pdf (supporting information)

26
1 A Novel Bis(phosphido)pyridine [PNP] 2- Pincer Ligand and Its Potassium and Bis(dimethylamido)zirconium(IV) Complexes Matthew S. Winston* and John E. Bercaw* , † *Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, CA 91125 (U. S. A.) King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia Supporting Information 1 H, 13 C, and 19 F NMR spectra of compound 6 ……………………………………… 2-4 1 H, 13 C, and 19 F NMR spectra of compound 10 …………………………………….. 5-7 1 H, 31 P, and 31 P{ 1 H} NMR spectra of compound 11 ……….……………………... 8-10 1 H and 31 P NMR spectra of compound 12 ……………………………………….. .11-12 1 H and 31 P NMR spectra of compound 13 ……………………………………….. 13-14 1 H and 31 P{ 1 H} VT-NMR spectra of compound 11 ………………………………15-16 Tables for the X-ray Crystal Structure of 12 ……………………………………...17-19 Tables for the X-ray Crystal Structure of 13 ……………………………………...20-23

Upload: vudang

Post on 11-Feb-2017

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: PDF (Supporting Information)

1

A Novel Bis(phosphido)pyridine [PNP]2- Pincer

Ligand and Its Potassium and

Bis(dimethylamido)zirconium(IV) Complexes

Matthew S. Winston* and John E. Bercaw*, †

*Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of

Technology, Pasadena, CA 91125 (U. S. A.)

†King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

Supporting Information

1H, 13C, and 19F NMR spectra of compound 6 ……………………………………… 2-4

1H, 13C, and 19F NMR spectra of compound 10 …………………………………….. 5-7

1H, 31P, and 31P{1H} NMR spectra of compound 11 ……….……………………... 8-10

1H and 31P NMR spectra of compound 12 ……………………………………….. .11-12

1H and 31P NMR spectra of compound 13 ……………………………………….. 13-14

1H and 31P{1H} VT-NMR spectra of compound 11 ………………………………15-16

Tables for the X-ray Crystal Structure of 12 ……………………………………...17-19

Tables for the X-ray Crystal Structure of 13 ……………………………………...20-23

Page 2: PDF (Supporting Information)

2

6 : 1H NMR (300 MHz, chloroform-d)

Page 3: PDF (Supporting Information)

3

6 : 13C NMR (125 MHz, chloroform-d)

Page 4: PDF (Supporting Information)

4

6 : 19F NMR (282 MHz, chloroform-d)

Page 5: PDF (Supporting Information)

5

10: 1H NMR (300 MHz, chloroform-d)

Page 6: PDF (Supporting Information)

6

10: 13C NMR (125 MHz, chloroform-d)

Page 7: PDF (Supporting Information)

7

10: 19F NMR (282 MHz, chloroform-d)

Page 8: PDF (Supporting Information)

8

11: 1H NMR (300 MHz, benzene-d6)

Page 9: PDF (Supporting Information)

9

11: 31P NMR (121 MHz, benzene-d6)

Page 10: PDF (Supporting Information)

10

11: 31P{1H} NMR (121 MHz, benzene-d6)

Page 11: PDF (Supporting Information)

11

12: 1H NMR (300 MHz, tetrahydrofuran–d8)

Page 12: PDF (Supporting Information)

12

12: 31P NMR (121 MHz, tetrahydrofuran–d8)

Page 13: PDF (Supporting Information)

13

13: 1H NMR (300 MHz, tetrahydrofuran–d8)

Page 14: PDF (Supporting Information)

14

13: 31P NMR (121 MHz, tetrahydrofuran–d8)

Page 15: PDF (Supporting Information)

15

11: 1H VT-NMR (500 MHz, benzene-d6)

Page 16: PDF (Supporting Information)

16

11: 31P{1H} VT-NMR (202 MHz, benzene-d6)

Page 17: PDF (Supporting Information)

17

Tables for the X-ray Crystal Structure of 12 (CCDC 787543) Special Refinement Details

Crystals were mounted on a loop using oil then placed on the diffractometer under a nitrogen stream at 210K.

The crystal is twinned. The two components of the twin were separated using CELL_NOW and differ from each other by a 2º rotation around the axis 1.0 -0.11 -0.21 in real space. The resulting P4P file was used to integrate each domain simultaneously and the resulting P4P with the refined orientations of each domain was recycled to repeat the integration. After two times of this the resulting intensities were separated with TWINABS and the file with the averaged intensities (TWIN4.HKL) was used for refinement.

Refinement of F2 against ALL reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2, conventional R-factors (R) are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ( F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Table 2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for MSW11 (CCDC 787543). U(eq) is defined as the trace of the orthogonalized Uij tensor. ________________________________________________________________________________ x y z Ueq ________________________________________________________________________________ K(1) 6922(1) 4014(1) 2797(1) 45(1) K(2) 3724(1) 4722(1) 986(1) 49(1) P(1) 3763(1) 3938(1) 2809(1) 41(1) P(2) 6789(1) 5148(1) 886(1) 44(1) O(1) 2393(3) 6950(2) 1327(1) 85(1) O(2) 6706(2) 5876(2) 3664(1) 55(1) O(3) 7793(2) 2256(2) 3916(1) 70(1) N(1) 6123(2) 2157(2) 1898(1) 33(1) C(1) 3619(3) 2363(2) 3025(1) 36(1) C(2) 2978(3) 1912(3) 3670(2) 46(1) C(3) 2923(3) 700(3) 3815(2) 56(1) C(4) 3508(3) -165(3) 3315(2) 62(1) C(5) 4156(3) 220(2) 2680(2) 49(1) C(6) 4230(3) 1445(2) 2530(2) 36(1) C(7) 4962(3) 1760(2) 1827(2) 34(1) C(8) 4505(3) 1613(2) 1126(2) 42(1) C(9) 5237(3) 1863(2) 485(2) 44(1) C(10) 6419(3) 2268(2) 555(2) 39(1) C(11) 6827(3) 2396(2) 1271(2) 32(1) C(12) 8130(3) 2766(2) 1402(1) 32(1) C(13) 8239(3) 4012(2) 1232(1) 32(1) C(14) 9466(3) 4279(2) 1441(1) 40(1) C(15) 10475(3) 3410(3) 1792(2) 42(1) C(16) 10349(3) 2211(3) 1951(2) 45(1)

Page 18: PDF (Supporting Information)

18

C(17) 9163(3) 1904(2) 1758(1) 40(1) C(18) 2474(3) 4859(2) 3393(1) 36(1) C(19) 1173(3) 4670(3) 3563(2) 49(1) C(20) 244(3) 5479(3) 3963(2) 61(1) C(21) 558(4) 6515(3) 4206(2) 64(1) C(22) 1817(3) 6750(3) 4034(2) 57(1) C(23) 2756(3) 5926(2) 3638(2) 44(1) C(24) 7425(3) 6577(2) 782(1) 38(1) C(25) 8331(3) 6801(3) 212(2) 50(1) C(26) 8689(3) 7925(3) 83(2) 62(1) C(27) 8134(4) 8869(3) 522(2) 65(1) C(28) 7254(3) 8683(3) 1094(2) 60(1) C(29) 6906(3) 7543(2) 1230(2) 46(1) C(30) 2875(4) 7902(3) 1601(2) 85(1) C(31) 1650(5) 8845(4) 1750(3) 126(2) C(32) 693(4) 8158(4) 2051(2) 105(1) C(33) 1054(5) 7000(3) 1684(3) 97(2) C(34) 6639(3) 7170(3) 3569(2) 61(1) C(35) 6370(3) 7633(3) 4346(2) 63(1) C(36) 5652(3) 6714(3) 4754(2) 57(1) C(37) 6350(3) 5542(3) 4419(2) 61(1) C(38) 7021(4) 1326(4) 3979(2) 80(1) C(39) 7921(5) 263(4) 3641(2) 94(1) C(40) 9321(4) 360(3) 3809(2) 85(1) C(41) 9162(4) 1651(3) 4016(2) 74(1) ________________________________________________________________________________ Table 4. Anisotropic displacement parameters (Å2x 104) for MSW11 (CCDC 787543). The anisotropic displacement factor exponent takes the form: -2π 2[ h2a*2U11 + ... + 2 h k a* b* U12 ] ______________________________________________________________________________ U11 U22 U33 U23 U13 U12 ______________________________________________________________________________ K(1) 437(4) 511(4) 415(4) -131(3) 49(3) -114(3) K(2) 540(5) 459(4) 443(4) -55(3) 9(3) -67(3) P(1) 379(5) 429(4) 429(5) -97(4) 110(4) -131(4) P(2) 412(5) 375(4) 522(5) -14(4) -50(4) -90(4) O(1) 970(20) 552(15) 1040(20) -346(13) -13(17) -122(14) O(2) 699(16) 483(13) 513(14) -120(10) 138(11) -247(11) O(3) 654(18) 605(14) 818(17) -62(12) -128(14) -33(13) N(1) 324(15) 318(12) 367(14) -52(10) 20(12) -91(11) C(1) 283(17) 494(17) 335(17) -5(14) -56(14) -131(14) C(2) 410(20) 560(20) 434(19) -22(15) -5(16) -148(15) C(3) 480(20) 640(20) 570(20) 153(19) 37(18) -224(18) C(4) 560(20) 440(20) 870(30) 80(20) 20(20) -182(18) C(5) 440(20) 387(18) 660(20) 1(16) 47(17) -137(15) C(6) 252(17) 429(17) 422(18) -3(14) -16(14) -124(13) C(7) 327(18) 252(15) 450(19) -71(13) -14(15) -39(13) C(8) 410(20) 345(16) 530(20) -73(14) -80(17) -97(14) C(9) 570(20) 372(17) 372(19) -83(14) -93(17) -73(15) C(10) 480(20) 343(16) 340(18) -44(13) 20(15) -73(14) C(11) 363(18) 221(14) 355(18) -59(12) 23(15) -12(12) C(12) 303(18) 351(16) 294(16) -75(13) 78(13) -56(14)

Page 19: PDF (Supporting Information)

19

C(13) 334(18) 366(16) 264(15) -53(12) 76(13) -59(13) C(14) 420(20) 431(17) 378(17) -29(14) 76(15) -164(15) C(15) 310(19) 540(20) 438(18) -25(15) 23(15) -130(16) C(16) 320(20) 500(20) 499(19) 6(15) -1(15) -27(15) C(17) 390(20) 358(16) 436(18) -31(14) 72(15) -40(15) C(18) 346(19) 427(17) 308(16) -32(13) 17(14) -73(14) C(19) 390(20) 590(20) 540(20) -137(16) 56(17) -157(17) C(20) 350(20) 770(20) 720(20) -172(19) 176(18) -165(19) C(21) 500(20) 670(20) 690(20) -194(18) 143(19) 17(18) C(22) 510(20) 499(19) 680(20) -151(17) 51(19) -65(18) C(23) 370(20) 455(18) 505(19) -82(15) 43(16) -107(15) C(24) 430(20) 364(16) 311(16) -6(13) -11(15) -58(14) C(25) 630(20) 468(19) 414(19) -73(14) 70(17) -167(16) C(26) 740(30) 650(20) 500(20) 69(18) 68(19) -280(20) C(27) 770(30) 410(20) 800(30) 70(19) -60(20) -199(19) C(28) 580(20) 364(19) 840(30) -198(17) -10(20) 16(16) C(29) 430(20) 463(19) 481(19) -106(15) 76(16) -60(15) C(30) 740(30) 910(30) 1000(30) -270(20) 60(20) -320(30) C(31) 1060(40) 820(30) 1940(50) -590(30) -160(40) -60(30) C(32) 770(40) 1230(40) 1030(30) -90(30) -10(30) 30(30) C(33) 920(40) 570(30) 1490(40) 170(30) -470(30) -340(20) C(34) 740(30) 530(20) 570(20) -19(16) 65(19) -193(18) C(35) 760(30) 540(20) 640(20) -139(17) 81(19) -231(18) C(36) 560(20) 710(20) 520(20) -153(17) 79(17) -255(19) C(37) 640(30) 540(20) 630(20) 16(17) 144(19) -142(18) C(38) 590(30) 1020(30) 750(30) 170(20) -20(20) -180(30) C(39) 1020(40) 840(30) 1090(30) -90(20) 150(30) -510(30) C(40) 850(30) 650(30) 970(30) -30(20) 10(20) -10(20) C(41) 530(30) 900(30) 790(30) -170(20) -110(20) -90(20) ______________________________________________________________________________

Page 20: PDF (Supporting Information)

20

Tables for the X-ray Crystal Structure of 13 (CCDC 787542)

Special Refinement Details Crystals were mounted on a loop using Paratone oil then placed on the diffractometer under a

nitrogen stream at 100K. The crystal contains solvent of crystallization. This solvent appears as rings stacked edge on

along the a-axis and through 0, ½ , ½. The solvent was modeled as benzenes (isotropic and constrained to ideal hexagons) stacked edge to edge between the inversion centers, requiring half occupancy.

Refinement of F2 against ALL reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2, conventional R-factors (R) are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ( F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Table 2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for MSW03 (CCDC 787542). U(eq) is defined as the trace of the orthogonalized Uij tensor. ________________________________________________________________________________ x y z Ueq Occ ________________________________________________________________________________ Zr(1) 5078(1) 257(1) 6790(1) 16(1) 1 P(1A) 6952(1) -110(1) 7660(1) 18(1) 1 P(2A) 2802(1) 837(1) 6595(1) 17(1) 1 N(1A) 4978(4) 672(1) 7631(2) 16(1) 1 N(2A) 6733(4) 375(1) 6248(1) 19(1) 1 N(3A) 3706(4) -192(1) 6419(1) 18(1) 1 C(1A) 4910(5) -226(2) 7865(2) 17(1) 1 C(2A) 4184(5) -619(2) 7823(2) 22(1) 1 C(3A) 2668(6) -691(2) 8002(2) 25(1) 1 C(4A) 1819(6) -393(2) 8246(2) 29(1) 1 C(5A) 2472(6) -11(2) 8289(2) 24(1) 1 C(6A) 3979(5) 81(1) 8096(2) 16(1) 1 C(7A) 4531(5) 506(2) 8123(2) 19(1) 1 C(8A) 4513(5) 732(2) 8622(2) 22(1) 1 C(9A) 4941(6) 1129(2) 8620(2) 27(1) 1 C(10A) 5372(5) 1302(1) 8122(2) 21(1) 1 C(11A) 5356(5) 1069(1) 7625(2) 15(1) 1 C(12A) 5647(5) 1254(1) 7072(2) 15(1) 1 C(13A) 6916(5) 1530(1) 7048(2) 21(1) 1 C(14A) 7273(6) 1704(1) 6549(2) 26(1) 1 C(15A) 6306(6) 1605(1) 6044(2) 25(1) 1 C(16A) 5001(5) 1350(1) 6054(2) 21(1) 1 C(17A) 4595(5) 1164(1) 6560(2) 15(1) 1 C(18A) 7651(5) -601(1) 7415(2) 17(1) 1 C(19A) 7997(5) -921(2) 7806(2) 22(1) 1 C(20A) 8609(6) -1281(2) 7641(2) 27(1) 1 C(21A) 8935(5) -1337(2) 7079(2) 28(1) 1 C(22A) 8623(6) -1030(2) 6688(2) 30(1) 1

Page 21: PDF (Supporting Information)

21

C(23A) 7996(5) -665(1) 6851(2) 22(1) 1 C(24A) 1791(5) 862(1) 5847(2) 16(1) 1 C(25A) 908(5) 1209(1) 5669(2) 22(1) 1 C(26A) -4(5) 1225(2) 5135(2) 24(1) 1 C(27A) -67(6) 899(2) 4773(2) 25(1) 1 C(28A) 780(5) 553(2) 4936(2) 26(1) 1 C(29A) 1725(5) 535(1) 5472(2) 22(1) 1 C(30A) 8282(5) 558(1) 6487(2) 32(1) 1 C(31A) 6557(6) 396(1) 5621(2) 31(1) 1 C(32A) 2112(5) -306(1) 6594(2) 27(1) 1 C(33A) 4132(6) -449(1) 5948(2) 30(1) 1 Zr(2) 654(1) 2119(1) 9326(1) 19(1) 1 P(1B) -1736(2) 2210(1) 8456(1) 20(1) 1 P(2B) 2698(2) 1558(1) 9831(1) 22(1) 1 N(1B) 246(4) 1505(1) 8768(2) 18(1) 1 N(2B) -547(5) 2338(1) 9961(2) 26(1) 1 N(3B) 2276(5) 2545(1) 9177(2) 23(1) 1 C(1B) -173(5) 2203(1) 7952(2) 18(1) 1 C(2B) 134(5) 2531(1) 7594(2) 21(1) 1 C(3B) 1275(6) 2513(2) 7199(2) 27(1) 1 C(4B) 2152(6) 2165(2) 7136(2) 28(1) 1 C(5B) 1862(5) 1837(2) 7471(2) 22(1) 1 C(6B) 739(5) 1850(1) 7877(2) 15(1) 1 C(7B) 410(5) 1481(1) 8200(2) 18(1) 1 C(8B) 168(5) 1116(2) 7906(2) 23(1) 1 C(9B) -330(6) 784(2) 8183(2) 29(1) 1 C(10B) -541(5) 810(2) 8757(2) 28(1) 1 C(11B) -216(5) 1173(2) 9049(2) 22(1) 1 C(12B) -434(6) 1206(1) 9671(2) 23(1) 1 C(13B) -1857(6) 1046(2) 9854(2) 37(2) 1 C(14B) -2157(7) 1067(2) 10421(3) 49(2) 1 C(15B) -1014(7) 1257(2) 10819(2) 45(2) 1 C(16B) 415(6) 1408(2) 10641(2) 32(1) 1 C(17B) 783(6) 1387(1) 10072(2) 23(1) 1 C(18B) -2564(5) 2723(1) 8400(2) 20(1) 1 C(19B) -3826(5) 2806(1) 7961(2) 24(1) 1 C(20B) -4633(6) 3172(2) 7928(2) 28(1) 1 C(21B) -4219(6) 3463(2) 8329(2) 30(1) 1 C(22B) -3002(6) 3388(2) 8766(2) 46(2) 1 C(23B) -2180(6) 3023(1) 8803(2) 35(2) 1 C(24B) 3766(5) 1777(2) 10491(2) 21(1) 1 C(25B) 4428(6) 1529(2) 10940(2) 36(2) 1 C(26B) 5358(7) 1687(2) 11410(2) 49(2) 1 C(27B) 5682(6) 2093(2) 11451(2) 42(2) 1 C(28B) 5015(6) 2342(2) 11020(2) 34(1) 1 C(29B) 4069(5) 2182(2) 10543(2) 28(1) 1 C(30B) -2188(6) 2177(2) 10009(2) 45(2) 1 C(31B) -57(6) 2603(2) 10442(2) 51(2) 1 C(32B) 3461(6) 2399(2) 8810(2) 40(2) 1 C(33B) 2564(6) 2965(1) 9335(2) 45(2) 1 C(1C) 989(7) 10115(3) 135(3) 74(4) 0.50 C(2C) 1768(11) 9884(3) -251(4) 308(15) 0.50

Page 22: PDF (Supporting Information)

22

C(3C) 3469(12) 9888(3) -228(4) 299(15) 0.50 C(4C) 4392(7) 10122(3) 181(4) 76(4) 0.50 C(5C) 3613(7) 10353(2) 567(3) 36(3) 0.50 C(6C) 1912(7) 10350(2) 544(3) 23(2) 0.50 ________________________________________________________________________________ Table 5. Anisotropic displacement parameters (Å2x 104) for MSW03 (CCDC 787542). The anisotropic displacement factor exponent takes the form: -2π 2[ h2a*2U11 + ... + 2 h k a* b* U12 ] ______________________________________________________________________________ U11 U22 U33 U23 U13 U12 ______________________________________________________________________________ Zr(1) 160(3) 147(3) 157(3) -7(2) 8(2) -8(2) P(1A) 162(7) 173(8) 202(8) 9(6) 20(6) -13(6) P(2A) 169(8) 172(8) 167(8) -2(6) -4(6) -12(6) N(1A) 130(20) 200(30) 150(20) 0(20) -27(18) 0(20) N(2A) 210(20) 190(30) 170(20) 14(19) 16(18) -30(20) N(3A) 230(20) 190(30) 130(20) -31(19) 6(18) -20(20) C(1A) 170(30) 230(30) 110(30) 50(20) 40(20) -10(30) C(2A) 190(30) 260(30) 190(30) 30(20) -20(20) 30(30) C(3A) 220(30) 270(40) 250(30) 100(30) -10(20) -130(30) C(4A) 210(30) 370(40) 320(30) 90(30) 120(20) -10(30) C(5A) 250(30) 270(40) 220(30) 30(30) 80(20) 100(30) C(6A) 170(30) 190(30) 120(30) 40(20) 20(20) 20(30) C(7A) 130(30) 280(30) 160(30) 10(30) 0(20) 90(20) C(8A) 270(30) 250(30) 150(30) -50(30) 40(20) 40(30) C(9A) 260(30) 310(40) 230(30) -100(30) -30(20) 80(30) C(10A) 180(30) 160(30) 280(30) -40(30) -50(20) 30(20) C(11A) 90(30) 160(30) 180(30) -10(30) -30(20) 30(20) C(12A) 170(30) 100(30) 190(30) -50(20) 0(20) 30(20) C(13A) 140(30) 170(30) 300(30) -30(30) -40(20) 30(30) C(14A) 170(30) 180(30) 420(40) 30(30) 20(30) -60(20) C(15A) 270(30) 220(30) 270(30) 80(30) 70(20) -40(30) C(16A) 160(30) 230(30) 240(30) -20(30) -20(20) 0(30) C(17A) 150(30) 100(30) 200(30) 20(20) 10(20) 10(20) C(18A) 110(30) 140(30) 250(30) 0(30) 10(20) -20(20) C(19A) 240(30) 280(30) 150(30) 20(30) -10(20) -10(30) C(20A) 290(30) 150(30) 360(40) 30(30) -50(30) 50(30) C(21A) 270(30) 150(30) 420(40) -10(30) 20(30) 50(30) C(22A) 270(30) 340(40) 280(30) -60(30) 80(20) 0(30) C(23A) 210(30) 170(30) 290(30) 0(30) 70(20) -10(30) C(24A) 110(30) 200(30) 170(30) 10(20) 30(20) -40(20) C(25A) 240(30) 180(30) 240(30) 0(20) 30(20) -30(30) C(26A) 250(30) 220(30) 240(30) 80(30) -60(20) 0(30) C(27A) 240(30) 330(40) 150(30) 80(30) -80(20) -40(30) C(28A) 270(30) 310(40) 190(30) -50(30) -50(20) -10(30) C(29A) 230(30) 210(30) 210(30) 40(30) 20(20) 40(20) C(30A) 310(30) 370(40) 290(30) 60(30) 50(30) -120(30) C(31A) 370(30) 310(40) 260(30) -30(30) 70(20) -20(30) C(32A) 270(30) 270(30) 260(30) 20(30) -40(20) -50(30) C(33A) 360(30) 230(30) 280(30) 20(30) -40(30) -60(30)

Page 23: PDF (Supporting Information)

23

Zr(2) 202(3) 169(3) 196(3) -7(2) 24(2) 4(3) P(1B) 192(8) 161(8) 252(8) -9(6) 19(6) 5(6) P(2B) 208(8) 254(9) 213(8) -9(7) 32(6) 31(7) N(1B) 200(20) 130(30) 220(30) 40(20) -29(19) 20(20) N(2B) 310(30) 280(30) 210(30) 0(20) 50(20) 90(20) N(3B) 260(30) 230(30) 200(30) 20(20) -11(19) -50(20) C(1B) 180(30) 160(30) 190(30) -60(20) -40(20) -10(20) C(2B) 270(30) 130(30) 230(30) -30(30) 0(20) 40(30) C(3B) 290(30) 280(40) 250(30) 0(30) 60(30) -30(30) C(4B) 280(30) 390(40) 170(30) -30(30) 60(20) -20(30) C(5B) 220(30) 200(30) 220(30) -80(30) -30(20) 50(30) C(6B) 140(30) 160(30) 130(30) -30(20) -50(20) -20(20) C(7B) 120(30) 220(30) 190(30) -50(30) -70(20) 90(20) C(8B) 260(30) 180(30) 230(30) -20(30) -90(20) 120(30) C(9B) 290(30) 170(30) 360(40) -70(30) -160(30) 90(30) C(10B) 230(30) 150(30) 440(40) 50(30) -40(30) 0(30) C(11B) 130(30) 220(30) 280(30) -10(30) -30(20) 40(30) C(12B) 280(30) 140(30) 280(30) 60(30) 90(30) 40(30) C(13B) 380(40) 350(40) 390(40) 140(30) 60(30) -70(30) C(14B) 380(40) 540(50) 580(40) 220(40) 180(30) -160(30) C(15B) 550(40) 490(40) 340(40) 120(30) 160(30) -80(40) C(16B) 300(40) 320(40) 330(40) 70(30) 40(30) -30(30) C(17B) 310(30) 200(30) 190(30) 50(30) 70(30) 20(30) C(18B) 200(30) 180(30) 210(30) 0(20) 70(20) 0(20) C(19B) 320(30) 220(30) 190(30) -20(20) 30(20) 70(30) C(20B) 320(30) 270(40) 240(30) 60(30) -10(20) 90(30) C(21B) 310(30) 210(30) 360(30) 0(30) 10(30) 110(30) C(22B) 490(40) 220(40) 600(40) -150(30) -220(30) 90(30) C(23B) 330(30) 150(30) 520(40) -60(30) -170(30) 70(30) C(24B) 190(30) 250(30) 190(30) -30(30) 50(20) 10(30) C(25B) 490(40) 270(40) 300(30) -10(30) -40(30) 110(30) C(26B) 710(50) 450(50) 270(40) 30(30) -110(30) 140(40) C(27B) 480(40) 570(50) 190(30) -150(30) -40(30) 40(40) C(28B) 430(40) 340(40) 260(30) -10(30) 60(30) -50(30) C(29B) 300(30) 370(40) 180(30) 0(30) 20(20) -10(30) C(30B) 420(40) 590(40) 380(40) 110(30) 180(30) 160(40) C(31B) 670(40) 510(40) 360(40) -140(30) 50(30) 200(40) C(32B) 280(30) 610(40) 290(40) 70(30) -10(30) -150(30) C(33B) 510(40) 270(40) 540(40) 70(30) -110(30) -110(30) _____________________________________________________________________________

Page 24: PDF (Supporting Information)

24

Page 25: PDF (Supporting Information)

25

Page 26: PDF (Supporting Information)

26