dr. philippe barrade*, dr. walter lhomme**, prof. alain...

54
« Energy Management of EVs & HEVs using Energetic Macroscopic Representation » Technical University of Graz, April 2012 Dr. Philippe Barrade*, Dr. Walter LHOMME**, Prof. Alain BOUSCAYROL** * LEI, Ecole Polytechnique Fédérale de Lausanne, Suisse ** L2EP, University Lille1, France

Upload: others

Post on 27-Jan-2021

8 views

Category:

Documents


1 download

TRANSCRIPT

  • « Energy Management of EVs & HEVs using Energetic Macroscopic Representation »

    Technical University of Graz, April 2012

    Dr. Philippe Barrade*, Dr. Walter LHOMME**, Prof. Alain BOUSCAYROL** * LEI, Ecole Polytechnique Fédérale de Lausanne, Suisse

    ** L2EP, University Lille1, France

  • 2 EMR, Technical University of Graz, April 2012

    - Outline -

    •  Introduction •  Modelling and representation of the mechanical part

    –  Illustration of permutation, merging and combination rules •  Modelling and representation of the electrical part

    –  Considerations on the model level (batteries) –  Considerations for the modelling and representation of

    power converters –  Considerations for the modelling and representation of

    electrical machines •  Final EMR of an EV

  • « Energy Management of EVs & HEVs using Energetic Macroscopic Representation »

    Technical University of Graz, April 2012

  • 4 EMR, Technical University of Graz, April 2012

    - Studied EV traction system -

    Tgear Ωrwh

    Ωlwh Tldiff

    Trdiff

    vveh

    Fenv

    Ωdiff Jsh Tdcm

    Ωgear

    Tload

    Ωgear fsh

    Power Converters

    Electrical machine

    Trans- wheels chassis environ. batteries shaft

  • 5 EMR, Technical University of Graz, April 2012

    - Goals of the study-

    •  Allow the EMR of an electric vehicle –  Obtained from its modelling –  Allow the identification an IBC –  Comparisons of various technologies for the electrical

    machine

    •  Assumptions –  Ideal power switches for the converters –  Non-saturated electrical machines –  Inertia of the wheels is neglected –  Contact wheel/ground without loss –  Mechanical brakes are not considered

  • 6 EMR, Technical University of Graz, April 2012

    - Methodology -

    •  EMR of each sub-system is deduced from its modelling –  And not directly from its structural representation

    •  EMR of the mechanical subsystems will be made first •  EMR of the electrical subsystems will be then operated

    –  Considering 3 different kinds of electrical machines •  DC machines •  Induction machines •  Permanent magnets synchronous machines

    –  Comparison of the various EMR will be proposed

  • « Energy Management of EVs & HEVs using Energetic Macroscopic Representation »

    Technical University of Graz, April 2012

  • 8 EMR, Technical University of Graz, April 2012

    - From the shaft to the environment -

    Tgear Ωrwh

    Ωlwh Tldiff

    Trdiff

    vveh

    Fenv

    Ωdiff Jsh Tdcm

    Ωgear

    Tload

    Ωgear fsh

    Differential wheels

    chassis environ. shaft Gear-box

    •  Considering that the electrical machine is a torque generator

    •  Each sub-system is modelled and represented independently •  The final EMR is the last step

  • 9 EMR, Technical University of Graz, April 2012

    - Model and EMR of the shaft -

    •  Model

    –  Fsh : viscous friction (Nm.s) –  Jsh : inertia moment (kg.m2)

    •  EMR

    Jsh Tdcm

    Ωgear

    Tload

    Ωgear fsh

    Ωgear

    Ωgear

    Tload

    Tdcm

  • 10 EMR, Technical University of Graz, April 2012

    - Model and EMR of the gearbox -

    •  Model –  kgear : transformation ratio –  ηgear : efficiency –  p : correction exponent

    •  EMR

    Ωgear

    Tload Ωdiff

    Tgear

    Tload

    Ωgear

    Tgear

    Ωdiff

    kgear

    Tload

    Ωgear

    Tgear

    Ωdiff

    If kgear can be adjusted kgear constant

  • 11 EMR, Technical University of Graz, April 2012

    - Model and EMR of the differential -

    •  Principle

    planet gear

    ring gear

    side gear

    (wheels)

    trans. shaft

    Ωdiff

    Tgear

    Ωlwh

    Ωrwh

    Tldiff

    Trdiff

  • 12 EMR, Technical University of Graz, April 2012

    - Model and EMR of the differential -

    •  Model –  kdiff : transformation ratio –  ηdiff : efficiency –  p : correction exponent

    •  EMR

    Ωdiff

    Tgear

    Ωlwh

    Ωrwh

    Tldiff

    Trdiff

    Tldiff

    Ωlwh

    Ωdiff

    Ωrwh

    Trdiff

    Tgear Tdiff

    Ωwh

  • 13 EMR, Technical University of Graz, April 2012

    - Model and EMR of the wheels -

    •  Model –  Rwh : wheel radius

    •  EMR

    vwh

    Fwh

    Ωwh

    Tdiff

    Tdiff

    Ωwh

    Fwh

    vwh

  • 14 EMR, Technical University of Graz, April 2012

    - Model and EMR of the wheels/ground contact -

    •  Model

    » Rt : turning radius »  lev : vehicle width

    •  EMR

    lev

    Rt

    Flwh

    Frwh

    vrwh

    vrwh

    vveh

    Ftot

    Rt

  • 15 EMR, Technical University of Graz, April 2012

    - Model and EMR of the chassis -

    •  Model –  Mveh : mass of the vehicle

    •  EMR

    vveh

    Fenv

    vveh

    Ftot

    Fenv

    vveh

  • 16 EMR, Technical University of Graz, April 2012

    - Model and EMR of the environment -

    •  Model –  Faero : aerodynamic resistance –  Froll : rolling resistance –  Fgrade : grade resistance

    α

    A

    α M g

    Faero

    L

    h ½ Froll ½ Froll

    Fgrade

    If α small (h/L

  • 17 EMR, Technical University of Graz, April 2012

    - Model and EMR of the environment -

    •  Model: Aerodynamic resistance –  ρair : density of air (1.223kg/m3 @ 1013hPa, 20°C) –  A : frontal area (m2) –  Cx : drag coefficient

    vehicle Cx drag coefficient convertible 0.33 to 0.50 four-wheel drive 0.35 to 0.50 saloon car 0.26 to 0.35 estate car 0.30 to 0.34 shaped 0.30 to 0.40 headlight and wheels in the fuselage 0.20 to 0.25

    kammback 0.23 streamlined shape 0.15 to 0.20

    Source: Mémento de Technologie Automobile, 3ème édition, BOSCH drop of water

  • 18 EMR, Technical University of Graz, April 2012

    - Model and EMR of the environment -

    •  Model: Rolling resistance –  kroll : coefficient of the rolling (quality of the floor-covering)

    floor-covering coefficient of the rolling kroll cobblestones 0.013 concrete, asphalt 0.011 macadam 0.020 / 0.025 dirt track 0.050

    Source: Mémento de Technologie Automobile, 3ème édition, BOSCH

  • 19 EMR, Technical University of Graz, April 2012

    - Model and EMR of the environment -

    •  Model: total resistive forces –  Once Fenv is known –  Requested power can be identified: P=Fenv.vveh –  Example for Cx=0.35, A=2m2, kroll=0.02, Mveh=1000kg and h/L=5%

  • 20 EMR, Technical University of Graz, April 2012

    - Global EMR of the mechanical part -

    Tgear Ωrwh

    Ωlwh Tldiff

    Trdiff

    vveh

    Fenv

    Ωdiff Jsh Tdcm

    Ωgear

    Tload

    Ωgear fsh

    chassis environ. shaft Gear-box

    Tdcm

    Ωgear

    Ωgear

    Tload

    shaft

    Tgear

    Ωdiff

    Tload

    Ωgear

    gearbox

    Tldiff

    Ωlwh

    Ωrwh

    Tdiff

    Ωwh

    differential

    Trdiff

    Flwh

    Frwh

    vrwh

    vlwh

    wheels

    ENV vveh Ftot

    Fenv vveh

    Rt

    chassis environ.

  • 21 EMR, Technical University of Graz, April 2012

    - Global EMR of the mechanical part: permutation and merging -

    Tdcm

    Ωgear

    Ωgear

    Tload

    shaft

    Tgear

    Ωdiff

    Tload

    Ωgear

    gearbox

    Tldiff

    Ωlwh

    Ωrwh

    Tdiff

    Ωwh

    differential

    Trdiff

    Flwh

    Frwh

    vrwh

    vlwh

    wheels

    ENV vveh Ftot

    Fenv vveh

    Rt

    chassis environ.

    permutation

    Tgear

    Ωdiff

    Teq

    Ωdiff

    Tdcm

    Ωgear

    Ωdiff

    Tgear

    Tldiff

    Ωlwh

    Ωrwh

    Tdiff

    Ωwh Trdiff

    Flwh

    Frwh

    vrwh

    vlwh ENV

    vveh Ftot

    Fenv vveh

    Rt Permutation…!..!....

  • 22 EMR, Technical University of Graz, April 2012

    - Global EMR of the mechanical part: permutation and merging -

    Tdcm

    Ωgear ENV

    Tgear

    Ωdiff

    Tldiff

    Ωlwh

    Ωrwh

    Tdiff

    Ωwh Trdiff

    Flwh

    Frwh

    vrwh

    vlwh vveh F

    Ftot vveh

    Rt

    vveh Ftot

    Fenv vveh

    merging

    Tdcm

    Ωgear ENV

    Tgear

    Ωdiff

    Tldiff

    Ωlwh

    Ωrwh

    Tdiff

    Ωwh Trdiff

    Flwh

    vrwh

    vlwh vveh Ftot

    Ftot vveh

    Rt

    Frwh

    wheels chassis gearbox differential

  • 23 EMR, Technical University of Graz, April 2012

    - Global EMR of the mechanical part: simplifications (optional) -

    If the vehicle drives in a straight line (Rt = ∞), an equivalent wheel is sufficient

    Tdcm

    Ωgear ENV

    Tgear

    Ωdiff

    Tldiff

    Ωlwh

    Ωrwh

    Tdiff

    Ωwh Trdiff

    Flwh

    vrwh

    vlwh vveh Ftot

    Ftot vveh

    Rt

    Frwh

    ENV Ωdiff Ωwh Ωgear

    vveh

    Fenv vveh

    wheels chassis gearbox differential

    ratio

    Ftot Tgear Tdiff Tdcm

    Rwh: wheel radius

    combination

  • 24 EMR, Technical University of Graz, April 2012

    - Global EMR of the mechanical part: simplifications (optional) -

    Tgear Ωrwh

    Ωlwh Tldiff

    Trdiff

    vveh

    Fenv

    Ωdiff Jsh Tdcm

    Ωgear

    Tload

    Ωgear fsh

    chassis environ. shaft Gear-box

    ENV Ftot Tdcm

    Ωgear

    vveh

    Fenv vveh

    chassis transmission

  • 25 EMR, Technical University of Graz, April 2012

    - Global EMR of the mechanical part: key points -

    ENV Ftot Tdcm

    Ωgear

    vveh

    Fenv vveh

    chassis transmission

    •  The system has been first modelled •  From the model, the EMR has been established

    –  Permutations and merging are required when conflict of associations are obtained. This is mandatory. It must be done according to the model.

    –  Simplifications can be made but are optional. In all cases, the model is still valid, except if the simplifications are made following restrictive conditions. Then, adaption of the model is needed . Simplifications depend on the objectives defined for the study.

  • « Energy Management of EVs & HEVs using Energetic Macroscopic Representation »

    Technical University of Graz, April 2012

  • 27 EMR, Technical University of Graz, April 2012

    •  Considering that mechanical part is an energy source

    •  Generalities for modelling and representing –  Batteries, Power converters, Electrical machines

    •  Final EMR comparing the representations of various technologies

    Tdcm

    Ωgear

    - From the batteries to the shaft -

  • 28 EMR, Technical University of Graz, April 2012

    •  Principally two kinds of model: –  energetic model –  dynamic model

    •  Choice of the model depends on the objectives for the study •  Energetic model

    –  Open Circuit Voltage (OCV): –  Internal impedance (R): –  State of Charge (SOC):

    - Model and representation of the batteries -

    OCV +

    _

    ibat

    ubat =

    R

  • 29 EMR, Technical University of Graz, April 2012

    •  Parameters identification –  Directly from datasheets

    •  identification •  Implementation of look-up tables

    •  From the model to the representation

    - Model and representation of the batteries -

    BAT

    ubat

    ibat

  • 30 EMR, Technical University of Graz, April 2012

    •  Most of the power converters are made of elementary switching cells –  Depending on the switches

    •  1 quadrant (is>0) •  2 quadrants (is>0 or

  • 31 EMR, Technical University of Graz, April 2012

    •  From the model to the representation

    - Model and representation of Power Converters-

    t

    us ue

    T

    ue

    ie m

    us

    is

    ue

    is

    Instantaneous model Average model

  • 32 EMR, Technical University of Graz, April 2012

    •  Extension to the 4 quadrants DC/DC converters and single phase voltage source inverter –  Using 2 parallel elementary converters

    –  Models for the 2 elementary converters

    - Model and representation of Power Converters-

    s11

    us1 s12

    ue

    is ie

    i1

    m1

    s21

    s22

    i2

    us2

    us

    m2

  • 33 EMR, Technical University of Graz, April 2012

    •  4 quadrants DC/DC converters and VSI –  Models for the 2 elementary converters

    –  Global model

    - Model and representation of Power Converters-

    s11

    us1 s12

    ue

    is ie

    i1

    m1

    s21

    s22

    i1

    us2

    us

    m2

  • 34 EMR, Technical University of Graz, April 2012

    •  4 quadrants DC/DC converters and VSI –  From the model to the representation

    - Model and representation of Power Converters-

    ue

    i1 m1

    us1

    is

    ue

    i2 m2

    us2

    is

    ue

    ie

    us

    is

  • 35 EMR, Technical University of Graz, April 2012

    •  4 quadrants DC/DC converters and VSI –  Simplification

    - Model and representation of Power Converters-

    ue

    ie m

    us

    is

    ue

    is

    Instantaneous model Average model

  • 36 EMR, Technical University of Graz, April 2012

    •  3 phases voltage source inverter –  The principle is the same

    - Model and representation of Power Converters-

    s31 s21 s11

    s33 s22 s12

    ue

    ie

    u23

    is1

    is2

    is3

    u13

    ue

    ie m

    us

    is

    ue

    is

    Instantaneous model Sliding average model

  • 37 EMR, Technical University of Graz, April 2012

    •  Summary

    •  Warning –  Representations of various converter seem to be identical

    •  Never forget the model hidden behind the representation

    - Model and representation of Power Converters-

    ue

    ie m

    us

    is

    2Q converter ue

    ie m

    us

    is

    ue

    ie m

    us

    is

    4Q converter 3 phases VSI

  • 38 EMR, Technical University of Graz, April 2012

    •  Main parameters –  Armature

    •  ra: armature resistor (Ω) •  La: armature inductor (H) •  edcm: motor back EMF (V) •  Tdcm: torque (Nm) •  Ωgear: angular rotational speed (rad/s) •  kΦ: motor constant (V.s/Wb) •  Φf: magnetic flux (Wb)

    –  Excitation •  With excitation circuit

    –  rf: field resistor (Ω) – Lf: field inductor (H) –  ki: motor constant (V.s/A)

    •  With permanent magnets –  K: motor constant (V.s)

    - Model and representation of DC machines -

    ia

    uch-a

    ra

    edcm

    La

    if

    uch-f

    rf Lf

  • 39 EMR, Technical University of Graz, April 2012

    •  Model –  With excitation circuit

    •  Electrical

    •  Electro-mechanical

    –  With permanent magnets •  Electrical

    •  Electro-mechanical

    - Model and representation of DC machines -

    ia

    uch-a

    ra

    edcm

    La

    if

    uch-f

    rf Lf

  • 40 EMR, Technical University of Graz, April 2012

    •  Model –  With excitation circuit

    •  Electrical

    •  Electro-mechanical

    –  With permanent magnets •  Electrical

    •  Electro-mechanical

    - Model and representation of DC machines -

    edcm

    ia

    ia

    uch-a

    uch-f if

    ef if

    Tdcm

    Ωgear

    edcm

    ia

    ia

    uch-a Tdcm

    Ωgear edcm ia

    uch-a

    •  Representation –  With excitation circuit

    –  With permanent magnets

    With ef=0 !

  • 41 EMR, Technical University of Graz, April 2012

    •  Model –  Faraday law

    - Model and representation of squirrel cage IM-

  • 42 EMR, Technical University of Graz, April 2012

    •  Model: Flux matrix

    - Model and representation of squirrel cage IM-

    1 – the position θ is function of time: difficult to control AC currents 2 – strong interaction between phases

    solution: use of park’s transformation

  • 43 EMR, Technical University of Graz, April 2012

    •  Model: needs in tools for representation –  Park’s transformation: 3-phases to 2-phases transformation

    •  Expressed in a fix reference frame (α,β)

    •  Transformation in rotating reference frame (d,q)

    –  For Induction Machines: d axis is oriented along the rotor flux •  isd current related to the rotor flux •  isq current related to the torque •  DC equivalent voltages and current

    - Model and representation of squirrel cage IM-

    equivalent DC machine in the (d,q) frame

  • 44 EMR, Technical University of Graz, April 2012

    •  Model –  Park’s transformation for an Induction Machine

    - Model and representation of squirrel cage IM-

    Modelling simplifications:

    is1 vs1

    stator

    1s

    2s

    3s

    is3

    vs3

    is2 vs2 rotor 1r

    2r

    3r

    θr/s

    1s

    rotor

    stator

    1r

    θr/s

    isd

    θd/s

    isq

    vsd

    vrd ird

    vsq

    vrq irq

    d

    q d, q rotating reference frame: -  DC current -  interaction simplification

  • 45 EMR, Technical University of Graz, April 2012

    •  Representation –  Step 1

    - Model and representation of squirrel cage IM-

    urotor=0

    Ωgear

    Tim

    is-dq

    es-dq is-dq

    vs-dq

    istator

    ustator

    φr

    ir-dq

    er-dq ir-dq

    vr-dq

    irotor

    θd/s

    Park’s transformations

    Rotor windings in (d,q)

    Stator windings in (d,q)

    Coupling device

    θd/r

  • 46 EMR, Technical University of Graz, April 2012

    •  Representation –  Step 2

    - Model and representation of squirrel cage IM-

    Ωgear

    Tim

    is-dq

    es-dq is-dq

    vs-dq

    istator

    ustator

    θd/s Stator windings in (d,q)

    φr

    isd By a variable change, the rotor flux can be expressed in EMR

  • 47 EMR, Technical University of Graz, April 2012

    •  Model –  Principle is the same than IM, except that rotor is made of

    permanent magnets •  Rotor angular rotational speed is synchronized with the stator rotating

    magnetic field –  Same tools: Park’s transformation and expression along the rotor

    rotating frame

    - Model and representation of PMSM -

    isd

    θd/s

    isq

    vsd

    vrd

    vsq

    vrq

    ird

    irq

    d

    q

    isd

    θd/s

    isq

    vsd

    vrd

    vsq

    vrq

    ird

    irq

    d

    q

    isd isq vsd

    vsq

    = d

    q 1s

    rotor

    stator

    1r

    θ

    ism1 vsm1 stator

    1s

    2s

    3s

    ism3

    vsm3

    ism2 vsm2 rotor 1r

    θ

    modelling simplifications: reduced current magnitude for same produced torque

  • 48 EMR, Technical University of Graz, April 2012

    •  Model –  Main equations

    •  Electrical

    •  Electro-mechanical

    •  Representation

    - Model and representation of PMSM -

    Ωgear

    Tsm is-dq

    es-dq is-dq

    vs-dq

    istator

    ustator

    θ

  • 49 EMR, Technical University of Graz, April 2012 •  With DC machines

    –  With excitation circuit

    •  With AC machines –  Squirrel cage IM

    - Global EMR of the electrical part -

    - With permanent magnets

    - PMSM

    Bat ubat

    minv iinv

    Tdcm

    Ωgear

    uinv

    iim

    vsdq

    isdq

    isdq

    esdq

    PM synchronous machine inverter

    Bat ubat

    minv iinv

    Tdcm

    Ωgear

    uinv

    iim

    vsdq

    isdq

    isdq

    esdq

    isd

    φr

    induction machine inverter

    uch-a

    ea

    ia

    ia BAT

    ubat

    mch-a ich-a

    Tdcm

    Ωgear

    DC machine chopper

    ea

    ia

    if

    ef

    Tdcm

    Ωgear uch-f

    ia

    uch-a

    if

    itot BAT

    ubat

    mch-f

    mch-a ubat

    ubat

    ich-f

    ich-a

    DC machine choppers parallel

    connection

  • 50 EMR, Technical University of Graz, April 2012

    - Global EMR of the electrical part: key points -

    •  The system must been first modelled

    •  From the model, the EMR can been established –  Never forget the model behind the representation

    •  The EMR from the batteries to the shaft has been made for different electrical machines

    •  The comparison of the various EMR shows that strong similarities exist –  Thanks to the use of the adequate transformations –  Underlined by the EMR

    uch-a

    ea

    ia

    ia BAT

    ubat

    mch-a ich-a

    Tdcm

    Ωgear

    DC machine chopper

  • « Energy Management of EVs & HEVs using Energetic Macroscopic Representation »

    Technical University of Graz, April 2012

  • 52 EMR, Technical University of Graz, April 2012

    - Global EMR (with a DC machine, excitation circuit) -

    Ωrwh

    Ωlwh Tldiff

    Trdiff

    vveh

    Fenv

    Ωdiff

    Tgear

    Jsh Tdcm

    Ωgear

    Tload

    Ωgear fsh

    ich-a uch-a ia

    ubat

    if uch-f ich-f

    itot

    ea

    ia

    if

    ef

    Tdcm

    Ωgear uch-f

    ia

    uch-a

    if

    ENV Tgear

    Ωdiff

    Tldiff

    Ωlwh

    Ωrwh

    Tdiff

    Ωwh Trdiff

    Flwh

    vrwh

    vlwh vveh Ftot

    Ftot vveh

    Rt

    Frwh itot

    BAT ubat

    mch-f

    mch-a ubat

    ubat

    ich-f

    ich-a

    wheels chassis gearbox differential DC machine choppers parallel

    connection

  • « Energy Management of EVs & HEVs using Energetic Macroscopic Representation »

    Technical University of Graz, April 2012

    Models = must be defined in function of the objective different models for the same subsystems using different assumptions

    EMR = causal way to organize models of different parts highlight energetic properties and conflicts of associations

    EV with DC machine = a basic traction system other can be deduced by using the Park’s transformation

  • 54 EMR, Technical University of Graz, April 2012

    - References -

    [1] W. Lhomme, "Gestion d’énergie de véhicules électriques hybrides basée sur la Représentation Energétique Macroscopique", Thèse de doctoral de l'Université Lille 1, novembre 2007.

    [2] A. Bouscayrol, W. Lhomme, P. Delarue, B. Lemaire-Semail, S. Aksas, “Hardware-In-the-Loop simulation of electric vehicle traction systems using Energetic Macroscopic Representation”, IEEE-IECON'06, Paris (France), November 2006.

    [3] A. Bouscayrol, M. Pietrzak-David, P. Delarue, R. Peña-Eguiluz, P. E. Vidal, X. Kestelyn, “Weighted control of traction drives with parallel-connected AC machines”, IEEE Transactions on Industrial Electronics, Vol. 53, no. 6, p. 1799-1806, December 2006.

    [4] A. Bouscayrol, A. Bruyère, P. Delarue, F. Giraud, B. Lemaire-Semail, Y. Le Menach, W. Lhomme, F. Locment, “Teaching drive control using Energetic Macroscopic Representation - initiation level”, EPE'07, Aalborg (Denmark), September 2007.

    [5] K. Chen, P. Delarue, A. Bouscayrol, R. Trigui, “Influence of control design on energetic performances of an electric vehicle”, IEEE-VPPC'07, Arlington (U.S.A.), September 2007.

    [6] K. Chen, A. Bouscayrol, W. Lhomme, “Energetic Macroscopic Representation and Inversion-based control: application to an Electric Vehicle with an electrical differential”, Journal of Asian Electric Vehicles, vol. 6, no.1, p. 1097-1102, June 2008.