prml bernulli beta distribution

18
1 / 12 PRML 2.1.1 M-1 5 23

Upload: shj

Post on 12-Jun-2015

75 views

Category:

Documents


2 download

DESCRIPTION

PRML Bernulli Beta distribution

TRANSCRIPT

Page 1: PRML Bernulli Beta distribution

1 / 12

PRML2.1.1a

M-1!W$S

5n 23|

Page 2: PRML Bernulli Beta distribution

G`djNlg

2 / 12

Bernoulli,[NlgNMLEdj'

µML =m

N(2.8)

0 (2.8)NfKm:Q,M x = 1Nst (3$sNlg=)$N'Q,5

l?G<?Nmt

� s`,[ (0 (2.9))Nlg$b7N, mNM,,+kH$

Bin(m|N, µ)rGg=7F@? µNdjMO18/:m

N

� /J$G<?;CH→*<P<U#CH (p70r2H)

Page 3: PRML Bernulli Beta distribution

Y$:j!Nlg

3 / 12

Y$:j!G*<P<U#CHrrC9klg$µKD$FNv0N

(,[ p(µ),,W∵`Y:

p(D|µ) =N∏

n=1

µxn(1 − µ)1−xn (2.5)

Y$:j}'

p(µ|D) ∝ p(D|µ)p(µ)

JeN 2D0+i$b7v0N(,[ p(µ)b µ∗$(1− µ)∗Nh&J0(2.5)NV$t,Hw?h&J0G=.5l?i$v0N(,[p(µ|D)bw?h&JAKJkO:→conjugacy

Page 4: PRML Bernulli Beta distribution

Beta,[

4 / 12

Beta(µ|a, b) =Γ(a + b)

Γ(a)Γ(b)µa−1(1 − µ)b−1 (2.13)

0 (2.13)f'

� Γ(•)O,s^Xt$J<N0KhCFjA'

Γ(x) =

0

ux−1e−udu (1.141)

�Γ(a+b)Γ(a)Γ(b)

O5,=8t$D^jJ<Nt0r.)9k?aNjt

∫ 1

0

Beta(µ|a, b)dµ = 1 (2.14)

Page 5: PRML Bernulli Beta distribution

Beta,[

5 / 12

?QMH,6'

E[µ] =a

a + b(2.15)

var[µ] =ab

(a + b)2(a + b + 1)(2.16)

a, bOQia<? µN,[NQia<?G"k?a$6Qia<?

(hyperparameters)HFV

µ

a = 0.1

b = 0.1

0 0.5 10

1

2

3

µ

a = 1

b = 1

0 0.5 10

1

2

3

µ

a = 2

b = 3

0 0.5 10

1

2

3

µ

a = 8

b = 4

0 0.5 10

1

2

3

Figure 2.2 [Jk a, bMNlgN Beta,[NA

Page 6: PRML Bernulli Beta distribution

veN(,[

6 / 12

0 (2.9)(s`,[NjA0)H0 (2.13)(v0N(,['Beta,[)hj$µKX9kveN(,[OJ<Nh&JAKJk

p(µ|m, l, a, b) ∝ µm+a−1(1 − µ)l+b−1 (2.17)

� l = N − m$3$sdjfN"Nt

� veN(,[Ov0N(,[H18AKJCF$k3H,,+k

→Beta,[

Beta,[NA0rxQ7F$veN(,[rJ<Nh&Kq1k

p(µ|m, l, a, b) =Γ(m + a + l + b)

Γ(m + a)Γ(l + b)µm+a−1(1 − µ)l+b−1 (2.18)

a, bO=l>l$x = 1, x = 0NlgN effective number of observations

Page 7: PRML Bernulli Beta distribution

veN(,[

7 / 12

µ

prior

0 0.5 10

1

2

µ

likelihood function

0 0.5 10

1

2

µ

posterior

0 0.5 10

1

2

Figure 2.3 `!Y$:dj

� v0N(,[O a = 2, b = 2N Beta,[

� `YXtO0 (2.9)G$=NfN = m = 1$3Nlg0 (2.9)O0: f(µ) = µKJk

3Nlg$veN(,[O a = 3, b = 2N Beta,[KJk

Page 8: PRML Bernulli Beta distribution

`!"Wm<A (sequantial approach)

8 / 12

� Y$:Q@rHkH$`!"Wm<AO+3KPF/k

� v0N(,[H`YXtN*rKX8J/$Q,G<?O i.i.dG"k3H7+>j7J$

� `!j!Nlg$1s/tJG<?rH$$eG=NG<?rK~7Fbh$→gLJG<?;CH"k$Oj"k?$`X,Nlg,9k

� G`djb`!"Wm<AKhj~lk3H,G-k

Page 9: PRML Bernulli Beta distribution

=,,[ (predictive distribution)

9 / 12

!NnTNkLr=,9k

p(x = 1|D) =

∫ 1

0

p(x = 1|µ)p(µ|D)dµ =

∫ 1

0

µp(µ|D)dµ = E[µ|D]

(2.19)0 (2.18)(veN(,[),0 (2.15)(Beta,[N|TM)NkLrxQ9kH

p(x = 1|D) =m + a

m + a + l + b(2.20)

Page 10: PRML Bernulli Beta distribution

=,,[ (predictive distribution)

10 / 12

b7m, l → ∞,

p(x = 1|D) =m

m + l=

m

N

HJk%

0 (2.8)NG`djkLHlW9k

� 5BgJG<?;CHNlg$Y$7"sHG`djNkLOl

W9k

� -BJG<?;CHNlg$veN(,[N|TM'E[µ|D]Ov0N(,[N|TMHG`YNdjM (0 (2.7))NVK"k

E[µ] < E[µ|D] < µML

Page 11: PRML Bernulli Beta distribution

veN(,[

11 / 12

µ

a = 0.1

b = 0.1

0 0.5 10

1

2

3

µ

a = 1

b = 1

0 0.5 10

1

2

3

µ

a = 2

b = 3

0 0.5 10

1

2

3

µ

a = 8

b = 4

0 0.5 10

1

2

3

Figure 2.2 [Jk a, bMNlgN Beta,[NA

Q,MNtN}CKDlF$veN(,[NAO7c<WKJCF

$/

var[µ] =ab

(a + b)2(a + b + 1)(2.16)

b7$a → ∞"k$O b → ∞H9kH$var[µ] → 0KJklL*JY$7"sX,NC''Q,G<?NtN}CKDlF$v

eN(,[NfNTNj- (uncertainty),:/7Ff/ ?

Page 12: PRML Bernulli Beta distribution

Z@

12 / 12

dj� �lL*JY$7"sX,NC''Q,G<?NtN}CKDlF$

veN(,[NfNTNj- (uncertainty),:/7Ff/.Qia<?'θ;Q,G<?'D;1~N(,[:p(θ,D)

� �

Page 13: PRML Bernulli Beta distribution

Z@

12 / 12

dj� �lL*JY$7"sX,NC''Q,G<?NtN}CKDlF$

veN(,[NfNTNj- (uncertainty),:/7Ff/.Qia<?'θ;Q,G<?'D;1~N(,[:p(θ,D)

� �

Eθ[θ] = ED[Eθ[θ|D]] (2.21)

veN(,[N|TM Eθ[θ|D]rG<?r/89k,[ p(D)e?Q9kHv0N(,[N|TM Eθ[θ]Hy7$

Page 14: PRML Bernulli Beta distribution

Z@

12 / 12

dj� �lL*JY$7"sX,NC''Q,G<?NtN}CKDlF$

veN(,[NfNTNj- (uncertainty),:/7Ff/.Qia<?'θ;Q,G<?'D;1~N(,[:p(θ,D)

� �

varθ[θ] = ED[varθ[θ|D]] + varD[Eθ[θ|D]] (2.24)

∵veN(,[N?QMN,6:varD[Eθ[θ|D]] ≥ 0$veN(,[,6r p(D),[eN?QOv0N(,[N,6hj.5$

Page 15: PRML Bernulli Beta distribution

Z@

12 / 12

dj� �lL*JY$7"sX,NC''Q,G<?NtN}CKDlF$

veN(,[NfNTNj- (uncertainty),:/7Ff/.Qia<?'θ;Q,G<?'D;1~N(,[:p(θ,D)

� �

varθ[θ] = ED[varθ[θ|D]] + varD[Eθ[θ|D]] (2.24)

∵veN(,[N?QMN,6:varD[Eθ[θ|D]] ≥ 0$veN(,[,6r p(D),[eN?QOv0N(,[N,6hj.5$mU'

veN(,[N,6r p(D),[eN?QOv0N(,[N,6hj.5$.

Page 16: PRML Bernulli Beta distribution

0 (2.21),(2.24)NZ@

Beta ,[

13 / 12

Page 17: PRML Bernulli Beta distribution

Proof of (2.21)

14 / 12

Eθ[θ] = ED[Eθ[θ|D]] (2.21)

Z@'

ED[Eθ[θ|D]]0 (2.23)≡

∫{

θp(θ|D)dθ

}

p(D)dD

=

θ

{∫

p(θ|D)p(D)dD

}

=

p(θ)θdθ0 (2.22)≡ Eθ[θ]

Page 18: PRML Bernulli Beta distribution

Proof of (2.24)

15 / 12

varθ[θ] = ED[varθ[θ|D]] + varD[Eθ[θ|D]] (2.24)

Z@'

varθ[θ] = Eθ[(θ − Eθ[θ])2]

= ED

[

Eθ[(θ − Eθ[θ])2] (1)

Eθ[(θ − Eθ[θ])2] = Eθ

[

(θ−Eθ[θ|D] + Eθ[θ|D] − Eθ[θ])2]

= Eθ

[

(θ − Eθ[θ|D])2]

+ 2Eθ

[

(θ − Eθ[θ|D])(Eθ[θ|D] − Eθ[θ])]

+[

(Eθ[θ|D] − Eθ[θ])2]

= varθ[θ|D] + 0 +[

(Eθ[θ|D] − ED[Eθ[θ|D]])2]

(2)

h 2`, 0KJC?KO$0 (2.21)rHQ7?,0 (2)r0 (1)Ke~9kH0 (2.24),.j)D