thermodynamics for biochemists: a youtube textbook

181
1 Termodynamik for Biokemikere Jan H. Jensen Københavns Universitet 1. Ligevægt og ligevægtskonstanten 2. Enthalpi og entropi 3. Enthalpi og entropi for an ideal gas og van’t Hoff ligningen 4. Måling af enthalpi og entropi ændringer vha kalorimetri 5. Enthalpi og entropi for en ideal opløsning 6. Hydrofobisitet og entropi 7. Kemisk akIvitet og ikkeideale opløsninger 8. Termodynamikens tre love og Boltzmannfordelingen Playlist med alle videoer hPps://www.youtube.com/playlist?list=PLVxAq6ZYPp3154Tp_dmz9GOoo7g_3rQBH

Upload: molmodbasics

Post on 15-Apr-2017

2.371 views

Category:

Science


2 download

TRANSCRIPT

Page 1: Thermodynamics for Biochemists: a YouTube textbook

1  

Termodynamik  for  Biokemikere  Jan  H.  Jensen  

Københavns  Universitet  

1.  Ligevægt  og  ligevægtskonstanten  2.  Enthalpi  og  entropi  3.  Enthalpi  og  entropi  for  an  ideal  gas  og  van’t  Hoff  ligningen  4.  Måling  af  enthalpi  og  entropi  ændringer  vha  kalorimetri  5.  Enthalpi  og  entropi  for  en  ideal  opløsning  6.  Hydrofobisitet  og  entropi  7.  Kemisk  akIvitet  og  ikke-­‐ideale  opløsninger  8.  Termodynamikens  tre  love  og  Boltzmannfordelingen  

Playlist  med  alle  videoer  hPps://www.youtube.com/playlist?list=PLVxAq6ZYPp3154Tp_dmz9GOoo7g_3rQBH  

 

Page 2: Thermodynamics for Biochemists: a YouTube textbook

2  

Indhold  1.  Equilibrium  and  the  equilibrium  constant  1.1.  Equilibrium  constant  (K):  more  reactant  or  product  eeer  equilibrium?  1.2.  Standard  free  energy  (ΔGo):  a  molecular  understanding  of  K  1.3.  6  kJ/mol  changes  K  by  about  an  order  of  magnitude  at  25  oC  1.4.  How  do  you  measure  K?  1.5.  Le  Chatelier’s  Principle    2.  Enthalpi  og  entropi  2.1.  EnergiIlstande  (ingen  slides)  2.2.  Enthalpien  (H)  handler  om  energi  2.3.  Standard  dannelsesenthalpi  2.4.  Bindingsenergier  2.5.  Entropi  (S)  handler  om  muligheder    3.  Enthalpi  og  entropi  for  en  ideal  gas  og  van’t  Hoff  ligningen  3.1.  EnergiIlstande  (ingen  slides)  3.2.  Enthalpibidrag  for  en  ideal  gas  3.3.  Entropibidrag  for  en  ideal  gas  3.4.  KonformaIonel  entropi  3.5.  Hvordan  måler  man  standard  enthalpi  og  entropi  ændringer?                    van’t  Hoff  ligningen  

Page 3: Thermodynamics for Biochemists: a YouTube textbook

3  

Indhold  4.  Måling  af  enthalpi  og  entropi  ændringer  vha  kalorimetri  4.1.  Kalorimetri  (ingen  slides)  4.2.  Hvordan  måler  man  ΔHo?  Kalorimetry  4.3.  Hvorfor  er  varmekapaciteten  et  maximum  når  ΔGo(Tm)  =  0?  4.4.  Eksempel:  Protein  (polymer)  foldning  4.5.  Udfoldning  ved  høj  temperatur  sker  pga  entropi    5.  Enthalpi  og  entropi  for  an  ideal  opløsning  5.1.  Fri  energibidrag  for  en  ideal  opløsning  5.2.  Solveringsfrienergi:  det  polære  bidrag  5.3.  Solvent  screening  5.4.  Den  ikke-­‐polære  solveringsfrienergi  5.5.  Den  hydrofobe  effekt    6.  Hydrofobicitet  og  entropi  6.1.  Solventen  bidrager  Il  entropiændringen  6.2.  Entropien  sIger  når  hydrofobe  molekyler  bindes  6.3.  Hvordan  måler  man  hydrofobicitet  6.4.  Ligandbinding  Il  enzymet  carbonic  anhydrase  

Page 4: Thermodynamics for Biochemists: a YouTube textbook

4  

Indhold  7.  Kemisk  akLvitet  og  ikke-­‐ideale  opløsninger  7.1.  Ligevægtskonstanten  har  ingen  enheder  7.2.  AkIvitet  for  en  opløsning  7.3.  Den  simple  Debye-­‐Hückel  ligning  7.4.  Brug  af  den  simple  Debye-­‐Hückel  ligning    8.  Termodynamikens  tre  love  og  Boltzmannfordelingen  8.1.  Termodynamikens  tre  love    8.2.  Entropi  og  sandsynlighed  –  del  1  8.3.  Entropi  og  sandsynlighed  –  del  2  8.4.  Boltzmannfordelingen  8.5.  Boltzmannfordelingen  giver  ligninger  for  fri  energi-­‐                    bidrag  for  en  ideal  gas  

Page 5: Thermodynamics for Biochemists: a YouTube textbook

Termodynamik,for,Biokemikere,,

Jan$H.$Jensen$Københavns$Universitet$

1.,Ligevægt,og,ligevægtskonstanten,

2.$Enthalpi$og$entropi$3.$Enthalpi$og$entropi$for$an$ideal$gas$og$van’t$Hoff$ligningen$4.$Måling$af$enthalpi$og$entropi$ændringer$vha$kalorimetri$5.$Enthalpi$og$entropi$for$en$ideal$opløsning$6.$Hydrofobisitet$og$entropi$7.$Kemisk$akIvitet$og$ikkeJideale$opløsninger$8.$Termodynamikens$tre$love$og$Boltzmannfordelingen$

Page 6: Thermodynamics for Biochemists: a YouTube textbook

!"#$%&'"(&)*+),-"'./&%0)

;)

9.>"*)474)-P#QRR0*C&C7H"R!STU42IO,1V)

Page 7: Thermodynamics for Biochemists: a YouTube textbook

!"#$%&'"(&)*+),-"'./&%0)

!:;0'0<+0;,(

-P#QRR'N7G*(G*%>7*%:R'*>"="%R)

E)

Page 8: Thermodynamics for Biochemists: a YouTube textbook

!"#$%&'"(&)*+),-"'./&%0)

!:;0'0<+0;,(1-$"7&$7(W!XQ)'*%")%"$G&$(&)*%)#%*>CG&)$Y"%)#:;0'0<+0;,Z)W"BC.=.H%.C'Q)(*)G-$(:").()G*(G"(&%$D*(X)

K =P[ ]R[ ]

X[ ] = concentration of X

K>1! [P] > [R]! more product than reactant

R! P

[-$&)./)\6]^)+*%)$)4)F)/*=CD*()*+),6?,__6Z)

`7  47KE)a)4T1I)F))

27  T7TTE4J)F)

,7  T7I4;)F)

!7  47TTT)F)

CH3COOH! CH3COO! + H+ K = 1.74 "10!5

I)

Page 9: Thermodynamics for Biochemists: a YouTube textbook

!"#$%&'"(&)*+),-"'./&%0)

L)

9.>"*)47;)-P#QRR0*C&C7H"RbcI:I.+Nde8)

Page 10: Thermodynamics for Biochemists: a YouTube textbook

!"#$%&'"(&)*+),-"'./&%0)

=7&$.&+.(2+##(#$#+>/)Wf"*XQ)$)'*="GC=$%)C(>"%/&$(>.(:)*+)!#

K = e!"Go /RT

!Go = Go (P) "Go (R)

$)./)&-"):$/)G*(/&$(&)L7?4E)5R'*=)g)

*)h)/&$(>$%>)/&$&")

[-$&)./)f"*)+*%)&-./)%"$GD*()$&);I)*,Z))

`7  14;7I)e5R'*=)

27  T744)e5R'*=)

,7  ;K7;)e5R'*=)

!7  ;JiTT)e5R'*=)

CH3COOH! CH3COO! + H+ K = 1.74 "10!5

i)

Page 11: Thermodynamics for Biochemists: a YouTube textbook

!"#$%&'"(&)*+),-"'./&%0)

K = e!"Go /RT #

"Go = !RT ln(K )

$)./)&-"):$/)G*(/&$(&)L7?4E)5R'*=)g)

CH3COOH! CH3COO! + H+ K = 1.74 "10!5

!Go = ("8.314)(298.15)ln(1.74 #10"5 )= 2.72 #104 J/mol = 27.2 kJ/mol

44)

=7&$.&+.(2+##(#$#+>/)Wf"*XQ)$)'*="GC=$%)C(>"%/&$(>.(:)*+)!#

[-$&)./)f"*)+*%)&-./)%"$GD*()$&);I)*,Z))

Page 12: Thermodynamics for Biochemists: a YouTube textbook

!"#$%&'"(&)*+),-"'./&%0)

4;)

9.>"*)47?)-P#QRR0*C&C7H"R5:SjE$T[.LF)

Page 13: Thermodynamics for Biochemists: a YouTube textbook

!"#$%&'"(&)*+),-"'./&%0)

J)e5R'*=)G-$(:"/)!)H0)$H*C&)$()*%>"%)*+)'$:(.&C>")$&);I)*,)

K = e!"Go /RT

= e!"Go /(0.008314 #298.15)

= e!"Go /2.48

= 10!"Go /2.48#ln(10)

= 10!"Go /5.7

$ 10!"Go /6

4?)

Page 14: Thermodynamics for Biochemists: a YouTube textbook

!"#$%&'"(&)*+),-"'./&%0)

K ! 10"#Go /6

K ! 10"27 /6

! 10"4.5

K between 10"4 and 10"5

CH3COOH! CH3COO! + H+

K = 1.74 "10!5 # $Go = 27.2 kJ/mol

U+)f"*)./)1;;7I)e5R'*=)$&);I)*,)N-$&)./)!Z)

`7  47;4)a)4T1;)

27  ;7;K))

,7  L7KI)a)4T?)

!7  I7ii)a)4TI)) 4E)

J)e5R'*=)G-$(:"/)!)H0)$H*C&)$()*%>"%)*+)'$:(.&C>")$&);I)*,)

Page 15: Thermodynamics for Biochemists: a YouTube textbook

!"#$%&'"(&)*+),-"'./&%0)

4J)

9.>"*)47E)-P#QRR0*C&C7H"R$!"[k`BF5-V)

Page 16: Thermodynamics for Biochemists: a YouTube textbook

!"#$%&'"(&)*+),-"'./&%0)

?-@(.-(/-;(,#&";+#(!A(

HA! A! +H+ K = [A

! ][H+ ][HA]

fA! =

[A! ][HA]+ [A! ]

=1

[H+ ]K

+1=

K[H+ ]+ K

" fA! =

12" K = [H+ ]

A!

! log K( ) = 6.3

4K)

U'$:")$>$#&">)+%*'Q))-P#QRRD(0C=%7G*'R0lI##"))

Page 17: Thermodynamics for Biochemists: a YouTube textbook

!"#$%&'"(&)*+),-"'./&%0)

HA! A! +H+ K = [A

! ][H+ ][HA]

A!

! log K( ) = 6.3

U+)m=*:W!XhJ7?)N-$&)./)f"*)$&);I)*,Z))

`7  I7?)e5R'*=)

27  ?J7T)e5R'*=)

,7  4IT7;)e5R'*=)

!7  J??7;)e5R'*=) 4L)

?-@(.-(/-;(,#&";+#(!A(

Page 18: Thermodynamics for Biochemists: a YouTube textbook

!"#$%&'"(&)*+),-"'./&%0)

;T)

9.>"*)47I)-P#QRR0*C&C7H"R6,1*UJ,bnMN)

Page 19: Thermodynamics for Biochemists: a YouTube textbook

!"#$%&'"(&)*+),-"'./&%0)

B#(6*&7#'0#+C"(D+0$10E'#(

%&#'()*+,-#./0&1,#2*#0#+3+2,(#'&#,45'6'78'5(#8,+562+#'&#0#+/'9#'&#,45'6'78'5(#2/02#.*5&2,80.2+#2/,#'()*+,-#./0&1,#

K =[B][A]

=1.0 ! x0.25 + x

= 2

x = 0.17 " [A] = 0.42 og [B] = 0.83 " A! B

A! B K =

[B][A]

= 2

<a$'#="7Q)$&)"BC.=.H%.C')\`^)h)T7;I)F)*:)\2^)h)T7IT)F))

U+)U)$>>)'*%")2o)/*)&-$&)\2^)h)47T)F)H"+*%")"BC.=.H%.C'o))[-$&)$%")\`^)$(>)\2^)$Y"%)"BC.=.H%.C'Z)

)

;4)

Page 20: Thermodynamics for Biochemists: a YouTube textbook

!"#$%&'"(&)*+),-"'./&%0)

A! B+ C

`Y"%)"BC.=.H%.C').()$BC"*C/)/*=CD*()U)="&)-$=+)&-")N$&"%)"9$#*%$&"))

[-$&)N.==)-$##"()$GG*%>.(:)&*)c"),-$&"=."%@/)#%.(G.#="Z)

A. Equilibrium shifts towards products: A! B+ C

B. Equilibrium shifts towards reactant: A" B+ C

C. There is no change in equilibrium

;;)

Page 21: Thermodynamics for Biochemists: a YouTube textbook

!"#$%&'"(&)*+),-"'./&%0)

A! B+ C<9$#*%$D*().(G%"$/"/)&-")G*(G"(&%$D*(/)

)M-")/-.Y).()"BC.=.H%.C')&*N$%>/)%"$G&$(&)>"G%"$/"/)&-")(C'H"%)*+)#$%DG="/)

$(>)&-"%"+*%")&-")G*(G"(&%$D*()

B#(6*&7#'0#+C"(D+0$10E(

K =[B][C]

[A]evaporation! "!!!

2[B]( ) 2[C]( )2[A]

> K equilibrium! "!!! K =[B #] [C #]

[A #]2[B] > [B #] , 2[C] > [C #] , 2[A] < [A #]

;E)

%&#'()*+,-#./0&1,#2*#0#+3+2,(#'&#,45'6'78'5(#8,+562+#'&#0#+/'9#'&#,45'6'78'5(#2/02#.*5&2,80.2+#2/,#'()*+,-#./0&1,#

Page 22: Thermodynamics for Biochemists: a YouTube textbook

Termodynamik,for,Biokemikere,,

Jan$H.$Jensen$Københavns$Universitet$

1.$Ligevægt$og$ligevægtskonstanten$2.,Enthalpi,og,entropi,

3.$Enthalpi$og$entropi$for$an$ideal$gas$og$van’t$Hoff$ligningen$4.$Måling$af$enthalpi$og$entropi$ændringer$vha$kalorimetri$5.$Enthalpi$og$entropi$for$en$ideal$opløsning$6.$Hydrofobisitet$og$entropi$7.$Kemisk$akIvitet$og$ikkeJideale$opløsninger$8.$Termodynamikens$tre$love$og$Boltzmannfordelingen$

Page 23: Thermodynamics for Biochemists: a YouTube textbook

Video&2.1&h+p://youtu.be/Qv2rKiNi2rQ&

(ingen&slides)&

Page 24: Thermodynamics for Biochemists: a YouTube textbook

Video&2.2&h+ps://youtu.be/NGkGEoQ503A&

Page 25: Thermodynamics for Biochemists: a YouTube textbook

!Go = !H o " T!So

H2CO3(aq)! "!# !! H2O(l ) + CO2(g) !ngas = 1

Enthalpien*(H)*handler*om*energi*

!H o = !U + po!V

!H o = ændringen i enthapi når trykket er po = 1 bar!U = ændringen i den indre energi!V = ændringen i volumen

po!V " !ngasRT!ngas = ændring i antal mol af gas molekyler

RT = 2.5 kJ/mol ved 25 oC

Page 26: Thermodynamics for Biochemists: a YouTube textbook

!H o = !H Molekyle + !H o,Translation + !H Rotation + !H Vibration

Enthalpien*(H)*s3ger*når*bindinger*brydes*

H2! "!# !! 2H

!H o = 460.2 + 6.3" 2.5 " 26.4 = 437.6 kJ/mol

!H Molekyle = energien for elektroner og kerner, såsom bindingsenergier

H2O ! ! !HOH! "!# !! 2H2O

"H o = 20.5 + 6.3+ 3.8 #17.6 = 13.0 kJ/mol

ΔHo&er&posiFv&primært&fordi&det&kræver&energi&at&bryde&&kovalente&bindinger&og&hydrogenbindinger&&

Page 27: Thermodynamics for Biochemists: a YouTube textbook

!H o = !H Molekyle + !H o,Translation + !H Rotation + !H Vibration

Enthalpien*(H)*s3ger*når*bindinger*brydes*

!H Molekyle = energien for elektroner og kerner, såsom bindingsenergier

H2O ! ! !HOH! "!# !! 2H2O

"H o = 20.5 + 6.3+ 3.8 #17.6 = 13.0 kJ/mol

ΔHo&er&posiFv&primært&fordi&det&kræver&energi&at&bryde&&kovalente&bindinger&og&hydrogenbindinger&&

Page 28: Thermodynamics for Biochemists: a YouTube textbook

!H o < 0 exotermisk A! "!# !! B + varme

!H o > 0 endotermisk A+varme! "!# !! B

Exoterme&og&endoterme&reakFoner&

Er&de+e&en&endotem&eller&exoterm&process&

Page 29: Thermodynamics for Biochemists: a YouTube textbook

Video&2.3&h+ps://youtu.be/S03m6ADws9o&

Page 30: Thermodynamics for Biochemists: a YouTube textbook

Standard*dannelsesenthalpi*(standard&enthalpi&of&formaFon,&heat&of&formaFon)&

elementer i standardtilstand! "!# !! molekyle !H fo

2C(s,grafit ) + 3H2(g)! "!# !! C2H6(g) !H f

o (C2H6 )

!H fo (C2H6 ) = H o (C2H6 ) " 2H o (C) " 3H o (H2 )

C2H4(g) + H2(g)! "!# !! C2H6(g) !H

o

!H o = H o (C2H6 ) " H o (C2H4 ) " H o (H2 )= !H f

o (C2H6 ) " !H fo (C2H4 ) " !H f

o (H2 )0

$ %& '&

Page 31: Thermodynamics for Biochemists: a YouTube textbook
Page 32: Thermodynamics for Biochemists: a YouTube textbook

C2H4(g) + H2(g)! "!# !! C2H6(g) !H

o = ?

Brug&eksperimentelle&dannelsesenthalpier&(fra&Google)&&og&Molecule&Calculator&Fl&at&udregne&ΔHo&for&denne&reakFon&&

A.  103.2&(eksp)&og&112.9&(MolCalc)&kJ/mol&

B.  53.2&(eksp)&og&49.3&(MolCalc)&kJ/mol&

C.  Z33.2&(eksp)&og&Z77.2&(MolCalc)&kJ/mol&

D.  Z135.9&(eksp)&og&&Z145.3&&kJ/mol&

Page 33: Thermodynamics for Biochemists: a YouTube textbook

Video&2.4&h+ps://youtu.be/7gDqFbMZhd0&

Page 34: Thermodynamics for Biochemists: a YouTube textbook

Bindingsenergier*(Bond&energies)&

C2H4(g) + H2(g)! "!# !! C2H6(g) !H

o = ?

!H o " 611+ 436 # 347 + 2 $ 414( ) = #128 kJ/mol

h+p://chemwiki.ucdavis.edu/TheoreFcal_Chemistry/Chemical_Bonding/General_Principles/Bond_Energies&

Page 35: Thermodynamics for Biochemists: a YouTube textbook

Brug&bindingenergier&Fl&at&esFmere&ΔHo&for&denne&reakFon&

A.  152&kJ/mol&

B.  67&kJ/mol&

C.  Z166&kJ/mol&

D.  Z267&kJ/mol&

Page 36: Thermodynamics for Biochemists: a YouTube textbook

Video&2.5&h+ps://youtu.be/dhUsMOH9dc&

Page 37: Thermodynamics for Biochemists: a YouTube textbook

Entropien*(S)*handler*om*muligheder*

S = k ln(W )

k = RNA

Boltzmanns konstant, NA = Avogadros tal

W = antal måder man kan lave den samme tilstand

AA! "!# !! A + A

!S = k ln WA+A( ) " k ln WAA( ) > 0

WAA = 6 WA+A = 15

!

2&parFkler&har&mere&entropi&end&1&

Page 38: Thermodynamics for Biochemists: a YouTube textbook

Entropien*(S)*s3ger*når*bindinger*brydes*

H2! "!# !! 2H

!So = 11.6 +101.1"12.8 " 0.0 = 98.9 J/molK

H2O ! ! !HOH! "!# !! 2H2O

"So = #17.3+136.2 + 9.3# 66.0 = 79.4 J/molK

ΔSo&er&posiFv&primært&fordi&2&parFkler&har&mere&entropi&end&1&

!So = !SKonformation + !So,Translation + !SRotation + !SVibration

Mere&bevægelsesfrihed&=&større&entropi&

Page 39: Thermodynamics for Biochemists: a YouTube textbook

Hvad&er&ΔSo&sandsynligvis&for&denne&process?&

A. !So > 0B. !So = 0C. !So < 0

Page 40: Thermodynamics for Biochemists: a YouTube textbook

Termodynamik,for,Biokemikere,,

Jan$H.$Jensen$Københavns$Universitet$

1.$Ligevægt$og$ligevægtskonstanten$2.$Enthalpi$og$entropi$3.,Enthalpi,og,entropi,for,an,ideal,gas,og,van’t,Hoff,ligningen,

4.$Måling$af$enthalpi$og$entropi$ændringer$vha$kalorimetri$5.$Enthalpi$og$entropi$for$en$ideal$opløsning$6.$Hydrofobisitet$og$entropi$7.$Kemisk$akIvitet$og$ikkeJideale$opløsninger$8.$Termodynamikens$tre$love$og$Boltzmannfordelingen$

Page 41: Thermodynamics for Biochemists: a YouTube textbook

Video&3.1&h+ps://youtu.be/Qv2rKiNi2rQ&

(ingen&slides)&

Page 42: Thermodynamics for Biochemists: a YouTube textbook

Video&3.2&h+ps://youtu.be/47MEHOwFxAg&

Page 43: Thermodynamics for Biochemists: a YouTube textbook

ΔGo = ΔH o − TΔSo

ΔH o = ΔH Molekyle + ΔH o,Translation + ΔH Rotation + ΔH Vibration

H Molekyle = ingen simpel ligning

H o,Translation = 32 nRT + poV = 5

2 nRT

H Rotation = 32 nRT (nRT liniært molekyle)

H Vibration = nNAhc ν i12 +

1eNAhc νi /RT −1

⎛⎝⎜

⎞⎠⎟i=1

3Nat −X

Enthalpibidrag-for-en-ideal-gas-

ν = bølgetal ( ≈ frekvens) i cm-1 Nat = antal atomer i molekyleth = Plancks konstant X = 6, 5 (liniær)c = lysets hastighed i cm/s NAhc = 11.96 J cm

Page 44: Thermodynamics for Biochemists: a YouTube textbook

Hvad&er&Hrot&for&et&vand&molekyle&ved&25&oC&og&hvor&mange&forskellige&vibraOoner&bidrager&Ol&Hvib?&

A.&&2.5&kJ/mol&og&4&vibraOoner&&&B.  3.7&kJ/mol&og&3&vibraOoner&

C.  2.5&kJ/mol&og&3&vibraOoner&

D.  3.7&kJ/mol&og&2&vibraOoner&&

Page 45: Thermodynamics for Biochemists: a YouTube textbook

Video&3.3&h+ps://youtu.be/wWx3b3MZidc&

Page 46: Thermodynamics for Biochemists: a YouTube textbook

ΔSo = ΔSKonformation + ΔSo,Translation + ΔSRotation + ΔSVibrationΔGo = ΔH o − TΔSo

Entropibidrag-for-en-ideal-gas-

SKonf = nR ln(gKonf ) gKonf = antal konformationer med samme energi (udartning)

So,Trans = nR ln2πm( )3/2 kTe( )5 /2

h3po

⎝⎜⎞

⎠⎟= nR ln aM 3/2T 5 /2( ) a = 0.3117 mol3/2

g3/2K5/2

SRot = nR ln 8π 2keTh2

⎛⎝⎜

⎞⎠⎟

3/2

π I1I2I3

⎣⎢⎢

⎦⎥⎥

(ikke liniær) I = intertimoment

SVib = nR NAhc ν i

RT eNAhc νi /RT −1( ) − ln 1− e−NAhc νi /RT( )⎛

⎝⎜

⎠⎟

i=1

3Nat −X

ν = bølgetal ( ≈ frekvens) i cm-1 NAhc = 11.96 J cm

Page 47: Thermodynamics for Biochemists: a YouTube textbook

Hvad&er&STrans&for&et&acetylen&molekyle&ved&25&oC&og&hvor&mange&forskellige&vibraOoner&bidrager&Ol&SVib?&

A.&&63.2&J/molK&og&7&vibraOoner&&&B.  149.4&J/molK&og&6&vibraOoner&&

C.  63.2&J/molK&og&6&vibraOoner&&

D.  149.4&J/molK&og&7&vibraOoner&&

Page 48: Thermodynamics for Biochemists: a YouTube textbook

Video&3.4&h+ps://youtu.be/tcvaf0iAxbo&

Page 49: Thermodynamics for Biochemists: a YouTube textbook

R A-

R B-

��� � �� ��������� � (ΔHo) � �� ���� �� � �� �-

R5A-&

Hvis �� ������ � ��� �, � ��� �, �� � ��� � �� �� ….&

A&&&&mere&RFA&end&RFB&&&&&&&&&&&&&&&&&&&&C&&&&&lige&meget&RFA&og&RFB-&B&&&&mere&RFB&end&RFA&&&&&&&&&&&&&&&&&&&&&&&&&&&&&D&&&&&ved&ikke&&

Se&bort&fra&translaOon,&rotaOon,&og&vibraOon&

Entropi-og-udartning-

Page 50: Thermodynamics for Biochemists: a YouTube textbook

SR−AKonf = R ln(4)

SKonf = nR ln(gKonf ) gKonf = antal konformationer med samme energi (udartning)

Konforma;onel-entropi-og-udartning-

A& B&R& R&

SR−BKonf = R ln(1) = 0

1 234

3 412

2 341

4 123

SR−AKonf = −R fi ln fi( )

i=1

4

∑≤ R ln(4)

f4 = brøkdel i denne konformation

Page 51: Thermodynamics for Biochemists: a YouTube textbook

S = k ln(W ) = k ln gNA( ) = R ln(g) hvis all tilstande har samme energi

S ≈ R ln(g) ⇒ gprodukt

greaktant

≈ eΔS /R ≈ 10ΔS /20

H2O ⋅ ⋅ ⋅HOH 2H2O

ΔSo = −17.3+136.2 + 9.3− 66.0 = 79.4 J/molK

ΔSo = ΔSKonformation + ΔSo,Translation + ΔSRotation + ΔSVibration

g2H2O

Konf

gH2O⋅⋅⋅HOHKonf = ?

A.  1/8&&&&&&&&&&C.&4&

B.  ½&&&&&&&&&&&&&D.&8&&

Page 52: Thermodynamics for Biochemists: a YouTube textbook

H2O ⋅ ⋅ ⋅HOH 2H2O

ΔSo = −17.3+136.2 + 9.3− 66.0 = 79.4 J/molK

ΔSo = ΔSKonformation + ΔSo,Translation + ΔSRotation + ΔSVibration

g2H2OKonf

gH2O⋅⋅⋅HOHKonf =

18

g2H2OTrans

gH2O⋅⋅⋅HOHTrans ≈ 107

g2H2ORot

gH2O⋅⋅⋅HOHRot ≈ 5

g2H2OVib

gH2O⋅⋅⋅HOHVib ≈

11000

gAA = 6 gA+A = 15

2 × 3 vibrationer12 vibrationer

10006 ≈ 3 (næsten) ens tilstande per ekstra vibration

Page 53: Thermodynamics for Biochemists: a YouTube textbook

Video&3.5&h+ps://youtu.be/ZOWBLWp32N4&

Page 54: Thermodynamics for Biochemists: a YouTube textbook

ΔGo = ΔH o − TΔSo

−RT ln K( ) = ΔH o − TΔSo

ln K( ) = −ΔH o

R1T

⎛⎝⎜

⎞⎠⎟+ΔSo

R

Man&går&ud&fra&at&ΔHo&og&ΔSo&er&uacængig&af&temperatur&&

Hvordan-måler-man-ΔHo-og-ΔSo?:-van’t-Hoff-ligningen-&

Måling&af&K&ved&forskellige&temperaturer&giver&ΔHo&og&ΔSo?&&&

ln K( )1TΔSo

R

hældning = −ΔH o

RLav&T&

Høj&T&

Page 55: Thermodynamics for Biochemists: a YouTube textbook

Her&vises&et&van’t&Hoff&plot&for&en&reakOon&&

Er&reakOonen&endoterm&eller&exoterm?&&&&

ln K( )1T

Page 56: Thermodynamics for Biochemists: a YouTube textbook

A B

Hvis&reakOonen&er&endoterm&hvad&sker&der&med&ligevægtskonstanten&når&temperaturen&sOger?&

A.  K&falder&

B.  K&sOger&

C.  K&er&uændret&

Page 57: Thermodynamics for Biochemists: a YouTube textbook

Termodynamik,for,Biokemikere,,

Jan$H.$Jensen$Københavns$Universitet$

1.$Ligevægt$og$ligevægtskonstanten$2.$Enthalpi$og$entropi$3.$Enthalpi$og$entropi$for$an$ideal$gas$og$van’t$Hoff$ligningen$4.,Måling,af,enthalpi,og,entropi,ændringer,vha,kalorimetri,

5.$Enthalpi$og$entropi$for$en$ideal$opløsning$6.$Hydrofobisitet$og$entropi$7.$Kemisk$akIvitet$og$ikkeJideale$opløsninger$8.$Termodynamikens$tre$love$og$Boltzmannfordelingen$

Page 58: Thermodynamics for Biochemists: a YouTube textbook

Video&4.1&h+ps://youtu.be/EAgbknIDKNo&

(ingen&slides)&

Page 59: Thermodynamics for Biochemists: a YouTube textbook

Video&4.2&h+ps://youtu.be/OKamlXPmkvw&

Page 60: Thermodynamics for Biochemists: a YouTube textbook

ΔH o = Q

= mCpvandΔT

Varmekapaciteten&ved&konstant&tryk&

h+p://www.youtube.com/watch?v=EAgbknIDKNo&

Hvordan(måler(man(ΔHo?:(calorimetri(

&

Måling&af&temperatur&ændring&giver&ΔHo&

Cp =∂H o

∂T⎛⎝⎜

⎞⎠⎟ p

Page 61: Thermodynamics for Biochemists: a YouTube textbook

K&måles&med&andre&metoder&og&giver&ΔSo&

ΔSo =ΔH o − ΔGo

T

=ΔH o + RT ln K( )

T

Hvordan(måler(man(ΔHo?:(calorimetri(

&

Måling&af&temperatur&ændring&giver&ΔHo&

ΔH o = Q

= mCpvandΔT

Page 62: Thermodynamics for Biochemists: a YouTube textbook

Hvordan(måler(man(ΔHo(og(ΔSo?:(differen5al(scanning(calorimetry(

&

Måling&af&varmekapacitetsændring&giver&ΔHo&

Rent&vand&

ΔH o Tm( ) = arealet under kurven

“Smeltepunkt”&

ΔCp

Page 63: Thermodynamics for Biochemists: a YouTube textbook

K(Tm ) = 1⇒ ΔGo (Tm ) = 0

ΔSo (Tm ) =ΔH o (Tm )

Tm

ΔH o (T ) = ΔH o (Tm ) + ΔCp T − Tm( )

ΔSo (T ) = ΔSo (Tm ) + ΔCp lnTTm

⎛⎝⎜

⎞⎠⎟

Page 64: Thermodynamics for Biochemists: a YouTube textbook

Hvad&er&enhederne&for&varmekapaciteten?&

A.  J/mol&

B.  J/molK&

C.  K/mol&J&

D.  mol/J&

Page 65: Thermodynamics for Biochemists: a YouTube textbook

Video&4.3&h+ps://youtu.be/MB7akfMkReQ&

Page 66: Thermodynamics for Biochemists: a YouTube textbook

10&

Hvorfor(er(varmekapaciteten(et(maximum(når(ΔGo(Tm)(=(0?((

I&de+e&eksempel:&ΔV&=&0&så&U&bruges&istedet&for&Ho&

Når CV =∂U∂T

⎛⎝⎜

⎞⎠⎟V

er størst, så er ∂T∂U

⎛⎝⎜

⎞⎠⎟V

mindst

Dvs&den&]lførte&energi&bruges&]l&at&bryde&bindinger&i&stedet&for&at&hæve&T''

Når&(alle)&bindinger&brydes&spontant&er&Goreaktant(=(Go

produkt&

∂T∂U

⎛⎝⎜

⎞⎠⎟V

≈ 0

Page 67: Thermodynamics for Biochemists: a YouTube textbook

_1&

_0.8&

_0.6&

_0.4&

_0.2&

0&

0.2&

0.4&

0& 500& 1000& 1500& 2000& 2500& 3000&

U((eV)(

T((K)(

11&

The&simula]on&computes&T&as&a&func]on&of&U&Here&we&switch&the&axes&

Page 68: Thermodynamics for Biochemists: a YouTube textbook

_1&

_0.8&

_0.6&

_0.4&

_0.2&

0&

0.2&

0.4&

0& 500& 1000& 1500& 2000& 2500& 3000&

U((eV)(

T((K)(

12&

The&data&is&noisy&primarily&because&of&the&fast&hea]ng&rate&We&smooth&it&by&fihng&it&to&a&polynomial&(blue&curve)&

Page 69: Thermodynamics for Biochemists: a YouTube textbook

0&

0.0002&

0.0004&

0.0006&

0.0008&

0.001&

0.0012&

0.0014&

0.0016&

_1&

_0.8&

_0.6&

_0.4&

_0.2&

0&

0.2&

0.4&

0& 500& 1000& 1500& 2000& 2500& 3000&

Cv((eV/K)(

U((eV)(

T((K)(

13&

From&the&smoothed&data&(blue&curve)&we&can&compute&the&&heat&capacity&(red&curve,&right&y_axis)&

CV =∂U∂T

⎛⎝⎜

⎞⎠⎟V

≈U(T2 ) −U(T1)

T2 − T1

Page 70: Thermodynamics for Biochemists: a YouTube textbook

Hvilken&]lstand&har&den&højeste&

varmekapacitet?&

A(

B(

C(

Page 71: Thermodynamics for Biochemists: a YouTube textbook

0&

0.0002&

0.0004&

0.0006&

0.0008&

0.001&

0.0012&

0.0014&

0.0016&

_1&

_0.8&

_0.6&

_0.4&

_0.2&

0&

0.2&

0.4&

0& 500& 1000& 1500& 2000& 2500& 3000&

Cv((eV/K)(

U((eV)(

T((K)(

16&

Page 72: Thermodynamics for Biochemists: a YouTube textbook

Video&4.4&h+ps://youtu.be/C2GheQMeVnY&

Page 73: Thermodynamics for Biochemists: a YouTube textbook

Protein((polymer)(foldning(eksempel(

&

Termisk&denaturering&af&proteinet&Barnase&

Tm&

Page 74: Thermodynamics for Biochemists: a YouTube textbook

Varme(+(

F U K =[U][F]

= e−ΔGo /RT

fU =[U]

[F]+ [U]=

e−ΔGo /RT

1+ e−ΔGo /RT

fF =1

1+ e−ΔGo /RT

ΔH o ≈ ΔH Molekyle ΔSo ≈ ΔSKonf = R ln(4) − R ln 1( )

ΔGo ≈ ΔH Molekyle − T R ln 4( )( )

Foldet( Udfoldet&

En(meget(simpel(protein(model(

Page 75: Thermodynamics for Biochemists: a YouTube textbook

Tmax&~&99&K&Tm&~&216&K&

For&små&systemer,&hvor&ΔSo&er&lille,&er&varmekapaciteten&ikke&et&maximum&ved&smeltetemperaturen&og&Cp&kurven&er&

bred&&

&Tm&≠&Tmax'fF

fU

Cp

H molekyle = 2.5 kJ/mol

Page 76: Thermodynamics for Biochemists: a YouTube textbook

gU&=&100&&&

&gU&=&10.000&

For&store&systemer,&hvor&ΔSo&er&stor,&er&varmekapaciteten&i&et&maximum&ved&smeltetemperaturen&og&Cp&kurven&er&skarp&

&&Tm&≈&Tmax'

fF

fUCp

Page 77: Thermodynamics for Biochemists: a YouTube textbook

Varmekapaciteten(er(et(maximum(når(halvdelen(af(proteinerne(er(udfoldet(

&

Tm,(ΔHo(og(ΔSo,(kan(måles(spektroskopisk(via(van’t(Hoff(methoden((

C: θ230nm = θ230nmU fU +θ230nm

F fF ∝ fU

Tm&

fF fU

Cp

∝ fU

θ230nm → fU (T )→ K(T )→ ΔH o ,ΔSo

fU(T ) =K(T )

1+ K(T )

Page 78: Thermodynamics for Biochemists: a YouTube textbook

En(lille(ændring(i(ΔHo(kan(have(en(stor(effekt(på(stabiliteten(&

fF fU

Cp

Ca&100%&folded&protein&ved&25&oC& Ca&50%&udfolded&protein&ved&25&oC&

ΔHo&reduceret&med&15&kJ/mol&≈&1&H_binding&

Page 79: Thermodynamics for Biochemists: a YouTube textbook

Video&4.4&

Ved&hvilken&pH&er&ΔSo&størst?&

DOI:&10.1021/bi00129a007&

Page 80: Thermodynamics for Biochemists: a YouTube textbook

Video&4.5&h+ps://youtu.be/jeZAbwNE3zM&

Page 81: Thermodynamics for Biochemists: a YouTube textbook
Page 82: Thermodynamics for Biochemists: a YouTube textbook

Varme(+(

F U fU =e−ΔG

o /RT

1+ e−ΔGo /RT

ΔSo ≈ R ln(4) ⇒ fU =4e−ΔH

o /RT

1+ 4e−ΔHo /RT

= 4 fU ,mikro

fU ,mikro < fF altid ⇒ udfoldning (fU > fF ) sker pga entropi

Foldet(Udfoldet&makro]lstand&

Udfoldning(ved(høje(temperaturer(sker(pga(entropi(

mikro]lstand&

Image&adapted&from&Molecular'Driving'Forces'by&Dill&and&Bromberg&

Page 83: Thermodynamics for Biochemists: a YouTube textbook

fF

fU

fU,mikro

Udfoldet&makro]lstand&

mikro]lstand&

Udfoldning(ved(høje(temperaturer(sker(pga(entropi(

Page 84: Thermodynamics for Biochemists: a YouTube textbook

A.  Udartningen&for&den&udfoldede&makro]lstand&er&4&

B.  Udartningen&for&den&udfoldede&mikro]lstand&er&4&

C.  Udartningen&for&den&foldede&makro]lstand&er&1&

D.  Entropien&for&den&udfoldede&mikro]lstand&er&størrer&end&for&den&foldede&

Hvilken&påstand&er&ikke&sandt&(der&kan&godt&være&mere&end&én)&

Page 85: Thermodynamics for Biochemists: a YouTube textbook

Termodynamik,for,Biokemikere,,

Jan$H.$Jensen$Københavns$Universitet$

1.$Ligevægt$og$ligevægtskonstanten$2.$Enthalpi$og$entropi$3.$Enthalpi$og$entropi$for$an$ideal$gas$og$van’t$Hoff$ligningen$4.$Måling$af$enthalpi$og$entropi$ændringer$vha$kalorimetri$5.,Enthalpi,og,entropi,for,en,ideal,opløsning,

6.$Hydrofobisitet$og$entropi$7.$Kemisk$akIvitet$og$ikkeJideale$opløsninger$8.$Termodynamikens$tre$love$og$Boltzmannfordelingen$

Page 86: Thermodynamics for Biochemists: a YouTube textbook

Department)of)Chemistry)

Video)5.1)

h6ps://youtu.be/6i4tDj6f6uc)

2)

Page 87: Thermodynamics for Biochemists: a YouTube textbook

Department)of)Chemistry)

ΔGo = ΔGMolecule/Conformation + ΔGo,Translation + ΔGRotation + ΔGVibration + ΔΔGSolvation

Free$energy$contribu.ons$for$an$ideal$solu.on$

ΔH o,Trans = 32 nRT + poΔV ≈ 3

2 nRT + ΔngasRT

So,Trans = nR ln2πm( )3/2 e5 /2

h3C o

⎝⎜⎞

⎠⎟= nR ln bM 3/2T 3/2( ) b = 3.7487 mol3/2

g3/2K3/2

Co)=)1.0)mol/L)

Ideal)soluEon)=)no)interacEons)between)

)))))))))))))))))))))))))))))solute)molecules)

H o,Trans ≈ 32 nRT

Solute:)the)molecule)that)is)dissolved)

)

Solvent)3)

Page 88: Thermodynamics for Biochemists: a YouTube textbook

Department)of)Chemistry)

4)

ΔGo = ΔGMolecule/Conformation + ΔGsolutiono,Translation + ΔGRotation + ΔGVibration + ΔΔGSolvation

ΔGgaso + 5.5 A ⋅B A + B

ΔGgaso − 5.5 A + B A ⋅B

ΔGgaso A B

Ssolutiono,Trans = Sgas

o,Trans − R ln 0.31173.7487

T⎛⎝⎜

⎞⎠⎟= Sgas

o,Trans − 26.69 J/molK

H solutiono,Trans = Hgas

o,Trans − RT = Hgaso,Trans − 2.5 kJ/molK at$25$oC$

Gsolutiono,Trans = Hgas

o,Trans − 2.5( ) − T Sgaso,Trans − 0.02669( )

= Ggaso,Trans − 2.5 − 298.15(−0.02669)

= Ggaso,Trans + 5.5 kJ/mol

Page 89: Thermodynamics for Biochemists: a YouTube textbook

Department)of)Chemistry)

5)

What)is)ΔH°correcEon

)at)50)°C)for)this)reacEon?)

A+B A ⋅B

A.  O10.0)kJ/mol)

B.  O2.7)kJ/mol)

C.  2.7)kJ/mol)

D.  10)kJ/mol))

ΔH o = ΔH Molecule + ΔH solutiono,Translation + ΔH Rotation + ΔH Vibration + ΔΔH Solvation

ΔHgaso + ΔH correction A+ B A ⋅B

Page 90: Thermodynamics for Biochemists: a YouTube textbook

Video&5.2&h+ps://youtu.be/CyR7JiLw1O0&

Page 91: Thermodynamics for Biochemists: a YouTube textbook

ΔGo = ΔGMolekyle/Konformation + ΔGo,Translation + ΔGRotation + ΔGVibration + ΔΔGSolvering

Solveringsfrienergi:$det$polære$bidrag$

+&

ΔGSolvering (A)

ΔGSolvering = ΔGpolærSolvering + ΔGikke polær

Solvering

A$ A$

Page 92: Thermodynamics for Biochemists: a YouTube textbook

ΔGpolærSolvering ≈ −

694.7q2

R1− 1

ε⎛⎝⎜

⎞⎠⎟−60.25 ε −1( )µ2

2ε +1( )R3

Hvis&molekylet&er&kugleformet&og&solvent&beskrives&som&et&homogent&felt&med&dielectrisk&konstant&ε&

R#

ε#

≈&

q&=&ladningen&på&molekylet&&&&&&&&&&μ&=&dipolmomentet&(i&Debye)&&R&=&radius&a&kuglen&(i&Å)&&&&&&&&&&&&&&&&&ε&=&solventets&dielektriske&konstant&(1&<&ε#<&∞)&

694.7 kJ Åmol

og 60.25 kJ Å3

mol Debye2

Page 93: Thermodynamics for Biochemists: a YouTube textbook

ΔGpolærSolvering ≈ −

694.7q2

R1− 1

ε⎛⎝⎜

⎞⎠⎟−60.25 ε −1( )µ2

2ε +1( )R3

Ud&fra&denne&ligning&hvad&er&sansynligvis&ikke&sandt?&(der&kan&være&mere&end&et&usandt&svar)&

A.&en&ion&har&en&større&solveringsenergi&end&et&neutralt&molekyle&&B.&alt&andet&lige,&et&lille&molekyle&har&en&mindre&solveringsenergi&end&et&stort&&C.&et&molekyle&har&en&størrer&solveringsenergi&i&et&opløsningsmiddel&med&stor&ε##D.&alt&andet&lige,&en&anion&har&en&større&solveringsenergi&&end&en&ka`on&&E.&et&neutralt&ikke&polært&molekyle&har&en&lille&solveringsenergi&&&&

solveringsenergi = ΔGpolærSolvering

Page 94: Thermodynamics for Biochemists: a YouTube textbook

Video&5.3&h+ps://youtu.be/SoHWl96_L68&

&

Page 95: Thermodynamics for Biochemists: a YouTube textbook

h+ps://www2.chemistry.msu.edu/faculty/reusch/vir+xtjml/enrgtop.htm&

+$ <$+&+&

+&

+&

+&

+& +&+&+&

+&

+&+&

i&

i&

i&

i&

i&i&i&

i&i&

i&

i&

i&

E =1389qAqB

εr

1389 kJ Åmol

ε# εvand = 80

εvakuum = 1r#

Solvent$“screening”$elektrosta`ske&vækselvirkninger&svækkes&af&solventen&

Page 96: Thermodynamics for Biochemists: a YouTube textbook

I&hvilken&solvent&er&elektrosta`ske&vækselvirkninger&størst?&

A.&vand&&B.&acetone&&C.&cyclohexan&&D.&kloroform&

Page 97: Thermodynamics for Biochemists: a YouTube textbook

Video&5.4&h+ps://youtu.be/C0R59ekRy2o&

Page 98: Thermodynamics for Biochemists: a YouTube textbook

ΔGSolvering = ΔGpolærSolvering + ΔGikke polær

Solvering

ΔGikke polærSolvering = ΔGkavitation

Solvering + ΔGvan der WaalsSolvering

ΔGkavitationSolvering = γ osSASA

γos&=&solventets&overfladespænding&&SASA&=&arealet&af&molekyle/solvent&overflade&#############(SASA&=&solvent&accessible&surface&area)&

Den$ikke<polære$solvaAonsenergi$

h+p://www.liv.ac.uk/researchintelligence/issue32/tension.htm&

Page 99: Thermodynamics for Biochemists: a YouTube textbook

ΔGSolvering = ΔGpolærSolvering + ΔGikke polær

Solvering

ΔGikke polærSolvering = ΔGkavitation

Solvering + ΔGvan der WaalsSolvering

ΔGvan der WaalsSolvering ≈ −cSASA

c&=&empirisk&konstant&&

Page 100: Thermodynamics for Biochemists: a YouTube textbook

ΔGikke polærSolvering = ΔGkavitation

Solvering + ΔGvan der WaalsSolvering

≈ γ osSASA − cSASA≈ γ ipSASA + b

γos&=&0.438&kJ/molÅ2&&&γip&=&0.0227&kJ/molÅ2&(b&=&3.85&kJ/mol)&&&

for&vand&ved&25&oC:&

DOI:&10.1063/1.4745084&&&&DOI:&10.1021/j100058a043&

Page 101: Thermodynamics for Biochemists: a YouTube textbook

A$ B$

C$ D$

for&hvilken&`lstand&er&den&ikkeipolære&solva`onsenergi&mindst?&&

ΔGikke polærSolvering ≈ γ ipSASA + b

Page 102: Thermodynamics for Biochemists: a YouTube textbook

Video&5.5&h+ps://youtu.be/xVmrgm5XobM&

Page 103: Thermodynamics for Biochemists: a YouTube textbook

Den$hydrofobe$effekt$Ikkeipolære&molekyler&opløst&i&vand&binder&stærkere&end&i&vakuum&

for&at&mindske&kontakten&med&solventen&(dvs&SASA)&

ΔGo ≈ ΔΔGikke polærSolvering ≈ γ ipΔSASA + b

SASAX+X SASAX⋅X

SASAX⋅X < SASAX+X ⇒ ΔGikke polærSolvering (X ⋅ X) < ΔGikke polær

Solvering (X + X)

Arealet&er&lavest&

Page 104: Thermodynamics for Biochemists: a YouTube textbook

A$ B$ C$ D$

|ΔSASA|&størst&for&B$

Ud&fra&følgende&`lnærmelse,&hvilket&“molekyle”&bindes&sandsynligvis&stærkest&med&sig&selv?&

ΔGo ≈ ΔΔGikke polærSolvering ≈ γ ipΔSASA + b

Page 105: Thermodynamics for Biochemists: a YouTube textbook

Olie&er&hydrofobisk&

h+p://youtu.be/D6aoJNqt1MQ&

Page 106: Thermodynamics for Biochemists: a YouTube textbook

Termodynamik,for,Biokemikere,,

Jan$H.$Jensen$Københavns$Universitet$

1.$Ligevægt$og$ligevægtskonstanten$2.$Enthalpi$og$entropi$3.$Enthalpi$og$entropi$for$an$ideal$gas$og$van’t$Hoff$ligningen$4.$Måling$af$enthalpi$og$entropi$ændringer$vha$kalorimetri$5.$Enthalpi$og$entropi$for$en$ideal$opløsning$6.,Hydrofobisitet,og,entropi,

7.$Kemisk$akIvitet$og$ikkeJideale$opløsninger$8.$Termodynamikens$tre$love$og$Boltzmannfordelingen$

Page 107: Thermodynamics for Biochemists: a YouTube textbook

Video&6.1&h+ps://youtu.be/KqSjPspb0EA&

Page 108: Thermodynamics for Biochemists: a YouTube textbook

Hvad&er&&&&&&&&&&for&denne&simulaDon?&

A ΔSo = 0B ΔSo < 0C ΔSo > 0

ΔSo

h+p://youtu.be/zKNmBjqGijI&

Page 109: Thermodynamics for Biochemists: a YouTube textbook

+&

+& +&

ΔSo > 0

2&parDkler& 1&parDkel&

2&parDkler& 5&parDkler&

Solventen(bidrager(/l(entropiændringen(

vandet&i&bindingslommen&er&anderledes&=&hydrofob&

Page 110: Thermodynamics for Biochemists: a YouTube textbook

+& +&

h+p://youtu.be/1WkZznwmO0c&

Page 111: Thermodynamics for Biochemists: a YouTube textbook

+& +&

h+p://youtu.be/ETMmH2trTpM&

ΔSo > 0

vandet&tæ+est&på&liganden&er&anderledes&=&hydrofob&

Page 112: Thermodynamics for Biochemists: a YouTube textbook

ΔSo,Trans = ? ved 25 oC

(H2O)4'smelter'i'vand'

A.'2.4'J/molK''B.'35.2'J/molK''C.'99.2'J/molK''D.'337.0'J/molK'

Page 113: Thermodynamics for Biochemists: a YouTube textbook

ΔSo,Trans = ? ved 25 oC

Sopløsningo,Trans = nR ln 3.7487M 3/2T 3/2( )

ΔSo,Trans = 4R ln 3.7487M 3/2T 3/2( ) − R ln 3.7487 4M( )3/2 T 3/2( )= 3R ln 3.7487M 3/2T 3/2( )

118.1

− 32 ln 4( )

17.3

= 337.0 J/molK

“isbjergsmodellen”'kun'kvalitaHv'ΔSo'kommer'sandsynligvis'mest'fra'ΔSvib'og'ΔSkonf''

'

(H2O)4'smelter'i'vand' A.'2.4'J/molK''B.'35.2'J/molK''C.'99.2'J/molK''D.'337.0'J/molK'

Page 114: Thermodynamics for Biochemists: a YouTube textbook

Video&6.2&h+ps://youtu.be/g7Fe4FGN9tE&

Page 115: Thermodynamics for Biochemists: a YouTube textbook

h+p://youtu.be/ETMmH2trTpM&

ΔSo > 0 ΔH o ≈ +0ΔGo < 0

+&

Entropien(s/ger(når(hydrofobe(molekyler(bindes(

Page 116: Thermodynamics for Biochemists: a YouTube textbook

ΔGikke polærSolvering = ΔGkavitation

Solvering + ΔGvan der WaalsSolvering

≈ γ osSASA − cSASA≈ γ ipSASA + b

ΔSikke polærSolvering =

∂ΔGikke polærSolvering

∂T

≈∂γ os

∂TSASA −

∂c∂T

SASA

≈∂γ os

∂TSASA

∂γ os

∂T= −0.00112 kJ/molÅ2K

Den&ikkePpolære&solveringsentropi&er&negaDv&

Page 117: Thermodynamics for Biochemists: a YouTube textbook

+&

h+p://youtu.be/ETMmH2trTpM&

ΔSo > 0 ΔH o ≈ +0ΔGo < 0

ΔSo ≈ ΔΔSikke polærSolvering

≈∂γ os

∂T<0

ΔSASA<0

> 0

En&negaDv&ikkePpolær&solveringsentropi&betyder&at&entropien&sDger&når&hydrofobe&molekyler&bindes&

&

Page 118: Thermodynamics for Biochemists: a YouTube textbook

benzen(benzen) benzen(aq)Hvad&er&&&&&&&&&&for&denne&proces?&

A ΔSo = 0B ΔSo < 0C ΔSo > 0

ΔSo

Page 119: Thermodynamics for Biochemists: a YouTube textbook

Video&6.3&h+ps://youtu.be/gAaV7bEWqOw&

Page 120: Thermodynamics for Biochemists: a YouTube textbook

Hvordan(måler(man(hydrofobisitet?(

solute(vand) solute(octanol)

log(Pwo ) = log[solute(octanol) ][solute(vand) ]

⎝⎜⎞

⎠⎟

log(P)&>&1&=&hydrofobisk&

ε&=&80&ε&=&10&

Page 121: Thermodynamics for Biochemists: a YouTube textbook

Cl((O((C(((H( Hvilket&molekyle&har&det&laveste&log(Pwo)?&&

Page 122: Thermodynamics for Biochemists: a YouTube textbook

Video&6.4&h+ps://youtu.be/7CVzdXnM1eM&

Page 123: Thermodynamics for Biochemists: a YouTube textbook

P + L P ⋅L

For&hvilken&ligand&vil&ΔSo&være&mest&posiDv?&

Ligand&binding&Dl&enzymet&carbonic&anhydrase&(ved&25&oC)&

Page 124: Thermodynamics for Biochemists: a YouTube textbook

ΔGo&&&&&&&&&&&&&&&P56.5&&&&&&&&&&&&&&&&&&&&&&&&&P54.4&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&P55.2&&&&&&&&&&&&&&&&&&&&&&&&&&&P55.6&kJ/mol&&ΔHo&&&&&&&&&&&&&&&P79.1&&&&&&&&&&&&&&&&&&&&&&&&&P68.2&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&P51.9&&&&&&&&&&&&&&&&&&&&&&&&&&&P35.1&kJ/mol&&PTΔSo&&&&&&&&&&&&&23.0&&&&&&&&&&&&&&&&&&&&&&&&&&&14.2&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&P2.9&&&&&&&&&&&&&&&&&&&&&&&&&&&P20.1&kJ/mol&&log(Pwo)&&&&&&&&&0.25&&&&&&&&&&&&&&&&&&&&&&&&&&1.33&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&P0.65&&&&&&&&&&&&&&&&&&&&&&&&&&&0.12&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

P + L P ⋅L

Binding&Dl&enzymet&carbonic&anhydrase&(ved&25&oC)&

DOI:&10.1002/anie.201301813&

Page 125: Thermodynamics for Biochemists: a YouTube textbook

+& +&

+& +&

octanol&

log(Pwo)(måler(den(totale(hydrofobisitet(af(liganden((

Page 126: Thermodynamics for Biochemists: a YouTube textbook

Termodynamik,for,Biokemikere,,

Jan$H.$Jensen$Københavns$Universitet$

1.$Ligevægt$og$ligevægtskonstanten$2.$Enthalpi$og$entropi$3.$Enthalpi$og$entropi$for$an$ideal$gas$og$van’t$Hoff$ligningen$4.$Måling$af$enthalpi$og$entropi$ændringer$vha$kalorimetri$5.$Enthalpi$og$entropi$for$en$ideal$opløsning$6.$Hydrofobisitet$og$entropi$7.,Kemisk,akLvitet,og,ikkeMideale,opløsninger,

8.$Termodynamikens$tre$love$og$Boltzmannfordelingen$

Page 127: Thermodynamics for Biochemists: a YouTube textbook

Video&7.1&h+ps://youtu.be/D_eGyby1whM&

Page 128: Thermodynamics for Biochemists: a YouTube textbook

A B+ C K =[B][C]

[A] ΔGo = −RT ln(K )

ΔGo = −J

mol K⎛⎝⎜

⎞⎠⎟

K( ) ln(K ) = J/mol

ΔGo = −

Jmol K

⎛⎝⎜

⎞⎠⎟

K( ) ln M ⋅MM

⎛⎝⎜

⎞⎠⎟= J/molln(M)

??

Ligevægtskonstanten-har-ingen-enheder-

Page 129: Thermodynamics for Biochemists: a YouTube textbook

ΔGo = ΔGMolekyle/Konformation + ΔGo,Translation + ΔGRotation + ΔGVibration + ΔΔGSolvering

Fri-energibidrag-for-en-ideal-opløsning-

ΔH o,Trans = 32 nRT + poΔV ≈ 3

2 nRT + ΔngasRT

So,Trans = nR ln2πm( )3/2 e5 /2h3C o

⎝⎜⎞

⎠⎟Co&=&1.0&mol/L&

Ideal&opløsning&=&ingen&vækselvirkninger&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&mellem&solute&molekyler&

H o,Trans ≈ 32 nRT

Solute:&molekylet&der&er&opløst&&Solvent&

Page 130: Thermodynamics for Biochemists: a YouTube textbook

STrans = R ln 2πm( )3/2 e5/2h3C

⎝⎜⎞

⎠⎟

= R ln 2πm( )3/2 e5/2

h3C o CC o

⎜⎜⎜

⎟⎟⎟

= R ln 2πm( )3/2 e5/2h3C o

⎝⎜⎞

⎠⎟− R ln C

C o⎛⎝⎜

⎞⎠⎟

= So,Trans − R ln CC o

⎛⎝⎜

⎞⎠⎟

S = So + R ln CC o

⎛⎝⎜

⎞⎠⎟⇒G = Go + RT ln C

C o⎛⎝⎜

⎞⎠⎟

STrans,&og&derfor&G,&er&en&funkKon&af&koncentraKon,&C&

Page 131: Thermodynamics for Biochemists: a YouTube textbook

R P

G(X) = Go (X) + RT ln [X]C o

⎛⎝⎜

⎞⎠⎟

G(P) −G(R) = Go (P) −Go (R) + RT ln[P]

C o

[R]C o

⎜⎜

⎟⎟

ΔG = ΔGo + RT ln[P]

C o

[R]C o

⎜⎜

⎟⎟

Page 132: Thermodynamics for Biochemists: a YouTube textbook

ΔG = 0⇒[P]

C o

[R]C o

= e−ΔGo /RT

vi skriver K =[P][R]

men mener K =[P]

C o

[R]C o

A B+ C

K =[B][C]

[A]

K-har-ingen-enheder,&men&bliver&Kt&angivet&som,&f.eks.&0.001&M&eller&1&mM&

ved&ligevægt&

ingen&enheder&

Ligevægtskonstanten-har-ingen-enheder-

R P

Page 133: Thermodynamics for Biochemists: a YouTube textbook

G(X) = Go (X) + RT ln [X]C o

⎛⎝⎜

⎞⎠⎟

G(X) = Go (X) + RT ln pXpo

⎛⎝⎜

⎞⎠⎟

G(X) = Go (X) + RT ln [X]CXo

⎛⎝⎜

⎞⎠⎟

Co&=&1&M&ideal&opløsning&&

po&=&1&bar&ideal&gas&&

CXo&=&koncentraKon&af&ren&væske&eller&faststof&

opløsning&

gas&

faststof/væske&

H2O(l ) H2O(g)

K =

pH2Opo

⎛⎝⎜

⎞⎠⎟

[H2O]CH2Oo

⎛⎝⎜

⎞⎠⎟

1

=pH2O

po⎛⎝⎜

⎞⎠⎟ pH2O[H2O] = CH2O

o = 55.56 M

forskellige-standard7lstande-

uaMængig&af&fordampning&

Page 134: Thermodynamics for Biochemists: a YouTube textbook

H2CO3(aq) H2O(l ) + CO2(g)

A. K =[HH2O ]pCO2

[H2CO3]

B. K =[HH2O ]

[H2CO3]

C. K =pCO2

[H2CO3]D. K = pCO2

Hvad&er&ligevægtskonstanten&for&denne&reakKon?&

Page 135: Thermodynamics for Biochemists: a YouTube textbook

Video&7.2&h+ps://youtu.be/Va5LJ8UX7sY&

Page 136: Thermodynamics for Biochemists: a YouTube textbook

PbI2(s ) Pb(aq)2+ + 2I(aq)

K = [Pb2+ ][I− ]2

ΔGo = 46.1 kJ/mol ⇒ K = 5.93×10−9

⇒ [Pb2+ ] = 1.14 ×10−3 M

målt: [Pb2+ ] = 1.37 ×10−3 M

Mere&Pb2+&opløst&end&forventet!&

K = e−ΔGo /RT

20&oC&

Page 137: Thermodynamics for Biochemists: a YouTube textbook

Vækselvirkninger&mellem&solute&molekyler&øger&koncentraKonen&af&fri&ioner&sammenlignet&med&ideal&opløsning&

Page 138: Thermodynamics for Biochemists: a YouTube textbook

Vækselvirkninger&mellem&solute&molekyler&øger&koncentraKonen&af&fri&ioner&sammenlignet&med&ideal&opløsning&

+- +-

+-

9-

9-

Page 139: Thermodynamics for Biochemists: a YouTube textbook

h+p://en.wikipedia.org/wiki/Debye%E2%80%93H%C3%BCckel_equaKon&

Vækselvirkninger&mellem&solute&molekyler&øger&koncentraKonen&af&fri&ioner&sammenlignet&med&ideal&opløsning&

Page 140: Thermodynamics for Biochemists: a YouTube textbook

PbI2(s ) Pb(aq)2+ + 2I(aq)

K = aPb2+

aI−2

ΔGo = 46.1 kJ/mol ⇒ K = 5.93×10−9

⇒ aPb2+ = 1.14 ×10−3 M

målt: [Pb2+ ] = 1.37 ×10−3 M

Mere&Pb2+&opløst&end&forventet&

K = e−ΔGo /RT

aPb2+ = γ

Pb2+ [Pb2+ ]⇒γPb2+ =

1.14 ×10−3 M1.37 ×10−3 M

= 0.83

Page 141: Thermodynamics for Biochemists: a YouTube textbook

Ak7vitet-(a)-for-en-ikke9ideal-opløsning-

R(aq) P(aq)

K =aPaR

= e−ΔGo /RT aP = γ P

[P]C o

ingen&enheder&

aP = 1⇒γ P = 1, [P]C o = 1

standard&Klstand&1&M&ideal&opløsning&

Kc =[P][R]

⇒ K =γ P

γ R

Kc ⇒ ΔGo = −RT ln K( )

ΔGo ⇒ K = e−ΔGo /RT ⇒ Kc =

γ R

γ P

K

γ&kaldes&akKvitetskoefficienten&

Page 142: Thermodynamics for Biochemists: a YouTube textbook

A γNa+

≈ γCa2+

B γNa+

< γCa2+

C γNa+

> γCa2+

D ved ikke

Hvad&vil&du&forvente&(samme&koncentraKon)?&

Page 143: Thermodynamics for Biochemists: a YouTube textbook

h+p://en.wikipedia.org/wiki/Debye%E2%80%93H%C3%BCckel_equaKon&

Vækselvirkninger&mellem&solute&molekyler&øger&koncentraKonen&af&fri&ioner&sammenlignet&med&ideal&opløsning&

Page 144: Thermodynamics for Biochemists: a YouTube textbook

Video&7.3&h+ps://youtu.be/LFqWtMudxJc&

Page 145: Thermodynamics for Biochemists: a YouTube textbook

γ ± = 10− q+q− A I

I = 12 q+

2[+]+ q−2[−]( )

γ±&=&middel&akKvitetskoefficienten&'q+&=&ladning&af&kaKoner&&I&=&ionstyrke&&A&=&0.509&for&vandig&opløsning&ved&25&oC&&[+]&=&koncentraKon&af&kaKoner&

Den-simple-Debye9Hückel-ligning-(the&limited&DebyejHückel&law)&

KCl(s ) K(aq)+ + Cl(aq)

K = aK+aCl−

= γK+ [K+ ]γ

Cl−[Cl− ] = γ

K+γ Cl−( )[K+ ][Cl− ] = γ ±2[K+ ][Cl− ]

Page 146: Thermodynamics for Biochemists: a YouTube textbook

γ ± = 10− q+q− A I

I = 12 q+

2[+]+ q−2[−]( )

Den-simple-Debye9Hückel-ligning-(the&limited&DebyejHückel&law)&

middel&akKvitetskoefficienten&for&0.001&M&CaCl2&

I = 12 q+

2[+]+ q−2[−]( )

= 12 +2( )2 0.001( ) + −1( )2 0.002( )⎡⎣ ⎤⎦

= 0.003

γ ± = γCa2+2 γ

Cl−( )1/3= 10− q+q− A I

= 10− +2⋅−1 0.509 0.003

= 0.88målt=&0.89&

Page 147: Thermodynamics for Biochemists: a YouTube textbook

γ ± = 10− q+q− A I I = 1

2 q+2[+]+ q−

2[−]( )

Den-simple-Debye9Hückel-ligning-(the&limited&DebyejHückel&law)&

Ud&fra&denne&ligning&hvad&er&sansynligvis&ikke&sandt?&(der&kan&være&mere&end&et&usandt&svar)&

A.&&γ±&går&mod&1&når&ionkoncentraKonen&falder&&B.&alt&andet&lige&har&Zn2+&en&mindre&γ±&end&Brj&&&C.&γ±&er&0&for&neutrale&molekyler&&D.&0.01&M&CaCl2&har&en&størrer&γ±&end&0.01&M&CaSO4&&&E.&γ±&kan&være&størrer&end&1&&&

Page 148: Thermodynamics for Biochemists: a YouTube textbook

Video&7.4&h+ps://youtu.be/MZGwsQ61T7M&

Page 149: Thermodynamics for Biochemists: a YouTube textbook

PbI2(s ) Pb(aq)2+ + 2I(aq)

5.93×10−9 = [Pb2+ ][I− ]2

= x 2x( )2

= 4x3

⇒ [Pb2+ ] = 1.14 ×10−3 M

målt: [Pb2+ ] = 1.37 ×10−3 M

Mere&Pb2+&opløst&end&forventet!&

Den-simple-Debye9Hückel-ligning:-et-eksempel-

Page 150: Thermodynamics for Biochemists: a YouTube textbook

PbI2(s ) Pb(aq)2+ + 2I(aq)

5.93×10−9 = γPb2+[Pb2+ ]γ

I−2 [I− ]2 = γ ±

3[Pb2+ ][I− ]2

⇒ [Pb2+ ] = 1.32 ×10−3 M

målt: [Pb2+ ] = 1.37 ×10−3 M

Mere&Pb2+&opløst&end&forventet!&

γ ± = 10−2 0.509( ) I I = 1

2 22[Pb2+ ]+ [I- ]( )

5.93×10−9 = 10−2 0.509( ) 3x( )3 4x3( )

Page 151: Thermodynamics for Biochemists: a YouTube textbook

log γ ±( ) = −A q−q+ I1+ B I

+ CI

γ ± = 10− q+q− A I

Den-simple-Debye9Hückel-ligning-(the&limited&DebyejHückel&law)&

Den-udvidede-Debye9Hückel-ligning-(the&extended&DebyejHückel&law)&

I ≤ 0.01 M

log γ ±( ) = −0.509 q−q+ I

1+ I− 0.3IDavies:& I ≤ 0.1 M

Page 152: Thermodynamics for Biochemists: a YouTube textbook

Termodynamik,for,Biokemikere,,

Jan$H.$Jensen$Københavns$Universitet$

1.$Ligevægt$og$ligevægtskonstanten$2.$Enthalpi$og$entropi$3.$Enthalpi$og$entropi$for$an$ideal$gas$og$van’t$Hoff$ligningen$4.$Måling$af$enthalpi$og$entropi$ændringer$vha$kalorimetri$5.$Enthalpi$og$entropi$for$en$ideal$opløsning$6.$Hydrofobisitet$og$entropi$7.$Kemisk$akIvitet$og$ikkeJideale$opløsninger$8.,Termodynamikens,tre,love,og,Boltzmannfordelingen,

Page 153: Thermodynamics for Biochemists: a YouTube textbook

Video&8.1&h+ps://youtu.be/XeupZ3YwCaM&

Page 154: Thermodynamics for Biochemists: a YouTube textbook

dU = dq + dw

qTkoldt

−q

Tvarmt> 0

ΔSunivers > 0

dS = dqrevT

dqrev&=&en&varmeoverførsel&der&så&lille&at&T&er&upåvirket&&&&&&&&&&&&&&T&er&upåvirket&=&reversible&process&=&ligevægt&

S 0 K( ) = 0

U&=%indre&energi%q&=&varme&&w&=&arbejde&

Termodynamikkens&3&love&

1.&

2.&

3.&

Varme&overførers&spontant'fra&varme&Ll&kolde&legemer&

Page 155: Thermodynamics for Biochemists: a YouTube textbook

ΔSunivers ≥ 0dSsystem + dSbad ≥ 0

dSsystem +dqbadT

≥ 0

dSsystem −dqsystemT

≥ 0

dSsystem −dUsystem + pdVsystem( )

T≥ 0

0 ≥ dH system − TdSsystem0 ≥ dGsystem

2.'lov' >&for&spontan&process&=&ved&ligevægt&&

dU = dq + dw= dq − pdV

dq = dU + pdV

dGsystem ≡ dG = 0

universets'entropi's0ger,'og'systemets'fri'energi'falder,'for'en'spontant'process'

Ligevægt:& ⇒ K = e−ΔGo /RT

Dill&&&Bromberg&Molecular%Driving%Forces%

Page 156: Thermodynamics for Biochemists: a YouTube textbook

Hvad&er&sandt?&

A.&G&er&uaUængig&af&koncentraLon,&Go&er&aUængig&af&koncentraLon&&B.&ΔG&er&fri&energi&ændring&for&blandingen&af&reaktant&og&produkt,&&&&&&ΔGo&er&fri&energi&forskellen&i&fri&energi&af&reaktant&eller&produkt&i&deres&standard&Llstande&&C.&ΔG&er&den&fri&energi&ændring&ved&et&tryk&andet&end&1&bar,&&&&&&ΔGo&er&den&fri&energi&ændring&for&et&tryk&=&1&bar,&&&D.&Go&den&lavest&mulige&værdi&af&G%

Page 157: Thermodynamics for Biochemists: a YouTube textbook

Video&8.2&h+ps://youtu.be/vVSDlReY2LQ&

Page 158: Thermodynamics for Biochemists: a YouTube textbook

A&B&

B&A&

A&B&

A&Ll&venstre&x&B&Ll&venstre&½&x&½&=&¼&

½&x&½&=&¼&½&x&½&=&¼&

½&x&½&=&¼&

Page 159: Thermodynamics for Biochemists: a YouTube textbook

½&x&½&x&½&=&⅛&

½&x&½&x&½&=&⅛&

⅛& ⅛& ⅛&

A&B& C&

A&C& B&

B&C& A&

3&x&⅛&

Page 160: Thermodynamics for Biochemists: a YouTube textbook

Video&8.3&h+ps://youtu.be/h2h3nNiQYxs&

Page 161: Thermodynamics for Biochemists: a YouTube textbook

0&

0.1&

0.2&

0.3&

0.4&

0.5&

0.6&

0& 1& 2&

sand

synlighe

d'

Antal'par0kler'i'højre'side'

NH

p(NH )

p(0) = 1× 12( )2 p(2) = 1× 1

2( )2

p(1) = 2 × 12( )2

Page 162: Thermodynamics for Biochemists: a YouTube textbook

0&

0.05&

0.1&

0.15&

0.2&

0.25&

0.3&

0.35&

0.4&

0& 1& 2& 3&

sand

synlighe

d'

antal'par0kler'i'højre'side'

NH

p(NH )

p(0) = 1× 12( )3 p(3) = 1× 1

2( )3

p(1) = 3× 12( )3 p(2) = 3× 1

2( )3

p(NH ) = 3!NH !(3− NH )!

12( )3 3!= 3 ⋅2 ⋅1

Page 163: Thermodynamics for Biochemists: a YouTube textbook

0&

0.01&

0.02&

0.03&

0.04&

0.05&

0.06&

0.07&

0.08&

0.09&

0& 5& 10& 15& 20& 25& 30& 35& 40& 45& 50& 55& 60& 65& 70& 75& 80& 85& 90& 95& 100&

sand

synlighe

d'

antal'par0kler'i'højre'side'

p(NH ) =100!

NH !(100 − NH )!12( )100

=W 12( )100

NH

p(NH )

Page 164: Thermodynamics for Biochemists: a YouTube textbook

dGsystem ≡ dH system − TdSsystem = −TdSsystem ≤ 0

Hvorfor'fylder'gassen'spontant'begge'beholdere?'

systemet&går&spontant&mod&den&Llstand&der&har&den&højeste&sandsynlighed&&systemet&går&spontant&mod&den&Llstand&der&har&den&højeste&mulLplicitet&(W)&&

systemet&går&spontant&mod&den&Llstand&der&har&den&højeste&entropi&&

S ∝W

p(NH ) =W (NH ) 12( )100

Page 165: Thermodynamics for Biochemists: a YouTube textbook

S ∝W

S = k ln W( )

S'='k'ln(W)'

dS = dqrevT

S&har&J/K&enheder&

dS = dSA + dSBW =WAWB

ln WA( ) + ln WB( ) = ln WAWB( )k = R

NA

S&er&addiLv&

Page 166: Thermodynamics for Biochemists: a YouTube textbook

Hvad&er&ΔS&for&denne&process?&(N&=&100)&

A.&1.11&x&10j18&J/K&&&B.&5.32&x&10j19&J/K&&C.&8.47&x&10j20&J/K&&D.&2.96&x&10j21&J/K&&E.&9.22&x&10j22&J/K&

Page 167: Thermodynamics for Biochemists: a YouTube textbook

Hvad&er&ΔS&for&denne&process?&(N&=&100)&

ΔS = S(NH = 50) − S(NH = 0)

= k ln 100!50!( )2

⎝⎜⎞

⎠⎟− k ln 100!

0! 100!( )⎛⎝⎜

⎞⎠⎟

1

= 1.38 ×10−23 J/K( ) 66.8( )= 9.22 ×10−22 J/K≈ 100k ln(2)

W =100!

NH !(100 − NH )!

Page 168: Thermodynamics for Biochemists: a YouTube textbook

Video&8.4&h+ps://youtu.be/r_jHsUjXWHQ&

Page 169: Thermodynamics for Biochemists: a YouTube textbook

S = k ln W( ) = k ln N !

N1!N2 !…Nt !⎛⎝⎜

⎞⎠⎟

ε1&=&0&ε2&&ε3&&

N1&=&antal&molekyler&&&&&&&&&med&energi&ε1&

ε2&&ε1&=&0&

ε2&&ε1&=&0&

′S = k ln N !( ) − ln N1 −1( )!( ) − ln N2 +1( )!( )⎡⎣ ⎤⎦S = k ln N !N1!N2

⎛⎝⎜

⎞⎠⎟

= k ln N !( ) − ln N1!( ) − ln N2 !( )⎡⎣ ⎤⎦

dU = ε2 − ε1 ⇒ N1 → N1 −1 and N2 → N2 +1

Boltzmann'fordelingen'

Page 170: Thermodynamics for Biochemists: a YouTube textbook

dS = ′S − S

= k ln N1!N1 −1( )!

⎝⎜⎞

⎠⎟+ ln N2 !

N2 +1( )!⎛

⎝⎜⎞

⎠⎟⎡

⎣⎢⎢

⎦⎥⎥

≈ k ln N1( ) + ln 1N2 +1

⎛⎝⎜

⎞⎠⎟

⎣⎢

⎦⎥

= k ln N1N2 +1

⎛⎝⎜

⎞⎠⎟

≈ k ln N1N2

⎛⎝⎜

⎞⎠⎟

ε2&&ε1&=&0&

ε2&&ε1&=&0&

dU = ε2 − ε1 ⇒ N1 → N1 −1 and N2 → N2 +1

ln x!( ) ≈ x ln(x) − xstor&x%

Page 171: Thermodynamics for Biochemists: a YouTube textbook

ε2&&ε1&=&0&

ε2&&ε1&=&0&

dU = ε2 − ε1 = ε2 ⇒ N1 → N1 −1 and N2 → N2 +1

dS = dUT

k ln N1N2

⎛⎝⎜

⎞⎠⎟=ε2T

k ln N2

N1

⎛⎝⎜

⎞⎠⎟= −

ε2T

N2

N1= e−ε2 /kT

Ni = e−εi /kT N1

N1 e−εi /kTi∑ = N

N1N

=1e−εi /kT

i∑

Ni

N=

e−εi /kT

e−εi /kTi∑

ved&ligevægt:&

Page 172: Thermodynamics for Biochemists: a YouTube textbook

Ni

N=

e−εi /kT

e−εi /kTi∑

pi =e−εi /kT

q

Boltzmann'fordelingen'den&fordeling&af&energi&blandt&molekyler&

der&har&den&laveste&fri&energi&

pi&=&sandsynligheden&for&at&et&molekyle&har&energi&εi&eoer&ligevægt&&&q&kaldes&Llstandssummen&(parLLon&funcLon)&

ε1&=&0&ε2&&ε3&&

Ni&=&antal&molekyler&&&&&&&&&med&energi&εi&

Page 173: Thermodynamics for Biochemists: a YouTube textbook

ε1&=&0&ε2&&ε3&&Hvad&er&S&for&denne&fordeling?&

A.&1.91&x&10j20&J/K&&&B.&1.22&x&10j22&J/K&&C.&8.58&x&10j23&J/K&&D.&3.36&x&10j24&J/K&&E.&6.42&x&10j25&J/K&

Page 174: Thermodynamics for Biochemists: a YouTube textbook

Video&8.5&h+ps://youtu.be/gne9xlUe5lQ&

Page 175: Thermodynamics for Biochemists: a YouTube textbook

ΔSunivers ≥ 0 og S = k ln W( )⇒ pi =e−εi /kT

q

U =U(0) + N ε

ε = piεii∑ =

1q

εie−βεi

i∑ = −

1q

ddβ

e−βεii∑⎡

⎣⎢

⎦⎥ = −

1qdqdβ

Boltzmann'fordelingen'giver'ligningerne'for''fri'energibidrag'for'en'ideal'gas'

β = 1kT

S = k ln N !N1!N2 !…Nt !

⎛⎝⎜

⎞⎠⎟

= k ln Ni lnN − Ni lnNi( )i∑ = −k Ni ln

Ni

Ni∑

= −k Nii∑ ln e−βεi

q⎛⎝⎜

⎞⎠⎟= kβ Niεi

i∑ + Nk lnq

=UT

+ Nk lnq

ε1&=&0&ε2&&ε3&&

Page 176: Thermodynamics for Biochemists: a YouTube textbook

Eksempel:'den'transla0onelle'indre'energi'

εnxnynzT = εnx

T + εnyT + εnz

T

εnxT = (nx

2 −1) h2

8mX 2 = (nx2 −1)ε nx = 1,2,3,....

Kvantemekanik&(parLkel&i&en&kasse&med&længde&X%og&masse%m)&

qXT = e−βεi

i=1

∑ = e−(n2 −1)βε dn

1

∫ ≈ e−n2βε dn

0

∫ ≈2πmh2β

X

qT =2πmh2β

⎛⎝⎜

⎞⎠⎟

3/2

XYZ =2πmh2β

⎛⎝⎜

⎞⎠⎟

3/2

V

εT = −1q

dqdβ

⎛⎝⎜

⎞⎠⎟V

= 32 kT

UT =UT (0)

0 + N εT = 3

2 nRT

ε Trans

kT≈ 10−20

Page 177: Thermodynamics for Biochemists: a YouTube textbook

ε Trans

kT≈ 10−20 ⇒U Trans =

32nRT ⇒ H Trans =U Trans + pV =

52nRT

εRot

kT≈ 0.01− 0.001⇒U Rot = H Rot =

32nRT

εVib

kT≈ 2 −10⇒UVib = H Vib = nNAhc ν i

12 +

1eNAhc νi /RT −1

⎛⎝⎜

⎞⎠⎟i=1

3Nat −X

UVib =UVib (0)

≠0 + N εVib

Vibra0on'er'lidt'anderledes'

ε1&=&0&ε2&&ε3&&

Page 178: Thermodynamics for Biochemists: a YouTube textbook

pi =e−εi /kT

q og S = U

T+ Nk lnq

STrans = nR ln2πm( )3/2 kTe( )5 /2

h3p⎛

⎝⎜⎞

⎠⎟

SRot = nR ln 8π 2keTh2

⎛⎝⎜

⎞⎠⎟

3/2

π I1I2I3

⎣⎢⎢

⎦⎥⎥

SVib = nR NAhc ν i

RT eNAhc νi /RT −1( ) − ln 1− e−NAhc νi /RT( )⎛

⎝⎜

⎠⎟

i=1

3Nat −6

εiTrans ,εi

Vib , og εiVib fra kvantemekanik

Page 179: Thermodynamics for Biochemists: a YouTube textbook

S = k ln W( ) = k ln N !

N1!N2 !…Ng !⎛

⎝⎜⎞

⎠⎟

Ni

N=

e−εi /kT

e−εi /kTi∑

ε1 = ε2 =… = εg⇒ N1 = N2 =… = Ng = N g

W =N !

N g( )!g =N e( )N

N g( ) N g( )g

=N e( )N

N e( ) 1 g( )⎛

⎝⎜

⎠⎟

N

= gN

Entropi'og'udartning'

S = k ln W( ) = Nk ln g( )

x!≈ x e( )x

Page 180: Thermodynamics for Biochemists: a YouTube textbook

ε1&=&0&ε2&=&kT&&ε3&=&2kT&Hvad&er&U&for&denne&fordeling?&

A. U =9qkTe−1 + 2kTe−2( )

B. U =9qkTe + 2kTe2( )

C. U =9q

1+ kTe−1 + 2kTe−2( )D. U = kTe−1 + 2kTe−2( )

Page 181: Thermodynamics for Biochemists: a YouTube textbook

ε1&=&0&ε2&=&kT&&ε3&=&2kT&Hvad&er&U&for&denne&fordeling?&

U =U(0)

0 + N ε

ε = piεi

i∑ = p1 ε1

0 + p2ε2 + p3ε3 = p2kT + p32kT

pi =e−εi /kT

q

p2 =e−kT /kT

q=e−1

q

p3 =e−2kT /kT

q=e−2

q q = e−εi /kTi∑

= 1+ e−1 + e−2

N ε =9qkTe−1 + 2kTe−2( )