prml 2.3節 - ガウス分布

89
PRML 2.3 Yuki Soma 4/24

Upload: yuki-soma

Post on 14-Apr-2017

555 views

Category:

Technology


0 download

TRANSCRIPT

PRML 2.3

Yuki Soma

4/24

• 2.3 The Gaussian Distribution . . . . . . . . . . . . . . . . . . . 78 – 2.3.1 Conditional Gaussian distributions . . . . . . . . . . . . . . 85

– 2.3.2 Marginal Gaussian distributions . . . . . . . . . . . . . . . 88

– 2.3.3 Bayes’ theorem for Gaussian variables . . . . . . . . . . . 90

– 2.3.4 Maximum likelihood for the Gaussian . . . . . . . . . . . . 93

– 2.3.5 Sequential estimation . . . . . . . . . . . . . . . . . . . . . 94

– 2.3.6 Bayesian inference for the Gaussian . . . . . . . . . . . . . 97

– 2.3.7 Student’s t-distribution . . . . . . . . . . . . . . . . . . . . 102

– 2.3.8 Periodic variables . . . . . . . . . . . . . . . . . . . . . . . 105

– 2.3.9 Mixtures of Gaussians . . . . . . . . . . . . . . . . . . . . 110

1.

2.

3.

4.

– This is “ ” MAP !

• 1

• D

• [0,1] N N→∞

PRML

• PRML

1. Σ

2. 1

3. 𝜇, Σ

– 4/14 http://research.nii.ac.jp/~satoh/utpr/

Mahalanobis

• Δ 𝐱, 𝝁 Mahalanobis

• Σ

1. Σ

– Exercise 2.17

• (a)→(b)

(a)→(b)

• Σ

• D …

– Exercise 2.18

(a)→(b)

• Σ Exercise 2.19

• Σ−1

(a)→(b)

2. 1

• 1 = 1

• 𝑝 𝐱 d𝐱 = 1

3. 𝜇, Σ

0 1

3. 𝜇, Σ

1

• Free parameter

(𝐷(𝐷 + 1)

2+ 𝐷) 2𝐷 (𝐷 + 1)

Σ Σ Σ

2

• Unimodal i.e.

• Multimodal

• latent variables

1. Section 2.3.9

2. Chapter 12

• Free parameter

• 2 …

– Markov random field Section 8.3

– Linear dynamical system Section 13.3

2.3.1 Conditional

• 𝐱𝑎 , 𝜇𝑎 𝑀 Σ𝑎𝑎 𝑀 × 𝑀

• 𝑝(𝐱𝑎|𝐱𝑏)

Precision matrix

• precision matrix

• Σ Λ

– Λ𝑎𝑎, Λ𝑏𝑏

– Σ

• 𝑝 𝐱 = 𝑝(𝐱𝑎, 𝐱𝑏)

• 𝑝 𝐱𝑎 𝐱𝑏 =𝑝(𝐱𝑎,𝐱𝑏)

𝑝(𝐱𝑏) ~ Gaussian

• …

• 𝐱𝑎 2

– …

• Δ2 𝐱𝑎, 𝝁𝑎|𝑏 + 𝑐𝑜𝑛𝑠𝑡

𝑒𝑥+𝑦 = 𝑒𝑥𝑒𝑦

• Mahalanobis

• …

• 2 …

• 1 …

• …

Precision matrix is good

• 𝐱 𝜇𝑎|𝑏, Σ𝑎|𝑏 …

• Precision matrix

• Note!: 𝐱𝑏

– Linear gaussian model

• Section 8.1.4

2.3.2 Marginal

• Section

– exp 𝑓 + 𝑔 = exp 𝑓 exp {𝑔}

– 𝑝(𝐱) 𝐱𝑏

ℎ(𝐱𝑎) exp {ℎ 𝐱𝑎 }

– 𝐱𝑏 𝐱𝑎

ℎ(𝐱𝑎)

𝐱𝑏

• 𝐱𝑏 𝐱𝑏

Mahalanobis

1

Λ𝑏𝑏

𝐦

𝐱𝑎

𝐱𝑏

• 𝐱𝑏

– +

• Conditional

• Conditional

• precision matrix

2

2.3.3 for

• 𝐱 M 𝐲 D

• 𝑝(𝐲|𝐱) Linear Gaussian model Sec 8.1.4

– 𝐱 𝐱

• 𝑝 𝐲 , 𝑝(𝐱|𝐲)

• 𝐳

• 𝑝(𝐳) p 𝐲 , 𝑝(𝐱|𝐲)

𝐳

• 𝐳 2

𝐳

• 2 …

𝐳

• 1 …

𝑝(𝐳) p 𝐲 , 𝑝(𝐱|𝐲)

2.3.4 for

• D N ~𝑁(𝝁, Σ)

• log

• 𝐗 2

sufficient statistics

• Exercise 2.34

biased? unbiased?

• biased Exercise 2.35

2.3.5 Sequential Estimation

• N-1

• N

• …

• N 𝝁ML(𝑁) 𝐱𝑁

• seqential estimation

• 𝜃, 𝑧 𝑝(𝑧, 𝜃)

Robbins-Monro

• 1951

– z ∞

• 𝑓 𝜃 > 0 ⇒ 𝜃∗ < 𝜃, 𝑓 𝜃 < 0 ⇒ 𝜃 < 𝜃∗

– without loss of generality

Robbins-Monro

• 3

{𝑎𝑁} 2.129 0

[Blum, 1965]

2.3.6 for

– exp {𝜇 2 }

• prior

• Precision 11

𝜎2

• D

– Exercise 2.40

Sequential Estimation is easy

– precision 𝜆 =1

𝜎2

– 𝜆𝑛𝑒𝑐𝜆

𝑎 > 0 𝑎 ≥ 1

precision

• …

• …

• 𝑎𝑁 N𝑁

2

– 2𝑎0

• 𝑏𝑁 N𝑁

2𝜎ML

2

– =𝑏0

𝑎02𝑎0

• 𝑝 𝜇, 𝜆 = 𝑝 𝜇 𝜆 𝑝(𝜆)

• 𝜇0 =𝑐

𝛽, 𝑎 = 1 +

𝛽

2, 𝑏 = 𝑑 −

𝑐2

2𝛽

• normal-gamma/Gaussian-gamma

Gaussian-gamma

D

– Wishart

• Exercise 2.45

• 𝜈

D

– Gaussian-Wishart

Student t

• Gaussian-gamma precision

t

• 𝜈 t

• 𝜆 precision

t

• 1

• ∞

– Exercise: 2.47:

t

• Infinite mixtures of Gaussian

• tail

⇒t robustness

t robustness

• 𝜈 = 2𝑎, 𝜆 =𝑎

𝑏, 𝜂 =

𝑏

𝑎𝜏

t

– Exercise 2.49:

2.3.8

– 𝑝 𝑥 = 𝑝 𝑥 + 2𝜋

• PRML

Mardia and Jupp (2000)

– 𝜃 𝑀𝐿 = 𝜃𝑖

𝑁

– 𝐱𝑖 = (cos 𝜃𝑖 , sin 𝜃𝑖)

– 𝐱 𝑀𝐿 = (1

𝑁 cos 𝜃𝑖 ,

1

𝑁 sin 𝜃𝑖)

von Mises

von Mises

Conditional

von Mises

• 𝑚 =𝑟0

𝜎2 𝑚 concentration parameter

von Mises

• 𝑚

– Exercise 2.52

von Mises

• 𝜃0, 𝑚

• 𝜃0

von Mises

• 𝑚 …

–𝑑

𝑑𝑚𝐼0 𝑚 = 𝐼1(𝑚) [Abramowitz and Stegun, 1965]

• 𝑚𝑀𝐿

𝐼0 𝑚 ,𝐴 𝑚

• Conditional marginal

• von Mises unimodal

2.3.9 Mixtures of Gaussians

• unimodal

⇒mixture distributions

2.3.9 Mixtures of Gaussians

• 1

• ⇒Chapter 9

– ⇒EM