plant processing of natural gas - ut petex · 2017. 10. 17. · turboexpanders 122 cyrogenics 127...

26
THE UNIVERSITY OF TEXAS AT AUSTIN PETROLEUM EXTENSION SERVICE Plant Processing of Natural Gas Plant Processing of Natural Gas Petroleum Extension-The University of Texas at Austin

Upload: others

Post on 26-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • The UniversiTy of Texas aT aUsTin • PeTroleUm exTension service

    Plant Processingof Natural GasPlant Processingof Natural Gas

    Petro

    leum

    Exten

    sion-T

    he U

    nivers

    ity of

    Texa

    s at A

    ustin

  • iii

    Table ofContents

    FIGURES viTABLES viiiFOREWORD ixACKNOWLEDGMENTS xiABOUT THE AUTHORS xiiiCHAPTER 1. Fundamentals 1

    Fluid Properties 1Temperature 2Pressure3GravityandMiscibility 3Solubility 4

    The Ideal Gas Law 4LiquidPhase 5VaporPressure 5BoilingPointandFreezingPoint 6

    Hydrates 7Comparing Physical Properties 8Composition 10Heat Energy 10

    HeatingValue 12Combustion 12

    Flammability 13Applications 13

    FlowDiagrams 14References 21

    CHAPTER 2. Feed Gas Receiving and Condensate Stabilization 23Treating and Processing 23Design Basis and Specifications for Treatment Units 26

    FeedGasBasis 26ProductSpecifications 27

    Equipment Selection and Design 28PigReceivers 28SlugCatchers 30CondensateStabilizers 32CondensateStabilizerReboilers 32StabilizerOverheadCompressors 32GasandLiquidHeaters 32

    References 33CHAPTER 3. Dew-Point Control and Refrigeration Systems 35

    Process Descriptions 35Cost Estimate 35

    SilicaGelProcess 36Glycol/PropaneSystem 37Glycol/J-TValveCoolingProcess 38ComparisonofDew-PointProcesses 40UnitSpecifications 40

    The Refrigeration System 41Economizers 42Chillers 44PossibleProblems 44Multiple-StageRefrigeration 46

    References 50

    Petro

    leum

    Exten

    sion-T

    he U

    nivers

    ity of

    Texa

    s at A

    ustin

  • iv PlantProcessingofNaturalGas

    CHAPTER 4. Hydrocarbon Treating 51Gas-Treating Processes 51Chemical Reaction 51

    Amine-BasedSolvents 52Nonamine-BasedProcesses 57

    Physical Absorption Processes 58Selexol® 59PropyleneCarbonateProcess 59Rectisol®Process 60

    Mixed Chemical/Physical Absorption 60Sulfinol®Process 60

    Adsorption on a Solid 61MolecularSieveProcess 61ActivatedCarbonProcess 62

    Membrane Processes 62General Operating Considerations for Gas Treating 65

    InletSeparation 65Foaming 65Filtration65Corrosion 65

    References 66CHAPTER 5. Sulfur Recovery and Claus Off-Gas Treating 67

    Sulfur Recovery 67ThermalProcess 67CatalyticRecovery 68

    Claus Off-Gas Treating 70SCOTProcess 70

    References 72CHAPTER 6. Dehydration and Mercury Removal 73

    Dehydration 73InhibitorInjection 76

    Dehydration Methods 80LiquidDesiccants 80SolidDesiccants 84DesignIssues 88

    Mercury Removal Unit (MRU) 90DesignBasisandSpecifications 92DesignConsiderations 94EquipmentSelectionandDesign 95CaseStudy 95

    References 96CHAPTER 7. NGL Recovery—Lean-Oil Absorption 97

    Lean-Oil Absorption 98TheRecoverySystem 98Absorption 99WhyAbsorbersWork 99Presaturation 100PotentialProblems 102

    The Rejection System 104HotRich-OilFlashTank 104Rich-OilDemethanizer 105PossibleProblems 107

    The Separation System 108TheStill108OilPurification 109PossibleProblems 110

    References 111

    Petro

    leum

    Exten

    sion-T

    he U

    nivers

    ity of

    Texa

    s at A

    ustin

  • v

    CHAPTER 8. NGL Recovery—Cryogenic 113Typical Applications 115

    TurboexpanderProcess 115Propane-RecoveryProcess 120Ethane-RecoveryProcess 121

    Turboexpanders 122Cyrogenics 127References 130

    CHAPTER 9. Fractionation and Liquid Treating 131Fractionation 131Packed Columns 134NGL Fractionation Plants 134

    Deethanizer(DeC2)Column 136Depropanizer(DeC3)Column 137Debutanizer(DeC4)Column 137Deisobutanizer(DIB)orButaneSplitterColumn 137

    Product Specifications 138Monitoring Fractionation Plant Operation 139Possible Operating Problems 140NGL Product Treating 141

    Liquid—LiquidTreating 141Liquid—SolidTreating 143

    References 143CHAPTER 10. Nitrogen Rejection Unit (NRU) 145

    Nitrogen Rejection 145NRU Process Selection 145

    PressureSwingAdsorption(PSA) 145CryogenicAbsorption 145Membranes 146CryogenicDistillation 146

    Cryogenic NRU Processes 146Pretreatment 147Chilling 148CryogenicDistillation 148Recompression 148

    NRU Processes 149References 152

    APPENDIX. Figure and Table Credits 153GLOSSARY 159INDEX 183

    Table of Contents

    Petro

    leum

    Exten

    sion-T

    he U

    nivers

    ity of

    Texa

    s at A

    ustin

  • xiii

    About the Authors

    Dr.DougElliot hasmore than 40yearsexperience in theoilandgasbusiness,devotedtothedesign,technologydevelopment, anddirectionof industrialresearch.DougiscurrentlyPresident,COOandcofounder(withBechtelCorporation)

    ofIPSILLC,acompanyformedin1986todeveloptechnologyandpro-videconceptualdesignservicestooilandgasproducingandengineering,procurement,andconstructioncompanies.

    PriortoIPSI,DougwasVicePresidentofOilandGaswithDavyMcKeeInternational.DougstartedhiscareerwithMcDermottHudsonEngineering in the early 1970s following apostdoctoral research as-signmentunderProfessorRikiKobayashiatRiceUniversity,wherehedevelopedaninterestinoilandgasthermophysicalpropertiesresearchanditsapplication.

    Doughasauthoredor coauthoredover65 technicalpublicationsplus12patents.HeservedasamemberoftheGasProcessorsAssociationResearchSteeringCommitteefrom1972to2001andasChairmanoftheGPSA(GasProcessorsSuppliersAssociation)DataBookCommitteeonPhysicalProperties.DougservedasChairmanoftheSouthTexasSectionandDirectorof theFuelsandPetrochemicalDivisionof theAmericanInstituteofChemicalEngineers;andiscurrentlyamemberofthePETEXAdvisoryBoard.HeholdsaB.S.degreefromOregonStateUniversityandM.S.andPh.D.degreesfromtheUniversityofHouston,allinchemicalengineering.

    DougisaBechtelFellowandaFellowoftheAmericanInstituteofChemicalEngineers.

    Petro

    leum

    Exten

    sion-T

    he U

    nivers

    ity of

    Texa

    s at A

    ustin

  • xiv PlantProcessingofNaturalGas

    J.C.Kuo (ChenChuan J.Kuo) is a34-yearveteranof thegasprocess-ing,gastreating,andliquefiednaturalgas(LNG) industry.As a senior advisor forChevron’sEnergyTechnologyCompany,he has served as the ProcessManager/

    ProcessLeadformanyprojects,includingtheWheatstoneLNG,GorgonLNG,DeltaCaribeLNG,CasotteLanding,andSabinePassLNGterminalprojects.HehasalsoservedasthetechnicalprocessreviewerforAngola,Olokola,Algeria,andStockmanLNGprojects.BeforeworkingatChev-ron, J.C.was theTechnologyManager for IPSI, anaffiliateofBechtel,andservedastheProcessManager/ProcessLeadforthePemexCatarelloffshoreproject,theEgyptianLNG(Idku)trains1and2,ChinaShellNanHai,ChevronVenicegasplantde-bottleneck,TunisiaNRU,andAustralianSANTOSprojects.

    J.C.isafrequentspeakerandpresenteratinternationalconferencessuchasfortheAmericanInstituteofChemicalEngineers,gasprocessingandtreatingconferences,andtheLNGSummit.HehascontributedtogasprocessingandLNG technology improvements throughapatent,abook,andmanypapers.Hehasalsoservedasco-chairoftheAIChELNGsessionsforthetopicalconferencesonnaturalgasutilization.HeisamemberofthesteeringcommitteefortheNorthAmericanLNGSummit.

    HisdegreesincludeaB.S.fromChungYuanChristianUniversity,Taiwan,andanM.S.fromtheUniversityofHouston,bothinChemicalEngineering;andanM.S.inEnvironmentalEngineeringfromSouthernIllinoisUniversity.HeisaregisteredProfessionalEngineerinTexasandamemberofAIChE.Heisthepresidentofthe99PowerQiQongTexasdivisions.

    Petro

    leum

    Exten

    sion-T

    he U

    nivers

    ity of

    Texa

    s at A

    ustin

  • xv

    Dr.PervaizNasirhasmore than27years experience in theoil andgasbusiness.HeiscurrentlytheRegionalMan-agerGas/LiquidTreatingandSulfurPro-cesses,Americas,atShellGlobalSolutions.

    PervaizstartedhiscareeratShellDe-velopmentCompanyin1981inresearchanddevelopmentandtechnicalsupport,mostlyrelatedtooilandgasprocessing.In1986,hemovedintolicensingandprocessdesignofShellGas/LiquidTreatingtechnologies.AsamemberofShellMidstreamfrom1991through1999,Pervaizwasresponsiblefortheoperationssupportandoptimizationofexistinggasplantsandthedevelopmentandstartupofnewgasprocessingfacilities.HethenjoinedEnterpriseProductsCompanyasDirectorofTechnology.AtEnterprise,Pervaizwasresponsiblefortheevaluationofnewbusinessventures/technologies ingasprocessing, liquefiednatrualgas (LNG),petrochemicals,etc.HereturnedtoShellGlobalSolutionsin2006.

    PervaizholdsaB.S.fromMiddleEastTechnicalUniversity(Ankara),anM.S.fromUniversityofAlberta(Edmonton),andaPh.D.fromRiceUniversity(Houston),allinchemicalengineering.HeservedontheGasProcessorsAssociation(GPA)PhaseEquilibriaResearchSteeringCom-mittee from1983 through1990and iscurrentlyamemberof theGPALNGCommittee.Pervaizhasauthoredorcoauthoredover17externaltechnicalpublications.

    About the Authors xv

    Petro

    leum

    Exten

    sion-T

    he U

    nivers

    ity of

    Texa

    s at A

    ustin

  • 1

    1 Fundamentals

    Natural gasiscolorless,shapeless,andodorlessinitspureform.Itisafos-silfuelconsistingprimarilyofmethanewithquantitiesofethane,propane,butane,pentane, carbondioxide, nitrogen,helium, andhydrogen sulfide.Naturalgasiscombustible,givesoffagreatdealofenergy,iscleanburning,andemitslowlevelsofbyproductsintotheair.Itisanimportantsourceofconsumerenergyusedinhomestogenerateelectricity.

    Thepetroleum industry classifiesnaturalgasby its relationship tocrudeoil in theunderground reservoir.Associated gas is the termusedfornaturalgasthatisincontactwithcrudeoilinthereservoir.Theassociatedgasmightbeagas capoverthecrudeoilinareservoirorasolutionofgasandoil.Nonassociated gasisfoundinagasphaseinreservoirswithoutcrudeoil.

    Whetherassociatedornonassociated,gas production streams arehighlyvariableandcancontainawiderangeofhydrocarbonandnonhydrocarboncomponents.Thesestreamsmightincludevariousmixturesofliquidsandgasesaswellassolidmaterials.Thereareusuallysomenonhydrocarboncomponentsincludingnitrogen,helium,carbondioxide,hydrogensulfide,andwatervaporpresentinthestream.Traceamountsofothercomponents,suchasmercury,mightalsobepresent.

    Naturalgasprocessingplantsusephysicalandchemicalprocessestoseparateandrecovervaluablehydrocarbonfluidsfromagasstream.Intheprocessingplant,allthepipes,containmentvessels,steamlines,tanks,pumps,compressors,towers,andinstrumentscontainagasorliquidundergoingsomekindoftreatmentprocess.

    Duringtheprocessing,thenonhydrocarboncontaminantsmustbehan-dledproperlybecausetheyaffectgasbehaviorduringtreatment,impairtheefficiencyofprocessingoperations,orcandamagetheprocessingequipment.Forexample,thecontaminant,liquidmercury,weakensandbondswiththealuminumheat exchangersusedtoproducesupercooledfluids.Ifmercuryisnotremovedfromthegasearlyintheprocessingphase,itliquefiesandcol-lectsontheexchanger’ssurfaces,eventuallydestroyingtheheatexchangers.

    FLUID PROPERTIES

    Whenthereisapipe,asteamline,atank,apump,acompressor,atower,aninstrument,orevenafilledsamplecontainerinagasplant,italmostalwayscontainsafluid.

    What isafluid?Afluidcanbeagas,a liquid,orasolid.Afluid isdefinedasanysubstancethatflowsfreelyunlessrestrictedorcontainedbyabarrier.Withouttheabilitytoassumeashapeofitsown,afluidassumestheshapeofthecontainerintowhichitisplaced.Bothgasesandliquidsareclassifiedasfluids.

    Naturalgas treatment isbasedonthereactionsofreservoirfluids inphysicalandchemicalprocesses.Eachfluidhasauniquesetofpropertiesincludinggravity, solubility,andflammabilitycontrolling its response togivenstimuli.Agasprocessingplantoperatormustdeterminethespecificpropertiesandconditionsofitssourceofoilfieldfluids,orfeedstock,becauseeachoneisdifferent.Problemsthatoccurduringgasprocessingcomefromafundamentalmisunderstandingofthespecificfluidpropertiesorthephysicalandchemicallawsthatdeterminefluidbehavior.

    Petro

    leum

    Exten

    sion-T

    he U

    nivers

    ity of

    Texa

    s at A

    ustin

  • 23

    2 Feed Gas Receiving and Condensate Stabilization

    TREATING AND PROCESSING

    Plantunitconfigurationsvarydependingonthetypeofcomponentsofthefeedgasandthefinalproductsdesiredforconsumeruse(fig.2.1).

    Figure 2.1 Gas processing plant

    Cou

    rtesy

    of C

    hevr

    on

    Feedgasfromvariousgasfieldsentersthegasplantthroughpipelinesandgoesthroughseveralunitsoftreatingandprocessing,asshowninfigure2.2.Themainunitsperformthefollowingfunctions:

    • Removeoilandcondensates• Removewater• Separatethenaturalgasliquidsfromthenaturalgas• Removesulfurandcarbondioxide• Removeimpuritiessuchasmercury,oxygen,andBETX(benzene,

    ethylbenzene,toluene,andxylenes)

    Thefirsttreatingunitisthefeedgas-receivingsystemandtheconden-satestabilizationsystem.Condensateisalighthydrocarbonliquidobtainedbycondensationofhydrocarbonvapors.Itconsistsofvaryingproportionsofpropanebutanes,pentanes,andheaviercomponentswithlittleornomethaneorethane.Thefeedgasreceivingsystemseparatesthefeedgasintogases,aqueousliquid,andhydrocarbonliquidforfurtherprocessingatplantunitsdownstream(fig.2.3).

    Thecondensatestabilizationsystemremovesthelightcomponentssuchasmethane,ethane,andpropane,dissolvedinthehydrocarbonliquidfromthefeedgasreceptionsystem(fig.2.4).Hydrocarbonliquidnormallycon-tainsalargeamountofdissolvedlightcomponentsbecauseofhighpipelinepressures.Theselightcomponentsneedtoberemovedtomeetcondensateproductandotherdownstream processingrequirements.

    Petro

    leum

    Exten

    sion-T

    he U

    nivers

    ity of

    Texa

    s at A

    ustin

  • 35

    3 Dew-PointControl andRefrigerationSystems

    PROCESS DESCRIPTIONS

    Rawgascomesfromproductionfieldsthroughthepipelinestothefeedgasreceivingunitandcondensatestabilizationunit.Therawgasthenflowstothegas-treatingunitandthentoadew-pointcontrolandrefrigerationunitoranatural gas liquid (NGL)recoveryunit.Anexportcompressionsystemissometimesusedafterthedew-pointcontrolunittopressurizethegastotherequirementsofthe pipeline grid.Finally,thegasissenttotheconsumersthroughapipelinegrid.

    Adew-pointcontrolunithelpstopreventliquidcondensationinthepipelinegridundervariouspressuresandtemperatureconditions.Therearetwokindsofdew-pointcontrolrequired:awater dew-point controlandahydrocarbon dew-point control.Inwaterdew-pointcontrol,thereareseveraldehydration,orwaterremoval,methodsavailable,includingthesilica gel,glycol,andmolecular sieve.Hydrocarbondew-pointcontrolalsohasvariousmethodsavailable including refrigerated low-temperature separation (LTS),expander,Joule-Thomson (J-T), andsilicagel.Companiesmightuseglycolgasdehydrationforwaterdew-pointcontrolandarefrigerationcoolingsystemforhydrocarbondew-pointcontrol.MoreexplanationofgasdehydrationisgiveninChapter6.

    Thepurposeofarefrigeration systemistoremoveheatfromthefeedstreaminaheatexchanger.Heatexchangersarereferredtoas evaporatorsorchillers andprovidetherequiredcoolinglevel forvariousgasprocess-ingapplications.Refrigerationsystemsuserefrigerant,calledworking fluid.Workingfluidisselectedbasedupontemperaturerequirements,availability,economics,andpreviousexperience.Theavailabilityofethaneandpropaneonhandatnaturalgasprocessingplantsmakesthesegasestheprimechoiceasworkingfluids.Ingasplants,propaneisnormallythepreferredrefrigerant.

    COST ESTIMATE

    Dew-pointdepressionisdefinedasthedifferenceindegreesbetweenthefeedgastemperatureandthedewpointofafluid.Thedew-pointdepressiondif-ferenceindegreesdeterminesthebestprocesstousefordew-pointcontrol.

    Depending on the amount of dew-point depression required, aneconomicevaluationisdonetocompareinstallationcostsandoperatingcostsforthevariousprocesses.Usinganaverage80°F(45°C)dew-pointdepressionrequirement,thereareseveralprocessesavailableforthedew-pointcontrol.Threeofthemostwidelyusedprocessoptionsarethesilicagelprocess, theglycol/propane refrigerationprocess, and theglycol/J-Tvalvecoolingprocess.

    Petro

    leum

    Exten

    sion-T

    he U

    nivers

    ity of

    Texa

    s at A

    ustin

  • 51

    4 HydrocarbonTreating

    GAS-TREATING PROCESSES

    Hydrocarbonstreams,bothgaseousandliquid,mightcontaincontaminantssuchasH2SandCO2thatmustberemovedbeforefurtherprocessingandmarketing.RemovalofH2S,CO2,andothersulfurcompounds,commonlycalledacid gases,isnormallyreferredtoashydrocarbontreating orsweetening.

    Treatedgasregulationsandspecificationsarestringentregardingre-sidualH2Sandothersulfurspecies.TypicalU.S.salesgascontractsrestrictthefollowing:

    H2S <0.25grains/100scf(about4ppmv)Totalsulfurcompounds <5grains/100scf(about80ppmw)CO2 <2%mole

    Acidgascomponentscanberemovedfromasourgasstreamby:• chemicalreactionusingliquidsorsolids;• physicalabsorptioninliquids;• adsorptiononsolids;• diffusionthroughmembranes.

    Theacidgasremovalprocessescanbenonregenerativeorregenerative. Thenonregenerativeprocessesaresuitableonlywhentraceamountsofcon-taminantsmustberemovedand/orveryhighpurityoftreatedgasisdesired.NonregenerativeprocessesbecometoocostlywhentheH2Stoberemovedexceedsabout1tonperday.ExamplesofnonregenerabletreatingprocessesareSulfaTreat®andChemsweet®,bothmarketedbyC.E.Natco.

    Regenerativeprocessesaremoreeconomicalforremovinglargerquan-titiesofcontaminants.AnexampleofaregenerativeprocessistheuseofanaqueousaminesolutiontoremovetheH2SandCO2fromasourgasstream.Theaminesolutionisthenregeneratedbyreducingitspressureandheatingittoabout250°F.Thesolutionisthencooledandrecycledforreuse.Regen-erativetreatingprocessescanbebroadlyclassifiedasthosethatdependon:

    • chemicalreactionin – amine-basedsolvents, – nonaminebasedsolvents;• physicalabsorption;• mixedchemical/physicalabsorption;• adsorptiononasolid.

    CHEMICAL REACTION

    Intheseprocesses,H2Sand/orCO2arechemicallyboundtotheactiveingredi-entinthetreatingsolution.Therefore,theresiduegascanbetreatedtoretainonlyverylowlevelsofthesecontaminants.Thechemicalsolventprocessesincurrentcommercialprocessesuseweakbaseslikealkanolamines,alkali saltsolutions,potassium carbonate,orachelate solution.

    Petro

    leum

    Exten

    sion-T

    he U

    nivers

    ity of

    Texa

    s at A

    ustin

  • 67

    5 Sulfur Recovery and Claus Off-Gas Treating

    SULFUR RECOVERY

    Gastreatingplantsmuststrictlycomplywithlegal,government,andsafetystandardsandregulationsconcerningemissionsandpollution.Duringthetreatmentprocess,H2SandsomeormostoftheCO2areremovedfromthesourgasstream,asdiscussedinChapter4.Theseremovedsourgascompo-nentsmustbedealtwithcautiously.

    Whiletheemissionsrequirementsvarywithgeography,mostcountriesdonotpermittheemissionofmorethanafewpoundsofsulfur(H2S,SO2,etc.)perdayintotheatmosphere.Tocontrolemissions,theacidgasstreamfromatreatingplantisfedtoasulfurrecoveryunit(SRU)whereH2Sandothersulfurcompoundsareconvertedandrecoveredasnontoxicelementalsulfur(S).ThetailgasfromtheSRUstillcontainssomesulfurcomponents.TheseareconvertedtoSO2inanincineratorbeforebeingdischargedintotheatmosphere.Ifhigh(99.8+%)sulfurrecoveryisdesired,theSRUtailgasisfedtoatail-gastreatingplantforfurtherreductionofsulfuremissions.

    Thermal ProcessIn1883,anEnglishscientist,CarlFriedrichClaus,discoveredandpatentedaprocessinwhichH2Swasreducedtoelementalsulfurandwaterinthepresenceofacatalyst.

    Claus’sformulaforthisprocessis:

    H2S+½O2 = S+H2O

    Thecontrolofthisexothermic,orheat-releasing,processwasdifficult,andconversiontoelementalSwaslow.ThemodifiedClausprocessusedtodayovercomesthecontrolandconversionproblemsbydividingtheClausprocessintothefollowingtwosteps:

    Thermal StepInthisexothermicstep,theair-to-acidgasratioiscontrolledsothataboutNoftheH2SisoxidizedtoSO2.Forgasescontaininghydrocarbonsand/orammoniafromasourwaterstripper,enoughairisinjectedtoensurecom-pletecombustionofammoniaandhydrocarboncomponents.Theprocesstemperatureduringthisstepisfrom1,800°F–2,500°F.

    Catalytic StepIn thismoderately exothermic catalytic reaction, the sulfurdioxide (SO2)formedinthethermalsectionreactswithunburnedH2Stoformgaseouselementalsulfur.Thecatalystusedinthisstepismadefromactivatedalu-minaortitaniumdioxide.

    Otherthanthereactionsofhydrocarbonsandothercombustibles,thekeyreactionstakingplaceare:

    Thermal Reaction:

    H2S+1½O2 = SO2+H2O

    Thermal and Catalytic Reaction:

    2H2S+SO2 = 3S+2H2O

    Petro

    leum

    Exten

    sion-T

    he U

    nivers

    ity of

    Texa

    s at A

    ustin

  • 73

    6 Dehydration and Mercury Removal

    DEHYDRATION

    Allhydrocarbonfluids can retain somewater.Water is soluble in liquidhydrocarbonsandcanbeheld in thevaporphasebyhydrocarbongases.Whenaliquidorgasiscooled,itscapacityforcontainingwaterdecreases.Asaresult,itcanproduceliquidand/orsolidwatercalledhydrates.Hydratesareaseparateandproblematicpartofgasprocessing.

    Figure6.1showshowthewatercontentofnaturalgasvarieswithtem-peratureandpressure.Forexample,at1,000psiaand100oF,water-saturatednaturalgascontainsabout62poundsofwaterpermillionstandardcubicfeet(MMscf)ofgas.At1,000psiaand0oF,thegascontainsonlyabout2poundsofwaterperMMscfofgas.

    Thewaterdewpointofagasorliquidisthetemperatureatwhichfreewaterwillbegintoseparatefromthegasorliquid.Ifanaturalgasstreamat1,000psiacontains62poundsofwaterperMMscfofgas,itswaterdewpointis100oF.Ifitiscooledbelow100oF,freewaterwillbepresent.

    Hydrateswillformifagasorliquidcontainingfreewateriscooledbelowitshydratetemperature.Thegraphshowninfigure6.2canbeusedtoestimatethehydratetemperatureofnaturalgas.Forinstance,a0.6specificgravitygashasahydrate temperatureofabout61oFat1,000psia. If thisgasmustbecooledbelowitshydratetemperature,eitherduetopipelinetransportation,pressurereductionforconsumption,orforprocessing,pre-cautionsmustbetakentopreventfree-waterdropoutthatcausesfreezingandformationofhydrates.

    Hydratesaresolidcompoundsthatformascrystalsandresemblesnow.Theyarecreatedbyareactionofnaturalgaswithwater,andwhenformed,areabout10%hydrocarbonand90%water.Hydrateshaveaspecificgravityofabout0.98andwillfloatinwaterandsinkinhydrocarbonliquids.Freez-ingcanbeavoidedbyeitherremovingthewaterfromthegasorliquidpriortocoolingbelowthehydratetemperatureorbyusingahydrateinhibitortomixwiththewatercondensedduringcooling.

    Dehydrationistheprocessofremovingwaterfromasubstance.Dehy-drationcanbeaccomplishedbyusingsolidsubstancessuchasthoseusedindry-beddehydrators.Itcanalsobedoneusingaliquid,suchastriethyleneglycol.A stripping gasinaTEGreboilercanalsobeused.Themorecommonhydrateinhibitorsaremethanolandethyleneglycol.Mostnaturalgasfacili-tiesuseoneormoreofthefollowingdehydrationprocesses:ethyleneglycolinjection,TEGdehydration,ordry-beddehydrators.

    Petro

    leum

    Exten

    sion-T

    he U

    nivers

    ity of

    Texa

    s at A

    ustin

  • 97

    7 NGL Recovery—Lean-OilAbsorption

    Straightfromthewell,naturalgasisamixofhydrocarbons,includingmeth-ane,ethane,propane,andbutane.Italsocontainsmanynonhydrocarbons,suchasnitrogen,helium,carbondioxide,hydrogensulfide,andwater.Rawgasisprocessedtoseparatethesecomponents.Theseprocessescontinuetoimprovewithadvancedtechnology.

    Previously,whenkerosenewasahighlyvaluedproductandnaturalgaswassimplyanunwantedbyproduct,mostnaturalgaswaswasted.Gaswascommonlyflaredoff—aprocessthatoftencontinueddayandnight.Littlewasdonetocaptureanygasproducts.Afewoperatorsputtrapsintheirlinestocatchdrip gas.Aformofgasoline,dripgasnaturallycondensesasitcomesfromthenaturalgaswellsandcoolsinfield-gatheringlines.

    Gasolinebegantosurpasskerosenesalesaround1912.Thefirstgasprocessorslearnedtoincreasetheyieldofdripgasbycompressingthegasandallowingittocool.Withthedemandforfuelgasolinegrowingquickly,producersbegantryingtogetmoreusableproductsfromtheoilandgas.Anincreased-yieldprocess,calledlean oil absorption,wasdevelopedinthe1920s.Leanoilisahydrocarbonliquid,usuallylighterthankerosene.Incontactwithnaturalgas,leanoilabsorbssomeoftheheavierhydrocarbonsfromthegas,whichcanbeseparatedfromtheoillater.Usingthisprocess,operatorsrecoveredmoregascondensateaswellasbutane,agasthatliquefieseasilyunderpressure.ThiswasthebeginningoftheNGLmarket.

    Inthe1950s,processorsimprovedtheyieldfromlean-oilabsorptionbyaddingrefrigerationtotheprocess.Advancingtechnologyhasaddedthedevelopmentofbetterrefrigerationequipment,lowerprocessingtempera-tures,andnewwaystomarketnaturalgas.

    Lean-oilabsorptionisonlyoneofmanywaystoseparatethevariousproductsinnaturalgas.Insteadofusinglean-oilabsorption,plantsmightusealessexpensiveprocessbyrefrigeratingthegastoremovethepropaneandheavierhydrocarbons.Manyofthenewestgasprocessingplantsonlyproducea singleNGLproduct calledY-grade,which is then shipped toanotherplantforfurtherseparation.

    Chapter 7presents theolder, but still commonlyused, lean-oil ab-sorptionprocess.Chapter8coversthenewerprocessesofrefrigerationandturboexpansion.However,thecompleterangeofprocesspossibilitiescannotbefullyexploredinthesechaptersbecausegasplantsoftenusecombina-tionsandmodifiedversionsoftheseprocesses,dependingontherangeofproductsproduced.

    Petro

    leum

    Exten

    sion-T

    he U

    nivers

    ity of

    Texa

    s at A

    ustin

  • 113

    8 NGL Recovery-Cryogenic

    Theheavierhydrocarbons,generallyreferredtoasNGLs,mightneedtoberemovedtocontrolthehydrocarbondewpointand/orthegasheatingvalue.However,heavierhydrocarbonscanalsobeasourceofincomeforthegasproducer.Thehistoryoftheevolutionofliquidsrecoveryfacilitiesfrom simple oil absorption to cryogenic expanderprocesses is complex(Elliot,1996).

    Lean-oilabsorptionprocesses,suchastheambientandrefrigeratedprocesses,werecommonlyuseduntiltheearly1970s,asshowninfigure8.1.

    Figure 8.1 Lean-oil absorption process and cryogenic process

    The refrigeratedoil absorptionprocesswas introduced in 1957bymodifyingtheambientoilabsorptionprocesstooperateatlowertempera-tures.ThisallowedtheuseoflowermolecularweightoilswhichrecovermoreNGLsthanthehighermolecularweightoils,usedintheambientprocess.Atatemperatureof–40oF,therefrigeratedoilabsorptionprocesscouldbeusedtorecoverupto40+%ethaneand90+%propaneinthefeedgas.

    Amajorshiftinthegasprocessingindustrybeganwhenthefirstlow-temperatureexpanderplantwasbuiltandbroughtintooperationin1964.Thebasicdesignofthisplantremainstoday.Duringthe1970s,theexpanderplantbecamethedominantprocessschemeusedtorecoverNGLsfromfeedgas.Itisanefficientprocessforhighethaneandpropanerecovery.

    Sour

    ce: F

    luid

    Pha

    se E

    quilib

    ria, V

    ol. 1

    16, E

    lsevi

    er, I

    nc.

    400

    0

    350

    300

    250

    200

    150

    100

    450

    1985 199019801975197019651960

    OIL ABS.

    REFR. OIL ABS.

    CRYOGENIC-EXPANDER

    YEARS

    NU

    MB

    ER

    OF

    PL

    AN

    TS

    Petro

    leum

    Exten

    sion-T

    he U

    nivers

    ity of

    Texa

    s at A

    ustin

  • 131

    9 Fractionation and LiquidTreating

    FRACTIONATION

    Thebasisformosthydrocarbonphaseseparationsistheequilibriumflashprocess.Aflashprocessgivesa“sloppy”or impreciseseparationof thecomponentsinamixture.Theliquidandvaporphasesoftheflashprocessstillcontainallthecomponentsthatwerepresentinthefeedgas.Tobetterseparate the feedcomponents,aprocesscalledfractionation,ordistilla-tion,wasdeveloped.Fractionationispossiblewhenthecomponentstobeseparatedhavedifferentboilingpoints.Thehigher thedifference in theboilingpoints,theeasieritistoseparatethecomponents.

    Duringfractionation,amixtureisseparatedintoindividualcompo-nentsorgroupsofcomponents.Fractionationisacountercurrent operationinwhichvapormixtures are repeatedly brought in contactwith liquidmixtureshavingsimilarcompositionasthevapors.Theliquidsareattheirbubble pointsandthevaporsareattheirdewpoints.Bubblepointisthetem-peratureatwhichthefirstbubbleofgasformsinliquid.Partofthevaporcondenses,andpartoftheliquidvaporizesduringeachcontact.Thevaporbecomesricherinthelighterorlowerboilingcomponents,andtheliquidbecomesricherintheheavierorhigherboilingcomponents.

    Afractionatingcolumncanbeviewedasacombinationofabsorptionandstrippingcolumns.Figure9.1isaschematicdiagramofafractionationcolumnwiththeassociatedandperipheralequipment.

    Thecoolinginacondenserisdoneeitherbyair,coolingwater,orarefrigerantsuchaspropane.Thecolumnpressurenormallydeterminesthecoolingmediumthatisused.Reboilerheatisprovidedbysteam,hotoil,hotmediumfluids,hotcompressordischargegas,orahotprocessstream.

    Thenumberoftraysortheheightofthepackedsectioninafraction-ationcolumndependsuponthenumberofvapor/liquidcontactsrequiredtomake the desired separation. Fractionation columns usevalve trayswithdowncomers orpipesthatmovethe liquidfromonetraytotheonebelow.Thevalvesopeneitherpartiallyorfullybyvaporflowingthroughthetray.Aweir maintainsliquidlevelonthetray.Liquidflowsacrossthetray,overtheweir,andthroughadowncomerordownpipetothetraybelow.Large-diametercolumnsmighthavetwoorfourliquidflow-passesoneachtray.Figure9.2showsflowthroughvaporpassagesonatrayinafractionationcolumn.

    Petro

    leum

    Exten

    sion-T

    he U

    nivers

    ity of

    Texa

    s at A

    ustin

  • 145

    10 Nitrogen Rejection Unit (NRU)

    NITROGEN REJECTION

    Nitrogen(N2)isaninertgasfoundinvaryingamountsinnaturalgasres-ervoirs.Nitrogen rejection is anecessaryprocess inmaintainingadesiredBtuvalueforsalesgasandpipelinespecifications.NitrogenisaddedtoorremovedfromthesalesgastoadjustitsheatingorBtuvalue.AddingnitrogenlowerstheBtuvalue,whileremovingnitrogenraisestheBtuvalue.How-ever,thereisalimittothemaximumamountofN2orinertgasesallowed.Nitrogenhasanadditionaluseintheenhanced oil recovery(EOR)processesandforincreasingoilproductionthroughreservoirinjection.

    Nitrogenisremovedfromthefeedgasatlowtemperaturesinanitrogen rejection unit (NRU)designedaccordingto:

    • Inletgascomposition• Inletgaspressure• Productspecifications• Ventnitrogen• Residuegasheatingvalue• Hydrocarbonrecoveryrequired

    NRUsoperatebestunderstablecompositions,inletrates,temperatures,andpressures,andmustbedesignedtoefficientlyoperateoverabroadrangeofnitrogengascompositions(5%–80%).Thequantityofnitrogeninthefeedgasisgenerallythemainfactorinselectinganitrogenremovalprocess.

    NRU PROCESS SELECTION

    Thereare four categoriesofprocesses currently available for removalofnitrogenfromnaturalgas.

    Pressure Swing Adsorption (PSA) Pressure swing adsorption isatechnologyusedtoseparatenitrogenunderpres-sureaccordingtoitsmolecularcharacteristicsandattractiontoanadsorbentmaterialatnear-ambienttemperatures.Specialadsorptivematerialsareusedasamolecularsieve,adsorbingthehydrocarboncomponentsathighpressure.Theprocessthenswingstolowpressuretodesorbtheadsorbentmaterial.Methaneisproducedduringthedesorptionstepatrelativelylowpressurenearambientorundervacuuminsomecases.Itoftenrequirespretreatmentandhashighcapitalandcompressioncosts.Therecoveryofmethaneisgenerallymoderate.

    Cryogenic Absorption Thecryogenic absorption process useschilledhydrocarbonoiltoabsorbthebulkofthemethaneandachieveaseparationofnitrogenfromnaturalgas.Theabsorbedmethaneisstrippedofftheoilinaregeneratorandsubsequentlycompressedbacktothepipelinepressure.Theneedtoabsorbthebulkofmethanerequiresalargeoilcirculationflowandequipmentsize.Therefore,itismostsuitableforhighnitrogencontentstreams.Ithasnotbeenwidelyusedcommercially.

    Petro

    leum

    Exten

    sion-T

    he U

    nivers

    ity of

    Texa

    s at A

    ustin

  • 183

    Indexabsolutepressure,3absolutezero,2absorbers,98absorberworkings,99–100.absorption,36,51absorptionoil,99activatedcarbonprocess,62adiabaticexpansion(JT),148adsorbentlife,89adsorptiononasolid,61–62air-to-fuelratio,13alkalisaltsolutions,51alkanolamines,51,141amalgamation,92amalgamcorrosion,92ambienttemperature,58AmericanPetroleumInstitute(API),28AmericanSocietyforTestingandMaterials(ASTMInternational),109AmericanSocietyofMechanicalEngineers(ASME),28antiagglomerants(AAs),76APIgravity,3applications,gasprocessinggeneral,13–21applications,NGLrecovery-cryogenic ethane-recoveryprocess,121–122 propane-recoveryprocess,120 turboexpanderprocess,115–119aromatics,26associatedgas,1

    biologicaloxidationprocess,57boilingpoint,6bottomstemperature,106Britishthermalunits(BTUs),10bubblecap,18bubble-pointline,116bubble-points,131butanesplittercolumn,137

    carbondisulfide(CS2),53casestudy,95catalyticrecovery,68,70catalyticstep,67caustictreating,141centrifugalcompressors,32chelatesolution,51,57

    Petro

    leum

    Exten

    sion-T

    he U

    nivers

    ity of

    Texa

    s at A

    ustin

  • 184 Plant Processing of Natural Gas

    chemicalreactions amine-basedsolvents,52–53 biochemicalprocesses,57–58 diethanolamine(DEA),53 diglycolamine(DGA),53 formulatedamines,54 hinderedamines,54 hotpotassiumcarbonateprocess,57 methyldiethanolamine(MDEA),54 monoethanolamine(MEA),53 nonamine-basedprocesses,57–58 redoxprocess,57chillers,35,44chilling,148Claus,CarlFriedrich,67Clausoff-gastreating,70Clausprocess,54closedlooppropanerefrigerationsystem,38coalescentliquidlevelproblem,95coalescers,141cobalt(II)carbonylsulfide,53coldbox,152combustion,12–13comparisonofdew-pointprocesses,40composition,10compressors,1,32condensateproductstoragetanks,28condensatestabilizerreboilers,32condensatestabilizers,32condensers,16condensing,5contactorvessel,52contaminants,1controllers,44coolers,38coreexchangers,127corrosion,25,65corrosivity,53costestimate,35countercurrentoperation,131criticalpressures,3criticaltemperatures,3cryogenicabsorption,145cryogenicdistillation,146,148cryogenicNRUprocesses chilling,148 cryogenicdistillation,148 nitrogenrejectionunits(NRUs),146–148 pretreatment,147–148 recompression,148cryogenics,127–129

    debutanizer,28debutanizer(DeC4)column,137deethanizer,120deethanizer(DeC2)column,137degradationproducts,53dehydration,4,73–80dehydrationandmercuryremoval,73–95dehydrationmethods designbasisandspecifications,92–93 designissues,88 liquiddesiccants,80,82–84 mercuryremovalunit(MRU),90 molecularsieveprocess,85–86 silicagelsandactivatedammonia,85 soliddesiccants,84–85deisobutanizer(DIB)column,137demethanizing,104depentanizer,28depropanizer(DeC3)column,137desiccants,147designbasisandspecificationsfordehydrationandmercuryremoval aboutgenerally,92 casestudy,95 designconsiderations,94–95 equipmentselectionanddesigns,95 gasdehydrationunits,92 generalconsiderations,92 technologyselection,92designbasisandspecificationsfortreatmentunits condensateproductstoragetanks,28 feedcasebasis,26 feedgas,26–28 productspecifications,27designcases,26designconsiderations designbasisandspecificationsfordehydration andmercuryremoval,94–95 free-liquidremoval,94 mercuryremovalcosts,94 MRUlocation,94 pressuredrop,94 superficialvelocityandresidencetime,95designissues adsorbentlife,89 dehydrationmethods,88 pooroutletwaterdewpoint,88–89 pressuredrop,89 switchingvalvesforadsorptionandregeneration operation,90desorption,37dew-pointcontrol,25

    Petro

    leum

    Exten

    sion-T

    he U

    nivers

    ity of

    Texa

    s at A

    ustin

  • Index 185

    dew-pointcontrolandrefrigerationsystems,35–49 chillers,44 costestimateof,35 economizers,42 multiplestagerefrigeration,46 problems,44–46 processdescriptions,35–46 refrigerationsystems,41dew-pointdepression,35diethanolamine(DEA),52diethyleneglycol(DEG),37differentialpressureindicator(DPI),102diisopropanolamine(DIPA),60distillation,108downcomers,131downstreamprocessing,23dripgas,97driveassembly,45drygasloss,12drypointtemperature,109drystills,108

    economizers,42elementalsulfur,57entrainedwatervapor,12equilibrium,5equipmentselectionanddesign condensatestabilizerreboilers,32 condensatestabilizers,32 feedgas,28 gasandliquidheaters,32–33 mercuryadsorber,95 mercuryremovalafter-filter,95 pigreceivers,28slugcatchers,30stabilizeroverheadcompressors,32ethane-recoveryprocess,121–122ethyleneglycol(EG),37,77eutecticfreezingpoint,77evaporation,41evaporators,35exchangers,127exothermicprocess,67expanders,35

    Fahrenheitscale,2feedgasbasis,26feedgasreceivingandcondensatestabilization,23–33 designbasisandspecificationsfortreatment units,26–28

    equipmentselectionanddesign,28 treatingandprocessing,23–26feedstock,1filtration,65firepoint,13flammability,13flashing,32flashpoint,13flashtank,77flooding,140flow-controlvalve,25flowdiagrams,14,16,18,19-20flowrate,28fluegas,12fluid,1fluidproperties,1–4 gravity,3 miscibility,3 pressure,3 solubility,4 temperature,2–3foaming,65fractionation,131–133fractionationandliquidtreating,131–143fractionation,131–133 monitoringoffractionalizationplants,139–140 NGLfractionationplants,134–136 NGLproducttreating,141–143 operatingproblems,140 packedcolumns,134 productspecification,138fractionationcolumn,26free-liquidremoval,94freezing,103freezingpoint,6Fuller’searth,143fundamentals combustion,13 composition,10 fluidproperties,1–4 heatenergy,10–12 hydrates,7–9 idealgaslaw,4–6

    gallonsperminute(gpm),100gasandliquidheaters,32–33gascap,1gaschiller,41gasdehydrationunits,92gas/gasexchanger,38

    Petro

    leum

    Exten

    sion-T

    he U

    nivers

    ity of

    Texa

    s at A

    ustin

  • 186 Plant Processing of Natural Gas

    gaspermeation,62GasProcessorsSuppliersAssociation(GPSA),6gasproductionstreams,1gassub-cooledprocess(GSP),119gassurgetank,41gastreatment,1gastreatmentunit,26gaugepressure,3generalconsiderationsfordehydrationandmercuryremoval,92generaloperatingconsiderationsforgastreating,65glycol,4glycolcryogenicprocess,38glycolinjectionproblems,78–80glycol/J-Tvalvecoolingprocess,38–40glycol/propanesystem,37–38GPSA Engineering Data Book,28,84gravity,3grossheatingvalue,12

    heatenergy,10–12heatingvalue,12heavy-liquidproduct,20high-integritypressureprotectionsystem(HIPPS),28high-liquidlevelalarm(HLA),102horsepower,10hot-richoilflashtank,104hydrateplug,7hydrates,7,8–9,73hydrocarbondew-pointcontrol,35hydrocarbonfluids,1hydrocarbontreating,51–65 adsorptiononasolid,61–62 chemicalreactions,51–58 gastreatingprocesses,51 generaloperatingconsiderationsforgastreating,65 membraneprocesses,62–64 mixedchemical/physicalabsorptionprocesses,60 physicalabsorptionprocesses,58–60hydrocarbontreatingunits,27hydrogensulfide,1

    idealgaslaw aboutgenerally,4 boilingpoint,6 freezingpoint,6 liquidphase,5 vaporpressure,5–6immiscibleliquids,3incorrectcoalescerliquidlevel,95inhibitorinjection,76–80initialboilingpoint,13

    inletseparation,65interstagecoolers,32

    Joule-Thomson(J-T),35Joule-Thomson(J-T)expansion,117Joule-Thomson(J-T)valvesystem,38

    Kelvinscale,2kinetichydrateinhibitors(KHIs),76KOdrum(knockoutdrum),36

    latentheat,11leanglycol,77leanoil,44leanoilabsorption aboutgenerally,97 absorberworkings,99–100. potentialproblemswith,102–103 presaturation,100 recoverysystem,98–103levelcontrollers,44levelcontrolvalve,38liquiddesiccants,80,82–84liquidexpansion,6liquid-liquidtreating,141–142liquidphase,5liquidseparator,38liquid-solidtreating,143lowdosagehydrateinhibitor(LDHI),76lowtemperatureseparation(LTS),35

    magneticbearings,126matter,10membraneprocesses,62–64membranes,146mercaptans,26mercuryadsorber,95mercuryembrittlement,92mercuryremovalafter-filter,95mercuryremovalcosts,94mercuryremovalunit(MRU),90Meroxprocess(commercialprocess),142metalsulfideoncarbonoralumina,93metalsulfidesystems,93methane,8methanol,7methyldiethanolamine(MDEA),52methylethyleneglycol(MEG),37millionstandardcubicfoot(MMscf),100miscibility,3

    Petro

    leum

    Exten

    sion-T

    he U

    nivers

    ity of

    Texa

    s at A

    ustin

  • Index 187

    miscibleliquids,3mixedchemical/physicalabsorptionprocesses,60mole,10molecularpercent,10molecularsieve,35,93molecularsieveprocess,61,85–86molecularweight,10molecule,2monitoringoffractionalizationplants,139–140MRUlocation,94multiplestagerefrigeration,46mutuallysolubleliquids,4

    naturalgas,1naturalgasliquid(NGL)fractionationplants,134-136 aboutgenerally,133–136 butanesplittercolumn,137 debutanizer(DeC4)column,136 deethanizer(DeC2)column,137 deisobutanizer(DIB)column,137 depropanizer(DeC3)column,137naturalgasliquid(NGL)producttreating,141–143 liquid-liquidtreating,141–142 liquid-solidtreating,143naturalgasliquid(NGL)recovery-cryogenic,113–129 aboutgenerally,113–114 applications,115–122 cryogenics,127–129 truboexpanders,122–126naturalgasliquid(NGL)recovery-leanoilabsorption,97–111 leanoilabsorption,98–103 rejectionsystem,104–107 separationsystem,108–111naturalgasliquid(NGL)recoveryoperations,77naturalgasliquids(NGLs),35“NaturalGasolineSpecificationsandTestMethods”(GPAPublication3132),138netheatingvalue,12nitrogenrejectionunits(NRUs) cryogenicNRUprocesses,146–148 NRUprocesses,149–152 processselection,145–146nonassociatedgas,1nonregenerativeacidgasremoval,51

    off-gases,12oil-filmresonance,125oilpurification,109–110oil-to-gasratio,100oilwhip,125oilwhirl,125

    operatingproblems,140.Seealsoproblemsoverheadproduct,134oxidation,57

    packedcolumns,134paraffins,88physicalabsorptionprocesses propylenecarbonateprocess,59–60 Rectisol®process(commercialproduct),60 Selexol®(commercialproduct),59physicalpropertiescomparison,8–9pigging,30piggingfrequency,28pigreceivers,25,28pipelinegrid,35platefinexchangers,127pooroutletwaterdewpoint,88–89potassiumcarbonate,51poundspersquareinch(psi),3poundspersquareinchabsolute(psia),3poundspersquareinchgauge(psig),3prefractionator,150presaturation,100presaturationsystems,100pressure,3pressuredrop,89,94pressureindicators(PIs),44pressureswingadsorption,145pretreatment,147–148problems withdew-pointcontrolandrefrigerationsystems,44–46 withethane/butaneinpropane,44 withfractionators,140 inglycolinjectionsystems,78 withinadequateinletseparation,65 withleanoilabsorption,102–103 withmethanol,77 intherecoverysystem,102 withrejectionsystem,107 withretrogradecondensation,25 withseparationsystem,110–111 solvedbythegasfeedreceptionandcondensate stabilizationunitequipment,33 withsulfur-impregnatedcarbonsystems,92processdescriptions comparisonofdew-pointprocesses,40 dew-pointcontrolandrefrigerationsystems,35–46 glycol/J-Tvalvecoolingprocess,38–40 glycol/propanesystem,37–38 silicagelprocess,36–37 unitspecifications,40

    Petro

    leum

    Exten

    sion-T

    he U

    nivers

    ity of

    Texa

    s at A

    ustin

  • 188 Plant Processing of Natural Gas

    processengineers,2processselection cryogenicabsorption,145 cryogenicdistillation,146 membranes,146 nitrogenrejectionunits(NRUs),145–146 pressureswingadsorption,145productspecifications,27,138propane,3propane-recoveryprocess,120propylenecarbonateprocess,59–60

    quenchcolumn,70

    Rankinescale,2reboilers,16reciprocatingcompressors,32reclaimers,53recompression,148reconcentrators,38recoverysystems,98–103rectificationsection,21rectifying,21Rectisol®process(commercialproduct),58–60reflux,20,108refrigerationsystems,35,41regeneration,26regenerationgas,36regenerativeacidgasremoval,51regenerativemolecularsieve,93ReidVaporPressure(RVP)requirement,28,133rejectionsystem,98 hotrich-oilflashtank,104 possibleproblemswith,107 rich-oilflashdemethanizer,105–106retrogradecondensation,25richglycol,77richoil,99rich-oildemethanizer(ROD),105rich-oildemethanizerbottoms,105rich-oilflashdemethanizer,105–106rich-oilfractionator,107royaltycharges,59

    safetyinstrumentalsystems(SIS),28SCOTprocess(commercialproduct),67,70Selexol(commercialproduct),59sensibleheat,11separationsystem,98

    oilpurification,109–110 possibleproblemswith,110–111 still,108–109separationtower,18shell-and-tubeexchangers,16ShellClausOff-GasTreating(SCOT)process,67,70silicagelprocess,35,36–37silicagelsandactivatedalumina,85slipping(rejection),54slugcatchers,25,30soliddesiccants,84–85solubility,4“SpecificationandTestMethodsforLPGas”(GPAPublication2140),138specificgravity,3split-vaporprocess,119stabilizationcolumn,32stabilizeroverheadcompressors,32stackloss,12stagedseparation,42standardcubicfoot(scf),12stericallyhinderedamine-basedsolvents,54stills,107,108–109strippingsection,20subambienttemperature,58Sulfinol®process(commercialproduct),60sulfur-impregnatedactivatedcarbon,92–93sulfurrecovery,67–70 catalyticrecovery,68,70 catalyticstep,67 thermalandcatalyticreaction,67 thermalprocess,67 thermalreaction,67 thermalstep,67sulfurrecoveryandClausoff-gastreating Clausoff-gastreating,70 sulfurrecovery,67–70sulfurrecoveryunits(SRUs),54,67superficialvelocityandresidencetime,95sweeteningacidgases,51switchingvalvesforadsorptionandregenerationoperation,90

    tailgas,54technologyselection designbasisandspecificationsfordehydration andmercuryremoval,92 metalsulfideoncarbonoralumina,93 regenerativemolecularsieve,93sulfur-impregnatedactivatedcarbon,92–93temperature,2–3

    Petro

    leum

    Exten

    sion-T

    he U

    nivers

    ity of

    Texa

    s at A

    ustin

  • Index 189

    temperaturedifferential,12temperatureindicators(TIs),44thermalandcatalyticreaction,67thermalprocess,67thermalreaction,67thermalstep,67thermocouples,88thermodynamicinhibitors,76thiobacillusbacteria,57–58totalinstallationcost(TIC),93towers,67towerwithtrays,18trays,18treatingandprocessing,23–26triethyleneglycol(TEG),37triple-columncycle,149truboexpanders,122–126turboexpanderprocess,115–119turboexpansion,97

    turndownratio,26Twister™Supersonicseparator(commercialproduct),40

    unitspecifications,40upstream,25

    vacuum,59valvetrays,131vaporization,53vaporizing,5vaporpressure,5–6vapors,4volatility,14volumeexpansion,6

    waterdew-pointcontrol,35weirs,131wetstills,108workingfluid,35

    Y-grade,97

    Petro

    leum

    Exten

    sion-T

    he U

    nivers

    ity of

    Texa

    s at A

    ustin

  • To obtain additional training materials, contact:

    PETEXThe University of Texas at Austin

    Petroleum extension service10100 Burnet Road, Bldg. 2

    Austin, TX 78758

    Telephone: 512-471-5940or 800-687-4132

    FAX: 512-471-9410or 800-687-7839

    E-mail: [email protected] visit our Web site: www.utexas.edu/ce/petex

    To obtain information about training courses, contact:

    PETEXlearning and assessment center

    The University of Texas4702 N. Sam Houston Parkway West, Suite 800

    Houston, TX 77086

    Telephone: 281-397-2440or 800-687-7052

    FAX: 281-397-2441E-mail: [email protected]

    or visit our Web site: www.utexas.edu/ce/petex

    Petro

    leum

    Exten

    sion-T

    he U

    nivers

    ity of

    Texa

    s at A

    ustin

  • Catalog No. 3.11020ISBN 0-88698-223-5

    Petro

    leum

    Exten

    sion-T

    he U

    nivers

    ity of

    Texa

    s at A

    ustin

    Cover PageTitle PageTable of ContentsFiguresTablesForewordAcknowlegmentsAbout the AuthorsChapter 1: FundamentalsChapter 2: Feed Gas Receiving and Condensate StabilizationChapter 3: Dew-Point Control and Refrigeration SystemsChapter 4: Hydrocarbon TestingChapter 5: Sulfur Recovery and Claus Off-Gas TreatingChapter 6: Dehydration and Mercury RemovalChapter 7: NGL Recovery -- Lean-Oil AbsorptionChapter 8: NGL Recovery -- CryogenicChapter 9: Fractionation and Liquid TreatingChapter 10: Nitrogen Rejection Unit (NRU)AppendixGlossaryIndex