physical chemistry i for biochemists lecture 41...

33
4/25/2011 1 Physical Chemistry I for Biochemists Chem340 Lecture 41 (4/25/11) Yoshitaka Ishii Ch 9.1112, 10.12, 10.4 Review for Ch12 Announcement We will perform review classes in this week. Average of Exam 3 ~81 points Review Quiz on 4/29 (Ch16 & Ch9, Ch10) Study previous Exams & Quiz for the Final Exams

Upload: others

Post on 21-Apr-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Physical Chemistry I for Biochemists Lecture 41 (4/25/11)ramsey1.chem.uic.edu/chem340/Lecture_Note/110425_lecture... · 2011-04-25 · 4/25/2011 1 Physical Chemistry I for Biochemists

4/25/2011

1

Physical Chemistry I for BiochemistsChem340

Lecture 41 (4/25/11)

Yoshitaka Ishii

Ch 9.11‐12, 10.1‐2, 10.4Review for Ch1‐2

Announcement

• We will perform review classes in this week.

• Average of Exam 3  ~81 points

• Review Quiz on 4/29 (Ch1‐6 & Ch9, Ch10)

• Study previous Exams & Quiz for the Final Exams 

Page 2: Physical Chemistry I for Biochemists Lecture 41 (4/25/11)ramsey1.chem.uic.edu/chem340/Lecture_Note/110425_lecture... · 2011-04-25 · 4/25/2011 1 Physical Chemistry I for Biochemists

4/25/2011

2

9.8 Redox Reaction in Electrochemical Cells and the Nernst Equation

• Left(anode):

• Right (cathode) :

Zn(s)  Zn2+ (aq) + 2e‐

Cu2+ (aq) + 2e‐ Cu(s) Daniel Cell

• Overall:

• Anode: Red1Ox1+1e‐

• Cathode: Ox2 +2e‐Red2• Overall:

Zn(s) + Cu2+ (aq)  Zn2+(aq) + Cu(s)

Zn  Zn2+ + 2e‐ Cu2+ + 2e‐ Cu

• Overall:

2Red1 + 1Ox2 2Ox1 +1Red2Q. What is overall reaxn for Cu/Zn?

Q2. How do you get Greaction

using chemical potential?

• P9.40) By finding appropriate half-cell reactions, calculate the equilibrium constant at 298.15 K for the following reactions:

• a. 2Cd(OH)2 2Cd + O2 + 2H2O( )2 2 2

• a) From

• Cd(OH)2 + 2e– → Cd + 2 OH– Eº = –0.809V

• O2 + 2H2O + 4e–→ 4OH– Eº = 0.401V

The half cell reactions areThe half cell reactions are

4OH–→ O2 + 2H2O + 4e– EOXº= -0.401V

2Cd(OH)2 + 4e– → 2Cd + 4 OH– ERed = –0.809VEcell = EOX

0 + ERed0 K = exp(-ΔG/RT)= exp(-nFE/RT)

[Q1]

[Q2]

Page 3: Physical Chemistry I for Biochemists Lecture 41 (4/25/11)ramsey1.chem.uic.edu/chem340/Lecture_Note/110425_lecture... · 2011-04-25 · 4/25/2011 1 Physical Chemistry I for Biochemists

4/25/2011

3

• P9.32) Calculate and the equilibrium constant at 298.15K for the reaction

U i h h lf ll i

Gr

Cr2O7

2 aq 3H2 g 8H aq 2Cr3 aq 7H2O l .• Using the half cell reactions:

Ox (Anode):

Red (Cathode:) )7(Cr 2 )14(e 6OCr 23

22

72 OHH

e 6H 6H 3 2[Q1]

ΔFΔG

• What is n?   n =   6  

ΔφFn ΔG reaction

[Q2]

9.11 The Determination of E0 and Activity Coefficients Using an Electrochemical Cell

• Cell:   Ox: Ag  Ag+ + e‐ Red: H+ +e‐1/2H2 (SHE) 

• For Ag+/Ag Ag+ arises from the dissociation of AgCl• For Ag+/Ag, Ag+ arises from the dissociation of AgCl.  Assume that aAg+ = aCl‐.  How can we get the activity? Recall activities of individual ions cannot be measured directly. 

a = a+

+ a‐‐a

2 = aAg+ aCl‐ a = aAg+ = aCl‐ (if aAg+= aCl‐)

• Similarly and m m m Then the

[Q1]

• Similarly, = Ag+ = Cl‐ and m= mAg+ = mCl‐ .  Then the cell potential is 

• For low mAg+, 

E = E0Ag+/Ag+(RT/F)ln(aAg+) = E0

Ag+/Ag +(RT/F){ln(m)+ln }

ln =-1.173|z+z-|(I)1/2 at 298K (9.33)

(I)1/2 = ({m+zi+2+ m-zi-

2}/2)1/2=m1/2

[Q2] [Q3] 

Page 4: Physical Chemistry I for Biochemists Lecture 41 (4/25/11)ramsey1.chem.uic.edu/chem340/Lecture_Note/110425_lecture... · 2011-04-25 · 4/25/2011 1 Physical Chemistry I for Biochemists

4/25/2011

4

• P9.18) (a) Calculate I, ±, and a± for a 0.0250 m solution of K2SO4 at 298 K. Assume complete dissociation.

(b) H fid h l l d(b) How confident are you that your calculated results will agree with experimental results?

• += 2    ‐ = 1 z+ = 1  z‐ = ‐1

• I =(m{+z+2+  ‐z‐2}/2)1/2[Q1]

log = -0.50926|z+z-|(I)1/2

a± = m± ±

(b) See Figures 9.8 to find the deviation from DH limiting law using Davis equation (9.34)

[Q2]

m± = (m+2 m-)1/3[Q3]

More Na+ (coutNa+ > cin

Na+) +

More K+ (cinK+ > cout

K+) +

Page 5: Physical Chemistry I for Biochemists Lecture 41 (4/25/11)ramsey1.chem.uic.edu/chem340/Lecture_Note/110425_lecture... · 2011-04-25 · 4/25/2011 1 Physical Chemistry I for Biochemists

4/25/2011

5

Ch10.4 Biological Membranes and the Energy of  Ion Transport

• The chemical potential for

a neutral species A outside thea neutral species A outside the 

membrane is 

• out = 0out +RT ln(cout/c

0), 

where cout is the concentration of A .  Similarly, for A inside the cell is

in = 0in +RT ln(cin/c

0), 

The work involved to move dn moles of A from inside to out is

dG ( 0 0 )dn +RT ln(c /c ) dG = (0out ‐ 0

in)dn +RT ln(cout/cin).  

Assuming 0out ~ 0

in, 

dG = out ‐ in = RT ln(cout/cin)    

Q. Which chemical potential is higher when cout > cin? 

Q. When does the system reach equilibrium?  

Chemical potential across membrane when the electronic potential is present

zFccRT )()/ln(~~~ zF~

So the system reaches equilibrium when 

= ‐(RT/zF) ln(cout/cin).

zFccRT

zFccRT

inout

inoutinoutinout

)/ln(

)()/ln(

0~ [Q1] = 0.

More Na+ (coutNa+ > cin

Na+) +

Q. Is “cout = cin” correct ?

More K+ (cinK+ > cout

K+) +

Page 6: Physical Chemistry I for Biochemists Lecture 41 (4/25/11)ramsey1.chem.uic.edu/chem340/Lecture_Note/110425_lecture... · 2011-04-25 · 4/25/2011 1 Physical Chemistry I for Biochemists

4/25/2011

6

• P10.6) Calculate the reversible work required to transport 1mol of K+ from a region where

to a region where if the C

K 5.25 mM CK 35.5 mM

potential change accompanying this movement is = 0.055 V. Assume T = 298 K.

• The reversible work is given by:

zFccRT inifininiinifin fin )()/ln(~~~

zFccRT inifin

inifininiinifin f

)/ln(

)()(

G for Sodium‐Potasium Pump

• 3Na+(in) + 2K+(out)+ ATP 

3N +( t) 2K+(i ) ADP3Na+(out) + 2K+(in)+ ADP

The work required to transport 

3Na+ to inside and 2K+ to outside is

outK

inoutNa

inG

~2~3

FccccRT

FccRT

FccRTG

Kout

Kin

Nain

Naout

outinKout

Kin

inoutNain

Naout

)}/ln(2)/ln(3{

)}()/ln({2

)}()/ln({3

Try Example 10.4

Page 7: Physical Chemistry I for Biochemists Lecture 41 (4/25/11)ramsey1.chem.uic.edu/chem340/Lecture_Note/110425_lecture... · 2011-04-25 · 4/25/2011 1 Physical Chemistry I for Biochemists

4/25/2011

7

9.12 Biochemical Standard State• pH = 7 (cH+

0 = 10‐7 M  NOT 1M) 

• cH2O0 is that for pure water (Not 1M)

• Standard state of molecule having multiple Sta da d state o o ecu e a g u t p eionic states is defined by a total concentration (unless otherwise defined)

(ex. cATP = [ATP4‐] + [H‐ATP3‐] .. See Ch10.5 )

● aH2O0 = 1 for dilute aquatic solution (or pure 

water)

● aH+0 = 1 at pH =7  

Neglect aH2O and aH+ from Q for dilute aquatic solution at pH =7. (We set this as Q’)

Page 8: Physical Chemistry I for Biochemists Lecture 41 (4/25/11)ramsey1.chem.uic.edu/chem340/Lecture_Note/110425_lecture... · 2011-04-25 · 4/25/2011 1 Physical Chemistry I for Biochemists

4/25/2011

8

10.1 Thermodynamics and Living Systems

• 6CO2(g) + 6H2O(l)  C6H12O6(s) + 6O2(g)

Autotrophic Cells

• G0’reaction  = G0’f(C6H12O6) – 6G

0’f(CO2) – 6G’

0f(H2O) 

G0’reaction =  2868 kJ mol‐1 > 0   endergonic

H0’reaction =  2813 kJ mol‐1

S0’reaction = (H0’reaction ‐ G0’

reaction )/T  = ‐182.3 JK‐1

1mol‐1

Q1.  Is the reaction spontaneous? 

Q2.  What is needed to drive the reaction?

Q3.  Guess the reason why S0’reaction is negative here

Sm for O2 (p100)Q. What is the reason why Sm  changes discontinuously between liquid and gas?

T

DqS reversible

onvaporizati

onvaporizati

onvaporizati

reversiblereversibleonvavorizati T

H

T

q

T

DqS

Page 9: Physical Chemistry I for Biochemists Lecture 41 (4/25/11)ramsey1.chem.uic.edu/chem340/Lecture_Note/110425_lecture... · 2011-04-25 · 4/25/2011 1 Physical Chemistry I for Biochemists

4/25/2011

9

• C6H12O6(s) + 6O2(g)  6CO2(g) + 6H2O(l) 

• G0’reaction= ‐ 2868 kJ mol‐1 < 0   exergonic

H0’reaction =  ‐ 2813 kJ mol‐1

Heterotrophic Cells

S0’reaction = (H0’reaction ‐ G0’

reaction )/T  = 182.3 JK‐1 mol‐1

Adenosine triphosphate (ATP) and adenosine diphosphate (ADP)

Read Ch. 10.3 & 10.5 by yourself

10.2 The Principle of Common Intermediates

ATP(aq) + H2O(l)  ADP(aq) + Pi(aq)

GØ ‘ = ‐30.5 kJmol‐1

Ex. 10.1 (p249)  This standard condition is not applied in a cell.  In the cell, typical concentration of ATP, ADP, and inorganic phospate arecATP = 1850 uM, cADP = 138 uM, cP = 1.00 mMATP , ADP , P

How much is G at the concentrations?  G = GØ’ +  RTlnQ’  = GØ ‘  +  RTln{(138 uM/1 M)(1 mM/1M)/(1850uM/1M) }

= GØ’ +RT ln(7.46 x 10‐5)  = ‐55.0 kJ

[Q1]

Page 10: Physical Chemistry I for Biochemists Lecture 41 (4/25/11)ramsey1.chem.uic.edu/chem340/Lecture_Note/110425_lecture... · 2011-04-25 · 4/25/2011 1 Physical Chemistry I for Biochemists

4/25/2011

10

1.2 Basic DefinitionsClosed system: A system that does not exchange matters with the “surroundings”.

Surrounding: All the matters in universe otherthan the “system”

Open system: A system exchanging matterswith the “surroundings”.  

Isolated system: A system that does not h i hexchange matters or energy with 

the “surrounding”

Boundary: An Interface between the systems.  Boundaries determine if the matter and/or energy can be transferred.

Equilibrium

(P1, V1, n1, ..) (P2, V2, n2, ..)

Two isolated systems characterized by system variables such as P, T, V ..

T1 T2

(P1, V1, n1, ..) (P2, V2, n2, ..)

The exchange of energy and/or matters through the boundary

A system variable reaches a constant 

(P’1, V’1, n’1, ..) (P’2, V’2, n’2, ..)

over time in any part of the systems Equilibrium

Thermodynamics equilibrium: Equilibrium with respect to P, T, and concentration ( or n/V)

T’ T’

Page 11: Physical Chemistry I for Biochemists Lecture 41 (4/25/11)ramsey1.chem.uic.edu/chem340/Lecture_Note/110425_lecture... · 2011-04-25 · 4/25/2011 1 Physical Chemistry I for Biochemists

4/25/2011

11

Thermal Equilibrium

• Equilibrium with respect to Temperature[Q1                 ]

• For ideal gas, 

P = nRT/V = RT   T = P/R

Thus, if the molar density  are common b t t t P P h thbetween two systems, P1 = P2 when the systems reach thermal equilibrium. 

Ideal Gas Eq. using molar density

PV = nRT

P, T,  : Intensive variable (variables that does not depend on the size of the system)

n, V: Extensive variable (those that depend on the size)

P = RT    This depends on only three intensive variable. 

Page 12: Physical Chemistry I for Biochemists Lecture 41 (4/25/11)ramsey1.chem.uic.edu/chem340/Lecture_Note/110425_lecture... · 2011-04-25 · 4/25/2011 1 Physical Chemistry I for Biochemists

4/25/2011

12

Isotherms, isobars, isochores

• Isotherm: T = constant   PV/n = const

• Isobar: P =const V/nT = const  

• Isochore (or isovolumetric): V = const

• P/nT = const

60

80

a)

Q. Which type ofgraphs are they?

T increase

0

20

40

0 0.5 1 1.5 2

1/V (1/m3)

P (

Pa

Sample Question on Charles’s law

• Sam has a balloon filled with N2, which has a volume of 1 00 L at 25 C He heated up thevolume of 1.00 L at 25  C.  He heated up the balloon to 50 C to float the balloon.  Assuming the pressure inside the balloon is unchanged at 1 atm, how much is the volume of the heated balloon? 

• V /V = T /T• V1/V0 = T1/T0 V1 = V0x T1/T0 

= 1.00 L x (273 +50)/(273 + 25) 

= 1.08 L

[Q1                                                 ]

[Q2                                                 ]

Page 13: Physical Chemistry I for Biochemists Lecture 41 (4/25/11)ramsey1.chem.uic.edu/chem340/Lecture_Note/110425_lecture... · 2011-04-25 · 4/25/2011 1 Physical Chemistry I for Biochemists

4/25/2011

13

1.4 Equation of State & Ideal Gas Law

• PV = nRT             

= NkBT,

where R and kB are called ideal gas constant and Boltzman constant. 

R = 8.315 JK‐1mol‐1

kB = R/NA, where NA is Avogadro constant

Choose a right unit for R (see Table 1.2 in p.8)

Q. For the above R, what kind of units should you use for V and P? V [m3]   P [Pa]

Page 14: Physical Chemistry I for Biochemists Lecture 41 (4/25/11)ramsey1.chem.uic.edu/chem340/Lecture_Note/110425_lecture... · 2011-04-25 · 4/25/2011 1 Physical Chemistry I for Biochemists

4/25/2011

14

A Mixed Ideal Gas & Partial Pressure

• For a mixture of ideal gasses, the partial pressurefor molecule i is given by

P RT/V ( B l ’ Ch l ’ t)Pi = niRT/V,  ( Boyle’s, Charles’s are correct) 

where ni denotes # of moles for the gas molecule i.  

• The overall pressure of the mixed gas is 

P = PiP =  Pixi = Pi/P = ni/n is called molar fraction,

where n =  ni

• P1.2) Consider a gas mixture in a 2.00-dm3

flask at 27.0°C. For each of the following mixtures, calculate the partial pressure of each gas, the total pressure, and the g pcomposition of the mixture in mole percent:

• a. 1.00 g H2 and 1.00 g O2

Pa 10 6.18

mol kg10 2.02 m 10 2.00

K 300.15mol K J 8.314472 kg 0.001

VM

T R m

V

T R np 5

13-33-

11

2

22

2

H

HHH

TRTR 11 Pa 10 3.90

mol kg10 32.0 m 10 2.00

K300.15molKJ8.314472kg0.001

VM

T R m

V

T Rnp 4

13-33-

11

2

22

2

O

OOO

Pa 10 57.6ppp 5total 22

OH

Page 15: Physical Chemistry I for Biochemists Lecture 41 (4/25/11)ramsey1.chem.uic.edu/chem340/Lecture_Note/110425_lecture... · 2011-04-25 · 4/25/2011 1 Physical Chemistry I for Biochemists

4/25/2011

15

• P1.15) Consider a 20.0‐L sample of moist air at 60.°C and 1 atm in which the partial pressure of water vapor is 0.120 atm. Assume that dry air has the composition 78.0 mol % N2, 21.0 mol % O2, and 1.00 mol % Ar.

Wh t i th l t f O ?• a  What is the mole percentage of O2?  

PO2/Ptotal = {(1.0 ‐0.12)atm x 0.21} /1.0 atm  

• b. The percent relative humidity is defined as      

where            is the partial pressure of water in the sample and                    atm is the 

%RH PH2O PH2O

*

PH2O* 0.197

PH2O

[Q1]                

equilibrium vapor pressure of water at 60°C.  The gas is compressed at 60 °C until the relative humidity is 100%. What volume does the mixture contain now?   Q.  How do you solve this?        PH2O(20L ) = PH2O* (V) 

Practice for c.  

Parameters & Units (in International units of system or SI unit)

In SI, there are 7 base units: m, kg, s, A (ampere), K (kelvin), mol, cd (candela), g, , ( p ), ( ), , ( )

• Weight (kg)• Force (N; newton) 1 N = 1 kg m/s2

• Pressure: Force/Area‐ In SI units, Pa (pascal) is used.1 Pa = 1 N/m2 = 1 N  (= 1 x 105 bar) / ( )

• Volume  m3

1 (dm)3 = 1x10‐3 m3 ( = 1 L) 

About the SI units, seehttp://physics.nist.gov/cuu/Units/units.html

Page 16: Physical Chemistry I for Biochemists Lecture 41 (4/25/11)ramsey1.chem.uic.edu/chem340/Lecture_Note/110425_lecture... · 2011-04-25 · 4/25/2011 1 Physical Chemistry I for Biochemists

4/25/2011

16

Non‐ideal Gas

• Two assumptions for the ideal gas

(1) No interactions between gas molecules

(2) The gas molecule can be treated as a point mass (no volume is considered)

The assumption is correct when gas density is low.  (roughly speaking P < 10 bar and T > 100K)

Isothermal P‐V Plots for Real Gas   (Experiment for CO2)

50 C Above Tc, G  L 

Tc: Critical temperatureQ. Why does the curve drop at 40 C?

40 C31.4 C (Tc)

20 C

0 CLiquid CO2

x

,transition is not possible

X denotes inflection point in isotherm(dP/dV 0 d2P/dV2 0)

Condensation from gas to liquid below Tc

Raff (p21‐41)

(dP/dV = 0, d2P/dV2=0)P & V at this point are named Pc and Vc. 

Page 17: Physical Chemistry I for Biochemists Lecture 41 (4/25/11)ramsey1.chem.uic.edu/chem340/Lecture_Note/110425_lecture... · 2011-04-25 · 4/25/2011 1 Physical Chemistry I for Biochemists

4/25/2011

17

Non‐ideal Gas: two types of interactions

r > rtransition

otential Energy rV < r  < rtransition

V(r) < 0

Po

V(r) < 0

V(r) > 0

r  < rV

2

2

V

an

van der Waals Equation of State

nbV

nRTP

VnbV b: finite size of 1 mol of the moleculesa: attractive force constant 

RTP

a

bVP

m

2mV

a

nVVm /

Page 18: Physical Chemistry I for Biochemists Lecture 41 (4/25/11)ramsey1.chem.uic.edu/chem340/Lecture_Note/110425_lecture... · 2011-04-25 · 4/25/2011 1 Physical Chemistry I for Biochemists

4/25/2011

18

van der Waals Equation for CO2

120

140 P (bar) (ideal gasat 300K)P (CO2) at 290K

Well reproduces the experimental curves above Tc!  

60

80

100

120

P (

bar

)

(CO ) at 90

P (CO2) 304.3K

P (CO2) 315K

P (CO2) 350K

0

20

40

0 0.1 0.2 0.3 0.4 0.5 0.6

V (Lmol-1)

Critical temp obtained from dP/dVm = 0and d2P/dVm

2=0

Maxwell constructionreproduces G‐L transition

Calculate Tc from Van der Waals Eq.

2mm V

a

bV

RTP

At Tc the following relationships are expected

bVVmCmC

46

0

232

mm

c

m V

a

bV

RT

V

P

0

62432

2

c aRTP

At Tc, the following relationships are expected. 

32

2

mCmC

C

V

a

bV

RT

26 RTa C 432 mmm VbVV 34 bVV mCmC

Vmc = 3b, Tc = 8a/(27bR), Pc = a/27b2

83 /cmcc RTVP

Page 19: Physical Chemistry I for Biochemists Lecture 41 (4/25/11)ramsey1.chem.uic.edu/chem340/Lecture_Note/110425_lecture... · 2011-04-25 · 4/25/2011 1 Physical Chemistry I for Biochemists

4/25/2011

19

HW21 (a) Calculate the molar volume, temperature, 

pressure of H2O at the critical point using van der Waals parameters a and b (a = 5.537 bar mol‐1, b = 0.03049 Lmol‐1).0.03049 Lmol ).    

(b) Obtain the density of H2O at the critical point, and compare it with that of liquid H2O (~1 g/mL).   Assume that the molar mass of H2O is 18.0. 

a) Easy as long as you remember equations.

Vmc = 3b,       PC = a/27b2,  PCVMC= (3/8)RTC[Q1] [Q2] [Q3] mc C C MC C

b)  = M / Vmc

(Do not forget to convert the unit to g/mL !)

[ ] [ ] [ ]

[Q4]

Problem for HW2

Vmc = 3bTc = 8a/(27bR)P = a/27b2

[Q1    ]

[Q2]

b = Vc/3  a = 3 (Pc x 9b2) = 3Pc x Vc2 

How can we get the radius from a Pc = a/27b or b? 

Assume that there is no space between sphere.  4R3/3 = b/NA

Page 20: Physical Chemistry I for Biochemists Lecture 41 (4/25/11)ramsey1.chem.uic.edu/chem340/Lecture_Note/110425_lecture... · 2011-04-25 · 4/25/2011 1 Physical Chemistry I for Biochemists

4/25/2011

20

Kinetic Energy of Gas• v2 = vx

2 + vy2 + vz

2

• The probability of finding a molecule flying at vx is 

p(v ) = exp( mv 2/2k T)/Z

V = (vx, vy, vz)

p(vx) =  exp(‐mvx2/2kBT)/Z,

where Z = {2kBT/m}1/2 and a = m/2kBT.

The expected kinetic energy due to vx

2222

22

)()( dvvpvm

dvvpmvmv

xxxxxxx

24

22

22 /)/exp( TkaaZ

mdvTkmvv

Z

mBxBxx

2222 222 //// Tkmvmvmv BZYX

2322 // TkmvE Btrans Q. Is this energy for 1 mol?

Temperature Dependence of Distribution of |vx|

• P(vx) = exp{‐mvx2/(2kT)}/Z

0 001

0.0015

0.002

0.0025

ob

abil

ity

O2 150K

O2 300K

O2 600K

0

0.0005

0.001

-1200 -800 -400 0 400 800 1200Vx (m/s)

Pr

Page 21: Physical Chemistry I for Biochemists Lecture 41 (4/25/11)ramsey1.chem.uic.edu/chem340/Lecture_Note/110425_lecture... · 2011-04-25 · 4/25/2011 1 Physical Chemistry I for Biochemists

4/25/2011

21

Distribution of speed C, P(C) (Raff994)

Distribution of Speed for O2 in Gas

C = {vx2+vY

2+vZ2}1/22

223

224 C

kT

mC

kT

mCP

exp)(

/

2.00E-03

3.00E-03

P(C

)

150K O2

300 K O2

600K O2

0.00E+00

1.00E-03

0 500 1000 1500 2000

Speed (C) (m/s)

P

How can p(C) have a very different shape from p(vx)?

ZYx

zyxzyxzyxzYx

dvdvdvZvvvm

dvdvdvvpvpvpdvdvdvvvvP

3222

/exp

)()()(),,(

zyx dvdvdvZ

kT2/exp

Change Cartesian velocity (VX, VY, VZ)  Polar Velocity (C, , )

ddCdCdvdvdv zyx sin2

)(),,( CPvvvPC zYx 24 )(),,( zYx

ddCdCZkT

CmddCdC

C

CPsin/expsin

)( 232

22 24

32

2

24 Z

kT

CmCCP /exp)(

Page 22: Physical Chemistry I for Biochemists Lecture 41 (4/25/11)ramsey1.chem.uic.edu/chem340/Lecture_Note/110425_lecture... · 2011-04-25 · 4/25/2011 1 Physical Chemistry I for Biochemists

4/25/2011

22

<C>, <C2>1/2, Most probable C(Raff 998‐999)

• Average speed, <C>:2123 //

(Home work 2)

• Root‐Mean‐Square speed Crms:

21

0

3223

8

224

//

exp

M

RTdCC

kT

mC

kT

mC

2121

4223

212 34

///

exp

RTdCC

mCmC /

• Most probable C: Cmp

0 224 exp

MdCC

kTkTC

212

/

M

RTCmp

dP(C)/dC = 0

Q.  Which is greater?

Kinetic Theory of Gas An ideal gas of N molecules (mass m) is enclosed in a cubic box of length L

‐mvx

Force by one molecule F = mdv/dt = dp/dt~ p/t  = 2mvx/(2L/vx)= mvx

2/L 

By N molecules, 

LvmF kx

N

k

/

2

1

mvx

L

LvmN

LvN

mN

x

N

kkx

/

/

2

1

21

P = F/L2 P =mN<vx2>/L3 = NkBT/L

3= nRT/V 

Page 23: Physical Chemistry I for Biochemists Lecture 41 (4/25/11)ramsey1.chem.uic.edu/chem340/Lecture_Note/110425_lecture... · 2011-04-25 · 4/25/2011 1 Physical Chemistry I for Biochemists

4/25/2011

23

Internal Energy of Translation, Rotation, Vibration (Text Ch23 p600)

Translational Energy for N molecules33 nRTTNk

Rotational Energy 

• UR = NkBT = nRT    (linear)

• UR = 3NkBT/2 =3nRT/2  (non‐linear)

U 0 ( t i )

2

3

2

3 nRTTNkU B

T Internal Energy of Ideal Gas 

[Q1] UR =  0           (atomic)

Vibrational Energy 

1

)/~exp(

~

kThc

NhcUV

[Q1]

Ch. 2

• First law of Thermodynamics:

The internal energy, U, of an isolated 

system is constant.

In other words, if the surrounding exchanges energy with the system,the total energy of the surrounding and the system should not change. 

0= UTotal = Usystem + Usurrounding

Usystem = ‐Usurrounding

In a closed system: ‐Usurrounding = q(heat) + w(work)

U = q + w

Page 24: Physical Chemistry I for Biochemists Lecture 41 (4/25/11)ramsey1.chem.uic.edu/chem340/Lecture_Note/110425_lecture... · 2011-04-25 · 4/25/2011 1 Physical Chemistry I for Biochemists

4/25/2011

24

Work by pressurePressure: P = F/A, where A is area F = PexternalA

A

)( dzAPdzAP

dLFw

externalexternal

The work done by the system:A

dz

)(VdPexternal

Note: In general, Pexternal Psystem

VPw externalFor a constant Pext

W > 0

U = w > 0  

The sign of w (Q. Which process gives us a positive work?)

Initial Final

W 0

PiVi PfVf

Initial Final

W < 0    U = w < 0  

P’iV’iP’fV’f

Page 25: Physical Chemistry I for Biochemists Lecture 41 (4/25/11)ramsey1.chem.uic.edu/chem340/Lecture_Note/110425_lecture... · 2011-04-25 · 4/25/2011 1 Physical Chemistry I for Biochemists

4/25/2011

25

Sample Question (Ex. 2.1 p18)

• Calculate the work involved when a human adult exhales.  Assume that an adult expels 0.5 L of air at 1 atmatm.Pexternal = 1 atmV = 0.5 L 

W = ‐ Pexternal V = ‐1 atm x 0.5 L = ‐1x 1.01x105Pa x 0.5 x 10‐3 m3

= ‐50.0 J  (~ ‐0.2 kcal) ( )

Coke ~ 97 Food cal = 97 kcal  ~ 500 breathsDiet Coke 1 Food cal = 1 kcal ~ 5  breaths 

Math in Expansion of Gas)(VdPw external Case [3] Isothermal Reversible

Expansion. Pexternal = Pint = nRT/V& T = const (see p27)We assume P // dV

finV

V

Vini

external dVPwfin

Case [1] If Pexternal = const (p24)

fin

Vini

externaldVPw

)/(

)/(

V

Vini

V

Vini

dVVnRT

dVVnRTw

fin

fin

1

)( inifinexternalVVexternal

Vini

VVPVP fin

ini

)}/{ln(

)}ln(){ln(

)][ln(

inifin

inifin

VV

VVnRT

VVnRT

VnRT fin

ini

Case [2] Reversible Expansion Pexternal = Pint

finV

Vini

dVTVPw ),(int

Page 26: Physical Chemistry I for Biochemists Lecture 41 (4/25/11)ramsey1.chem.uic.edu/chem340/Lecture_Note/110425_lecture... · 2011-04-25 · 4/25/2011 1 Physical Chemistry I for Biochemists

4/25/2011

26

Work by Electrostatics

The work required for transporting charge q across the electrical potential 

• Welectrical = q

Using a current I and (q = It),

• Welectrical =  I  t  [A V sec] = [W sec] = [J]

(Ch 9.1)

-Fdx = (kx)dx

2.3 Heat

• Heat is defined as the quality of energy that flows across the boundary between theflows across the boundary between the system and the surrounding because of a temperature difference 

Heat

When w = 0U = qsys

System

Heat qsys < 0

System

Heat qsys > 0

Tsurrounding < Tsys

Surrounding Surrounding

Tsurrounding > Tsys

Page 27: Physical Chemistry I for Biochemists Lecture 41 (4/25/11)ramsey1.chem.uic.edu/chem340/Lecture_Note/110425_lecture... · 2011-04-25 · 4/25/2011 1 Physical Chemistry I for Biochemists

4/25/2011

27

2.4 Heat Capacity

• Assume that the work w of It is done by a heating coil in a system and the work is completely converted to heat q (ie q It)completely converted to heat q (ie. q = It)We expect temperature change from Tini to Tfin

The response of the system to a heat flow is described by heat capacity Cdescribed by heat capacity C

dT

Dq

TT

qC

inifinT

0

limD is denoted as d in the text. The meaning will be discussed in a later section.

C denotes heat needed to increase T by 1K

Cm = C/n: molar heat capacity

[J/K]

Heat Capacity Depends on the Conditions (V, P, T)

• CV: Heat capacity for a constant volume

T dependence of Cmp for Cl2constant volume

• CP: Heat capacity for a constant pressure

CV CP

C and C also depend on

mp 2

CP and CV also depend on temperature and phase in general. 

Q. How much heat is needed to increase T by 2K for 1 mol of Cl2 at T = 100, 200, 300K?

Page 28: Physical Chemistry I for Biochemists Lecture 41 (4/25/11)ramsey1.chem.uic.edu/chem340/Lecture_Note/110425_lecture... · 2011-04-25 · 4/25/2011 1 Physical Chemistry I for Biochemists

4/25/2011

28

2.5 State Functions and Path Functions

• An alternate statement of first law:

U i i d d t f th th b t thU is independent of the path between the initial and final states.

U only depends only on the initial and final states as

UUUdUU

fin Any function that satisfies this condition is called a state function.

inifinUUUdUU

ini

dU is called an “exact differential”, the integration of which (U) is a state function. (Dq is not an exact differential).

Work and Heat Are “Path Functions” (not “State Function”)

• W and q are not state functions, but path functionsfunctions. 

inifin

fin

iniqqDqq

inifin

fin

iniwwDww

W + q = U are actually a state function

Q.Calculate the work performed along the path in the right. Assume (Pext =P)

W = -P2(V2-V1) - P1(V1-V2) = (P1 – P2)(V2-V1)

Page 29: Physical Chemistry I for Biochemists Lecture 41 (4/25/11)ramsey1.chem.uic.edu/chem340/Lecture_Note/110425_lecture... · 2011-04-25 · 4/25/2011 1 Physical Chemistry I for Biochemists

4/25/2011

29

Additional Questions

Q2. How much heat is needed for this cycle?

W + q = U: a state function

q = U –w = -w

Q3. How much work is needed for the reverse cycle?

W1 = -P2(V1-V2) - P1(V2-V1) = -(P1 – P2)(V2-V1)

W1 = -w

2.7 Work for Reversible Process• In reversible process, P = Pext

finfin VV

dVPdVPw

)/(V

Vini

dVVnRTwfin

ViniVini

ext dVPdVPw int

For isothermal reversible process,

)}/{ln()}ln(){ln(

)][ln(

)/(

inifininifin

VV

V

Vini

VVnRTVVnRT

VnRT

dVVnRT

fin

ini

fin

1Q.How much w is needed for the cycle Pi Pf Pi?

Page 30: Physical Chemistry I for Biochemists Lecture 41 (4/25/11)ramsey1.chem.uic.edu/chem340/Lecture_Note/110425_lecture... · 2011-04-25 · 4/25/2011 1 Physical Chemistry I for Biochemists

4/25/2011

30

2.9 Calculating q, w , U, H for Ideal Gas 

(Note: all the equations in this section of the text are valid only for Ideal Gas)

)()( inifinV

T

T VV TTCdTTCqUfin

ini

TnRTCTnRUnRTU

PVUH

V

)(

)(

HTTCdTTCq inifinP

T

T PP

fin

ini

)()(

TCTnRC pV

V

)(

)(

HW3 

• P2.3) 3.00 moles of an ideal gas are compressed isothermally from 60.0 to 20.0 L using a constant external pressure of 5 00using a constant external pressure of 5.00 atm. Calculate q, w, U, and H.

• How can we calculalte U and H?Which equation should we use?

)( inifinVV TTCqU )( inifinPP TTCqH

Which equation should we use?

VPUH extqwU

VPUH int

Page 31: Physical Chemistry I for Biochemists Lecture 41 (4/25/11)ramsey1.chem.uic.edu/chem340/Lecture_Note/110425_lecture... · 2011-04-25 · 4/25/2011 1 Physical Chemistry I for Biochemists

4/25/2011

31

HW 3

• P2.7 For 1.00 mol of an ideal gas, Pexternal = P = 200.0  103 Pa. The temperature is changed from 100 0°C to 25 0°C and C = 3/2Rfrom 100.0 C to 25.0 C, and CV,m = 3/2R.Calculate q, w, U, and H.

)( inifinVV TTCqU

)( TTCqH

Which equation should we use first?

VPUH extqwU )( inifinPP TTCqH qwU

VPUH intVP CCR

• P9.28) The principal ions of human blood l d th i l l t tiplasma and their molal concentrations are

• Calculate the ionic strength of blood plasma. m

Na 0.14 m, m

Cl 0.10 m, m

HCO3 0.025 m.

2222 1025.0110.0114.011

I mmmzm ii [Q1] 22i

ii [Q1]

Page 32: Physical Chemistry I for Biochemists Lecture 41 (4/25/11)ramsey1.chem.uic.edu/chem340/Lecture_Note/110425_lecture... · 2011-04-25 · 4/25/2011 1 Physical Chemistry I for Biochemists

4/25/2011

32

• P9.29) Estimate the degree of dissociation of a 0.100 m solution of acetic acid (Ka = 1.75 10–5) that is also 0.500 m in the strong electrolyte given in parts (a)–(c) Use the dataelectrolyte given in parts (a) (c). Use the data tables in Appendix B to obtain ±, because the electrolyte concentration is too high to use the Debye–Hückel limiting law.

HA H+ + A-

Ka =a+a-/(0.100 m –x) = m22 /(0.100 m –x)

• P9.50) Consider the couple with the oxidized and reduced species at unit activity. What must be the value of E° for this half-cell if the reductant R is to liberate hydrogencell if the reductant R is to liberate hydrogen at 1 atm from

• a. an acid solution with aH+ =1

• b. water at pH = 7? (aH+ ~10-7)

2 + 22H+ +2e–→ H2

Page 33: Physical Chemistry I for Biochemists Lecture 41 (4/25/11)ramsey1.chem.uic.edu/chem340/Lecture_Note/110425_lecture... · 2011-04-25 · 4/25/2011 1 Physical Chemistry I for Biochemists

4/25/2011

33

• P10.9) Suppose a membrane is passively permeable to water and to Cl– ion, but not to H+. The electrostatic potential and the equilibrium concentrations of Cl– and H+ inside and outside the membrane are given here. Assume that the ionic strength inside the membrane is sufficiently small so that the

i i ffi i f i l i b k b 1activity coefficients of univalent ions may be taken to be 1 inside the membrane. Assume T = 298 K.

a. What is the equilibrium concentration

of Cl– inside the membrane ?

Outside Membrane Inside Membrane

0 150V 0 000V

out

in

R T cΔφ ln

z F c

out

in

c zFΔφ

c R TExp

Assume cout is constant for Cout cl-

b. Calculate the difference between

the chemical potentials of [H+] inside

and outside the membrane.

0.150V 0.000V

C

H 5 106 M C

H 107 M

C

Cl 5 102 M