« energetic macroscopic representation - emrwebsite · « energetic macroscopic representation »...

42
EMR’13 Lille Sept. 2013 Summer School EMR’13 “Energetic Macroscopic Representation” « « Energetic Macroscopic Energetic Macroscopic Representation Representation » » Dr. Walter LHOMME, Prof. Betty LEMAIRE-SEMAIL, Prof. Alain BOUSCAYROL L2EP, University Lille1, France, MEGEVH network Dr. Philippe BARRADE Laboratoire d’Electronique Industrielle, EPFL, Switzerland [email protected]

Upload: others

Post on 02-Feb-2020

42 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13

Lille

Sept. 2013

Summer School EMR’13“Energetic Macroscopic Representation”

«« Energetic Macroscopic Energetic Macroscopic

RepresentationRepresentation »»

Dr. Walter LHOMME, Prof. Betty LEMAIRE-SEMAIL,

Prof. Alain BOUSCAYROL

L2EP, University Lille1, France, MEGEVH network

Dr. Philippe BARRADE

Laboratoire d’Electronique Industrielle, EPFL, Switzerland

[email protected]

Page 2: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13, Lille, Sept. 20132

«« Energetic Macroscopic RepresentationEnergetic Macroscopic Representation»»

- Outline -

1. Introduction

2. Representation: EMR basic elements

• Sources

• Accumulation• Conversion• Coupling

3. Organization: fundamental rules

• Direct connections

• Merging rules • Permutation rules

4. Analysis for the simulation and the control

• Action and reaction paths

• Tuning path

5. Conclusion

Page 3: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13

Lille

Sept. 2013

Summer School EMR’13“Energetic Macroscopic Representation”

«« IntroductionIntroduction»»

Page 4: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13, Lille, Sept. 20134

«« Energetic Macroscopic RepresentationEnergetic Macroscopic Representation»»

- System analysis -

• Needs in graphical descriptions as valuable intermediary step

real

system

system

model

assumptio

ns

system

representation

no

assumptio

n

system

simulation

model

objective

limited

validity range

valuable

properties

behavior

study

assumptio

ns

organization prediction

Page 5: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13, Lille, Sept. 20135

«« Energetic Macroscopic RepresentationEnergetic Macroscopic Representation»»

- System analysis -

• The graphical description is chosen depending on objectives

• Real-time control and energy management of energetic systems

systemic

(cognitive)

causal models

functional

descriptionstatic or

quasi-static

modelscausal

dynamical models

& forward

approach

Page 6: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13, Lille, Sept. 20136

«« Energetic Macroscopic RepresentationEnergetic Macroscopic Representation»»

- System analysis -

• Objective: real-time control and energy management of energetic systems

real

system

representation

Model objective:

“control”

causal &

systemic

organization

Highlight energetic

and systems properties

prediction

dynamical

models

Real-time

control &

Energy

management

forward

approach

Page 7: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13, Lille, Sept. 20137

«« Energetic Macroscopic RepresentationEnergetic Macroscopic Representation»»

• Define the key elements of EMR

• Define the fudamental rules

– For connecting elements

– For solving conflicts of associations

• Define the notions of

– Action, reaction and tuning paths

• Assumption

– As EMR is an intermediary step, coming after a modeling activity, one will

consider that models are already defined…

- Objectives of the presentation -

Page 8: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13

Lille

Sept. 2013

Summer School EMR’13“Energetic Macroscopic Representation”

««Representation: EMR basic Representation: EMR basic

elementselements»»

Page 9: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13, Lille, Sept. 20139

«« Energetic Macroscopic RepresentationEnergetic Macroscopic Representation»»

- Different elements -

• Energetic Macroscopic Representation

– Any energetic system

• Energy sources

• Energy storage elements

• Energy conversion elements

• Energy distribution elements

– Key elements

• energy storage element

– delay, state variable, closed-loop control

• energy distribution element

– power flow coupling, control with criteria

Page 10: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13, Lille, Sept. 201310

«« Energetic Macroscopic RepresentationEnergetic Macroscopic Representation»»

- Energy sources -

• Back to definitions

– System: interconnected subsystems organized for a common objective, in

interaction with its environment.

– Input: produced by environment, imposed to the system

– Output: consequence of the system evolution, imposed to its environment

– Interaction principle: each action induces a reaction

• Needs in defining an element representing the environment of a system,

and its links to the studied system

– According to the interaction principle

action

reaction

S2S1

power

Page 11: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13, Lille, Sept. 201311

«« Energetic Macroscopic RepresentationEnergetic Macroscopic Representation»»

• Definition of the environment

– Environment & System must be defined first

system 3

Environment 3unidirectional

system 1

Environment 1bidirectional

system 2

Environment 2bidirectional

- Energy sources -

i1

u13

u23

i2 v13

v23

vdc

iload

grid line diode rectifier

Border of the

system?

Page 12: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13, Lille, Sept. 201312

«« Energetic Macroscopic RepresentationEnergetic Macroscopic Representation»»

- Energy sources -

• Representation

– Terminal element which represents the environment of the studied system

• Generator or receptor

Sourceoval pictogrambackground: light greencontour: dark green1 input vector (dim n)1 output vector (dim n)

power system

reaction

actionupstream

source

downstream

sourcex1

y1

x2

y2

p1= x1. y1 p2= x2. y2

direction ofpositive power(convention)

∑=

=n

iii yx

1

Page 13: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13, Lille, Sept. 201313

«« Energetic Macroscopic RepresentationEnergetic Macroscopic Representation»»

- Energy sources -

• Examples

pload

qwind

wind

qwind [m3/s]

Pload [Pa]Wind

(air flow source)generator energy

VDC

iBat

VDC

iBattery

(voltage source)generator and

receptor of energy

IC engine(torque source)

generator of energy

Tice

ΩICE

Tice

Ω

gridu

i

=

23

13

u

uu

=

2

1

i

ii

2 independent currents!

2 independent voltages!

Electrical grid

(voltage source)

generator and receptor of energy

Page 14: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13, Lille, Sept. 201314

«« Energetic Macroscopic RepresentationEnergetic Macroscopic Representation»»

- Accumulation elements -

• Back to definitions

– System: interconnected subsystems organized for a common objective, in

interaction with its environment.

– Input: produced by a subsystem, imposed to its close subsystem

– Output: consequence of the subsystem evolution, imposed to its close

subsystems

– Interaction principle: each action induces a reaction

– Internal accumulation of energy (with or without losses)

» Key transformation for safety and efficiency

» Output(s) is an integral function of input(s), delayed from

input(s) changes

» Causal description: fixed input(s) and output(s)

– Needs in defining an element representing the accumulation of energy, and

the links with its close subsystems

• According to a causal description, and to the interaction principle

Page 15: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13, Lille, Sept. 201315

«« Energetic Macroscopic RepresentationEnergetic Macroscopic Representation»»

- Accumulation elements -

• Representation

– internal accumulation of energy (with or without losses)

• Causality principle

Accumulator rectangle with an oblique barbackground: orangecontour: redupstream I/O vectors (dim n)downstream I/O vectors (dim n)

reaction

x1

y

y

x2

p1= x1. y p2= x2. y

∫∝ dtxxfy ),( 21

y = output, delayed from

input changes

fixed I/O (causal description)

action

Page 16: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13, Lille, Sept. 201316

«« Energetic Macroscopic RepresentationEnergetic Macroscopic Representation»»

• Examples

- Accumulation elements -

v

i2i1

C

capacitor

i1

i2

v

v

2 2

1vCE =

i1L, rL

u’13

u’23

i2u13

u23

3-phase line

[ ] )'(21

12

3

1uuiri

dt

dL L −

−=+

i

i

u

u’

inertiaΩJ

T2T1

Ω

T1

T2

Ω

Ω

2 2

1Ω= JE

stiffness

kΩ1

Ω2

TT

Ω1

Ω2

T

T

2 1

2

1T

kE =

Page 17: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13, Lille, Sept. 201317

«« Energetic Macroscopic RepresentationEnergetic Macroscopic Representation»»

- Conversion elements -

• Back to definitions

– System: interconnected subsystems organized for a common objective, in

interaction with its environment.

– Input: produced by a subsystem, imposed to its close subsystem

– Output: consequence of the subsystem evolution, imposed to its close

subsystems

– Interaction principle: each action induces a reaction

– Conversion of energy without energy accumulation (with or without losses)

» No delay from input(s) changes

» Non causal description: input(s) and output(s) can be permuted

– Needs in defining an element representing the conversion of energy, and the

links with its close subsystems

• According to a non causal description, and to the interaction principle

Page 18: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13, Lille, Sept. 201318

«« Energetic Macroscopic RepresentationEnergetic Macroscopic Representation»»

• Representation

– Conversion of energy without energy accumulation (with or without losses)

• Two possibilities

- Conversion elements -

conversionelement

Square for monophysical conversionCircle for multiphysical conversion

background: orangecontour: redupstream I/O vectors (dim n)downstream I/O vectors (dim p)Possible tuning input vector (dim q)

OR

Action/reaction x1

y1

y2

x2

p1= x1. y1 p2= x2. y2

y2

= f (x1, z)

y1

= f (x2 , z)

z

no delay!

upstream and downstreamI/O can be permuted

(floating I/O)tuning vector

Page 19: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13, Lille, Sept. 201319

«« Energetic Macroscopic RepresentationEnergetic Macroscopic Representation»»

• Examples

- Conversion elements -

VDC

iconvuconv

s

iload

s

uconv = m VDC

iconv = m iload

VDC uconv

iloadiconv

m

idcm

edcmDCM

Ω

=

=

ΩΦ

Φ

ke

ikT

dcm

dcmdcm

idcm

edcm

Tdcm

Ω

OR

Ωgear

T1

Ω2

Tgear

=

=

2geargear

1geargear

k

TkT

ΩΩ

Ωgear

TgearT1

Ω2

Tdcm

DC/DC converter DC machine Gearbox - Fix ratio

Ωgear

TgearT1

Ω2

Page 20: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13, Lille, Sept. 201320

«« Energetic Macroscopic RepresentationEnergetic Macroscopic Representation»»

- Coupling elements -

• Back to definitions

– System: interconnected subsystems organized for a common objective, in

interaction with its environment.

– Input: produced by a subsystem, imposed to its close subsystem

– Output: consequence of the subsystem evolution, imposed to its close

subsystems

– Interaction principle: each action induces a reaction

– Distribution of energy without energy accumulation (with or without losses)

» No delay from input(s) changes

» Non causal description: input(s) and output(s) can be permuted

– Needs in defining an element representing the distribution of energy in

parallel branches, and the links with its close subsystems

• According to a non causal description, and to the interaction principle

Page 21: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13, Lille, Sept. 201321

«« Energetic Macroscopic RepresentationEnergetic Macroscopic Representation»»

• Representation

– Distribution of energy without energy accumulation (with or without losses)

• Two possibilities

- Coupling elements -

Coupling elementOverlapped squares for monophysical conversionOverlapped circles for multiphysical conversion

background: orangecontour: redno tuning input vector

OR

VDC

icoup

i1

i2

vcoup2

VDC

icoup

i1

i2vcoup1

vcoup2

Vcoup1 = Vcoup2 = VDC

icoup = i1 + i2

parallel connexion

vcoup1

Page 22: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13, Lille, Sept. 201322

«« Energetic Macroscopic RepresentationEnergetic Macroscopic Representation»»

• Examples

- Coupling elements -

2T

TT gear

rdif

ldif

==

iarm

uarmDCM

iexc

uexc

=

=

Ωexcdcm

armexcdcm

ike

iikT iarm

uarm

iexc

uexc

iarm

earm

Tdcm

Ω

eexc

iexc

Field winding DC machine

Mechanical differential

Ωdiff

Tgear

Ωlwh

Ωrwh

Tldiff

Trdiff

Tldiff

Ωrwh

Trdiff

Ωlwh

Tgear

Ωdiff2

ΩΩΩ

rwllwhdiff

+=

Page 23: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13

Lille

Sept. 2013

Summer School EMR’13“Energetic Macroscopic Representation”

««Organization: fundamental rulesOrganization: fundamental rules»»

Page 24: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13, Lille, Sept. 201324

«« Energetic Macroscopic RepresentationEnergetic Macroscopic Representation»»

electrical conversion

mechanical conversion

electro-mechanical conversion

- WARNING -

• Elements defined and to be used

Coupling element

OR

Monophysical Multiphysical

Conversion element

OR

Monophysical Multiphysical

electro-mechanical coupling

electrical coupling

mechanical-coupling

• In the past…..

Page 25: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13, Lille, Sept. 201325

«« Energetic Macroscopic RepresentationEnergetic Macroscopic Representation»»

• Systemic: Science for the study of systems, and their interaction

• Considering S1 and S2 any kind of sub-systems

• The direct connection of S1 and S2 is only possible if

• out(S1) = in(S2)

• in(S1) = out(S2)

- Association rules: direct connection -

Bat

VDC

iL

u

VDC VDC

iLiL

iL

u

L iL

VDC

iL

iL

uBat

uVidt

dL DCL −=

i state variable

Example

OKy2

x2x2

y2y1

x1 x3

y3

Page 26: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13, Lille, Sept. 201326

«« Energetic Macroscopic RepresentationEnergetic Macroscopic Representation»»

- Association rules: conflicts of association -

• Example: two inertia linked by a fix ratio gearbox

• Models

• Representation

Ω1Ω1

T2

T3

Ω2

T1

T4

Ω2J1

J2

J1dΩ1

dt= T1 −T2 J2

dΩ2

dt= T3 − T4

Ω2 = K.Ω1

T2 = K.T3

Ω1

Ω1

T2

T1

J1Ω2

T3 Ω2

Ω2

T4

T3

J2

k

Ω1

T2

causal causalnon causal

Page 27: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13, Lille, Sept. 201327

«« Energetic Macroscopic RepresentationEnergetic Macroscopic Representation»»

• Example: two inertia linked by a fix ratio gearbox

– Direct connection 1:

– Direct connection 2:

• Use the property of a non causal element to permute inputs and outputs

• Still conflict of association

- Association rules: conflicts of association -

Ω1

Ω1

T2

T1

J1Ω2

T3 Ω2

Ω2

T4

T3

J2

k

Conflict of association

Ω1

Ω1

T2

T1

J1

Ω2

T3

Ω2

Ω2

T4

T3

J2

1/kΩ1

T2

Ω1

Ω1

T2

T1

J1

Ω2

T3 Ω2

T4

J2

kΩ1

T2

Page 28: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13, Lille, Sept. 201328

«« Energetic Macroscopic RepresentationEnergetic Macroscopic Representation»»

• Remain

– The property of a non causal element to permute inputs and outputs can be

efficiently used: I/Os of a non causal element are fixed by state variables

(accumulation element)

• does not necessarily solve conflicts of associations

• In case conflicts of association subsist

– Back to the model

- Association rules: conflicts of association -

J1dΩ1

dt= T1 −T2

J1

K

dΩ2

dt= T1 − K.T3 ⇒

J1

K2

dΩ2

dt= T '2 −T3

Ω2 = K.Ω1

T2 = K.T3

T '2 =T1

Kwith

Ω2

T’2 Ω2

T3

J1/K2

1/kΩ1

T1

Ω2

Ω2

T4

T3

J2

Conflict of association

2 accumulation elements

would impose the same

state variable x1

Page 29: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13, Lille, Sept. 201329

«« Energetic Macroscopic RepresentationEnergetic Macroscopic Representation»»

• Remain

– Permutation of elements is possible if one obtain the same global behavior:

• strictly the same effects (y1 and x3) from the same causes (x1 , y3 and z)

- Association rules: conflicts of association -

x2

y2y1

x1 x3

y3

x’2

y’2y1

x1 x3

y3

z zx2

y2y1

x1 x3

y3

z

Permutation Rule

Page 30: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13, Lille, Sept. 201330

«« Energetic Macroscopic RepresentationEnergetic Macroscopic Representation»»

• Remain

– The property of a non causal element to permute inputs and outputs can be

efficiently used

– Permutation rule

• In case conflicts of association subsist

– Back to the model

- Association rules: conflicts of association -

T '2 =T1

Kwith

J1

K2

dΩ2

dt= T '2 −T3

J2dΩ2

dt= T3 − T4

⇒J1

K2

dΩ2

dt= T '2 −J2

dΩ2

dt− T4

J1

K2

+ J2

dΩ2

dt= T '2 −T4

Ω2

T’2 Ω2

T3

J1/K2+J2

1/kΩ1

T1

One has finally merged 2 accumulation elements series connected

(same state variable)

Page 31: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13, Lille, Sept. 201331

«« Energetic Macroscopic RepresentationEnergetic Macroscopic Representation»»

• Remain

– When 2 accumulation elements impose the same state variable

• Conflict association

• Solution: Merging rule

- Association rules: conflicts of association -

Merging Rule

x1

x1y2

y2

x1

y1 x1

y3NO

merging x1

y3x1

y1

1 equivalent function for

2 elements / systemic

Page 32: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13

Lille

Sept. 2013

Summer School EMR’13“Energetic Macroscopic Representation”

««Analysis for the simulation and Analysis for the simulation and

controlcontrol»»

Page 33: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13, Lille, Sept. 201333

«« Energetic Macroscopic RepresentationEnergetic Macroscopic Representation»»

- System analysis -

• Objective: real-time control and energy management of energetic systems

real

system

representation

Model objective:

“control”

causal &

systemic

organization

Highlight energetic

and systems properties

prediction

dynamical

models

Real-time

control &

Energy

management

forward

approach

Page 34: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13, Lille, Sept. 201334

«« Energetic Macroscopic RepresentationEnergetic Macroscopic Representation»»

- Power Flow-

• Example of an electromechanical conversion system

PEBat.

FresEM

S1 S2

upstreamsource

downtreamsource

x1 x2 x3 x4 x5x6 x7

y1 y2 y3 y4 y5 y6 y7

z23 z45 z67

upstreamsource

downstreamsource

Convention: direction of positive power flow(could be negative for bidirectional system)

electromechanicalconversion

electricalconversion mechanical

conversion

energy storage =power adaptation

Page 35: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13, Lille, Sept. 201335

«« Energetic Macroscopic RepresentationEnergetic Macroscopic Representation»»

- Action and Reaction paths-

• Example of an electromechanical conversion system

PEBat. FresEM

S1 S2

upstream

source

downtream

sourcex1 x2 x3 x4 x5 x6 x7

y1 y2 y3 y4y5 y6 y7

z23 z45 z67

P > 0 action path:

(e.g. acceleration) reaction path:

x1 x2 x3 x4 x5 x6 x7

y1 y2 … y7

P < 0 action path:

(e.g. braking) reaction path: x1 x2 x7

y1 y2 … y7…

Bidirectional system if:

• bidirectional sources

• bidirectional conversion elements

I/O independent of power flow direction

action/reaction dependent of power flow direction

Page 36: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13, Lille, Sept. 201336

«« Energetic Macroscopic RepresentationEnergetic Macroscopic Representation»»

- Tuning paths-

• Example of an electromechanical conversion system

PEBat. FresEM

S1 S2

upstream

source

downtream

sourcex1 x2 x3 x4 x5

x6 x7

y1 y2 y3 y4 y5 y6 y7

z23 z45 z67

Tuning path:

Technical requirements: action on z23 and x7 to be controlled

x3 x4 x5 x6 x7

z23

The tuning path is independent

of the power flow direction

(e.g. velocity control in acceleration AND regenerative braking)

Page 37: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13, Lille, Sept. 201337

«« Energetic Macroscopic RepresentationEnergetic Macroscopic Representation»»

- Tuning paths-

• Example of an electromechanical conversion system

z45

y5

x7

PEBat. FresEM

S1 S2

upstream

source

downtream

sourcex1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y6 y7

z23 z67

Tuning path:

Technical requirements: action on z45 and y1 to be controlled

z45

The tuning path depends

on the technical requirements

y1 y2 y4y3

Page 38: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13

Lille

Sept. 2013

Summer School EMR’13“Energetic Macroscopic Representation”

««ConclusionConclusion»»

Page 39: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13

Lille

Sept. 2013

Summer School EMR’13“Energetic Macroscopic Representation”

EMR = multi-physical graphical description

based on the interaction principle (systemic)and the causality principle (energy)

Basic elements = energetic function

sources, accumulation, conversion and distribution of energy

Association rules = holistic property of systemic

enable keeping physical causality in association conflict

Applications

analysis, simulation, control structure…

Page 40: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13

Lille

Sept. 2013

Summer School EMR’13“Energetic Macroscopic Representation”

Remember = no more triangles or other kind of pictogram for the representations of conversion or coupling elements

Onlythe use of squares (monophysical) or circles (multiphysical) is authorized

The methodology is not frozen

A new element was introduced recently

Adaptation element

Page 41: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13

Lille

Sept. 2013

Summer School EMR’13“Energetic Macroscopic Representation”

««RREFERENCESEFERENCES»»

Page 42: « Energetic Macroscopic Representation - EMRwebsite · « Energetic Macroscopic Representation » • Define the key elements of EMR • Define the fudamental rules – For connecting

EMR’13, Lille, Sept. 201342

«« Energetic Macroscopic RepresentationEnergetic Macroscopic Representation»»

- Some references -

A. Bouscayrol, & al. "Multimachine Multiconverter System: application for electromechanical drives", European

Physics Journal - Applied Physics, vol. 10, no. 2, May 2000, pp. 131-147 (common paper GREEN Nancy, L2EP Lille

and LEEI Toulouse, according to the SMM project of the GDR-SDSE).

A. Bouscayrol, "Formalism of modelling and control of multimachine multiconverter electromechanical systems” (Texte

in French), HDR report, University Lille1, Sciences & technologies, December 2003

A. Bouscayrol, M. Pietrzak-David, P. Delarue, R. Peña-Eguiluz, P. E. Vidal, X. Kestelyn, “Weighted control of traction

drives with parallel-connected AC machines”, IEEE Transactions on Industrial Electronics, December 2006, vol. 53, no.

6, p. 1799-1806 (common paper of L2EP Lille and LEEI Toulouse).

K. Chen, A. Bouscayrol, W. Lhomme, "Energetic Macroscopic Representation and Inversion-based control: Application

to an Electric Vehicle with an electrical differential”, Journal of Asian Electric Vehicles, Vol. 6, no.1, June issue, 2008,

pp. 1097-1102.

P. Delarue, A. Bouscayrol, A. Tounzi, X. Guillaud, G. Lancigu, “Modelling, control and simulation of an overall wind

energy conversion system”, Renewable Energy, July 2003, vol. 28, no. 8, p. 1159-1324 (common paper L2EP Lille and

Jeumont SA).

J. P. Hautier, P. J. Barre, "The causal ordering graph - A tool for modelling and control law synthesis", Studies in

Informatics and Control Journal, vol. 13, no. 4, December 2004, pp. 265-283.

W. Lhomme, “Energy management of hybrid electric vehicles based on energetic macroscopic representation”, PhD

Dissertation, University of Lille (text in French), November 2007 (common work of L2EP Lille and LTE-INRETS

according to MEGEVH network).