in the framework of MEGEVH network).

[Mi 09] C. Mi, “Plug-in hybrid electric vehicles - Power electronics, battery management, control, optimization, and V2G”, IEEE-ISIE’09, Seoul, July 2009.

[Salmasi 07] F. R. Salmasi, "Control strategies for Hybrid Electric Vehicles: evolution, classification, comparison and future trends", IEEE Trans. on Vehicular Technology, September 2007, Vol. 56, No. 3, pp. 2393-2404..

[Scordia 2009] J. Scordia, R. Trigui, M. Desbois-Renaudin, B. Jeanneret, F. Badin, “Global Approach for Hybrid Vehicle Optimal Control”, Journal of Asian Electric Vehicles. Volume 7, Number 1, June 2009.

[Vinot 08] E. Vinot, J. Scordia, R. Trigui, B. Jeanneret, F. Badin, “Model simulation, validation and case study of the 2004 THS of Toyota Prius”, International Journal of Vehicle System Modelling and testing, Vol. 3, No 3, pp. 139-167, 2008.