outline polarized light in the universe descriptions of ...keller/teaching/... · summing of stokes...

46
Lecture 5: Polarization Outline 1 Polarized Light in the Universe 2 Descriptions of Polarized Light 3 Polarizers 4 Retarders Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 1

Upload: others

Post on 25-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Lecture 5: Polarization

    Outline

    1 Polarized Light in the Universe2 Descriptions of Polarized Light3 Polarizers4 Retarders

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 1

  • Polarized Light in the Universe

    Polarization indicates anisotropy⇒ not all directions are equal

    Typical anisotropies introduced bygeometry (not everything is spherically symmetric)temperature gradientsdensity gradientsmagnetic fieldselectrical fields

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 2

  • 13.7 billion year old temperature fluctuations from WMAP

    BICEP2 results and Planck Dust Polarization Map

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 3

  • Scattering Polarization 1

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 4

  • Scattering Polarization 2

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 5

  • The Power of Polarimetry

    T Tauri in intensity MWC147 in intensity

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 6

  • The Power of Polarimetry

    T Tauri in Linear Polarization MWC147 in Linear Polarization

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 7

  • Solar Magnetic Field Maps from Longitudinal Zeeman Effect

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 8

  • Summary of Polarization Origin

    Plane Vector Wave ansatz ~E = ~E0ei(~k ·~x−ωt)

    spatially, temporally constant vector ~E0 lays in planeperpendicular to propagation direction ~krepresent ~E0 in 2-D basis, unit vectors ~ex and ~ey , bothperpendicular to ~k

    ~E0 = Ex~ex + Ey~ey .

    Ex , Ey : arbitrary complex scalars

    damped plane-wave solution with given ω, ~k has 4 degrees offreedom (two complex scalars)additional property is called polarizationmany ways to represent these four quantitiesif Ex and Ey have identical phases, ~E oscillates in fixed planesum of plane waves is also a solution

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 9

  • Polarization Ellipse

    Polarization Ellipse Polarization

    ~E (t) = ~E0ei(~k ·~x−ωt)

    ~E0 = |Ex |eiδx~ex + |Ey |eiδy~eywave vector in z-direction~ex , ~ey : unit vectors in x , y|Ex |, |Ey |: (real) amplitudesδx ,y : (real) phases

    Polarization Description2 complex scalars not the most useful descriptionat given ~x , time evolution of ~E described by polarization ellipseellipse described by axes a, b, orientation ψ

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 10

  • Jones Formalism

    Jones Vectors

    ~E0 = Ex~ex + Ey~ey

    beam in z-direction~ex , ~ey unit vectors in x , y -directioncomplex scalars Ex ,yJones vector

    ~e =(

    ExEy

    )phase difference between Ex , Ey multiple of π, electric field vectoroscillates in a fixed plane⇒ linear polarizationphase difference ±π2 ⇒ circular polarization

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 12

  • Summing and Measuring Jones Vectors

    ~E0 = Ex~ex + Ey~ey

    ~e =(

    ExEy

    )

    Maxwell’s equations linear⇒ sum of two solutions again asolutionJones vector of sum of two waves = sum of Jones vectors ofindividual waves if wave vectors ~k the sameaddition of Jones vectors: coherent superposition of waveselements of Jones vectors are not observed directlyobservables always depend on products of elements of Jonesvectors, i.e. intensity

    I = ~e · ~e∗ = exe∗x + eye∗y

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 13

  • Jones matricesinfluence of medium on polarization described by 2× 2 complexJones matrix J

    ~e′ = J~e =(

    J11 J12J21 J22

    )~e

    assumes that medium not affected by polarization statedifferent media 1 to N in order of wave direction⇒ combinedinfluence described by

    J = JNJN−1 · · · J2J1

    order of matrices in product is crucialJones calculus describes coherent superposition of polarized light

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 14

  • Linear Polarization

    horizontal:(

    10

    )vertical:

    (01

    )45◦: 1√

    2

    (11

    )

    Circular Polarization

    left: 1√2

    (1i

    )right: 1√

    2

    (1−i

    )

    Notes on Jones FormalismJones formalism operates on amplitudes, not intensitiescoherent superposition important for coherent light (lasers,interference effects)Jones formalism describes 100% polarized light

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 15

  • Stokes and Mueller Formalisms

    Stokes Vectorformalism to describe polarization of quasi-monochromatic lightdirectly related to measurable intensitiesStokes vector fulfills these requirements

    ~I =

    IQUV

    =

    ExE∗x + EyE∗yExE∗x − EyE∗yExE∗y + EyE∗x

    i(ExE∗y − EyE∗x

    ) =

    |Ex |2 + |Ey |2|Ex |2 − |Ey |2

    2|Ex ||Ey | cos δ2|Ex ||Ey | sin δ

    Jones vector elements Ex ,y , real amplitudes |Ex ,y |, phasedifference δ = δy − δxI2 ≥ Q2 + U2 + V 2

    can describe unpolarized (Q = U = V = 0) light

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 16

  • Stokes Vector Interpretation

    ~I =

    IQUV

    =

    intensitylinear 0◦ − linear 90◦

    linear 45◦ − linear 135◦circular left− right

    degree of polarization

    P =√

    Q2 + U2 + V 2

    I

    1 for fully polarized light, 0 for unpolarized lightsumming of Stokes vectors = incoherent adding ofquasi-monochromatic light waves

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 18

  • Linear Polarization

    horizontal:

    1−100

    vertical:

    1100

    45◦:

    1010

    Circular Polarization

    left:

    1001

    right:

    100−1

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 19

  • Mueller Matrices4× 4 real Mueller matrices describe (linear) transformationbetween Stokes vectors when passing through or reflecting frommedia

    ~I′ = M~I ,

    M =

    M11 M12 M13 M14M21 M22 M23 M24M31 M32 M33 M34M41 M42 M43 M44

    N optical elements, combined Mueller matrix is

    M′ = MNMN−1 · · ·M2M1

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 20

  • Rotating Mueller Matricesoptical element with Mueller matrix MMueller matrix of the same element rotated by θ around the beamgiven by

    M(θ) = R(−θ)MR(θ)

    with

    R (θ) =

    1 0 0 00 cos 2θ sin 2θ 00 − sin 2θ cos 2θ 00 0 0 1

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 21

  • Vertical Linear Polarizer

    Mpol (θ) =12

    1 1 0 01 1 0 00 0 0 00 0 0 0

    Horizontal Linear Polarizer

    Mpol (θ) =12

    1 −1 0 0−1 1 0 00 0 0 00 0 0 0

    Mueller Matrix for Ideal Linear Polarizer at Angle θ

    Mpol (θ) =12

    1 cos 2θ sin 2θ 0

    cos 2θ cos2 2θ sin 2θ cos 2θ 0sin 2θ sin 2θ cos 2θ sin2 2θ 0

    0 0 0 0

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 22

  • Poincaré Sphere

    Relation to Stokes Vectorfully polarized light:I2 = Q2 + U2 + V 2

    for I2 = 1: sphere in Q, U, Vcoordinate systempoint on Poincaré sphererepresents particular stateof polarizationgraphical representation offully polarized light

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 23

  • Polarizers

    polarizer: optical element that produces polarized light fromunpolarized input lightlinear, circular, or in general elliptical polarizer, depending on typeof transmitted polarizationlinear polarizers by far the most commonlarge variety of polarizers

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 24

  • Jones Matrix for Linear PolarizersJones matrix for linear polarizer:

    Jp =(

    px 00 py

    )0 ≤ px ≤ 1 and 0 ≤ py ≤ 1, real: transmission factors for x ,y -components of electric field: E ′x = pxEx , E ′y = pyEypx = 1, py = 0: linear polarizer in +Q directionpx = 0, py = 1: linear polarizer in −Q directionpx = py : neutral density filter

    Mueller Matrix for Linear Polarizers

    Mp =12

    1 1 0 01 1 0 00 0 0 00 0 0 0

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 25

  • Mueller Matrix for Ideal Linear Polarizer at Angle θ

    Mpol (θ) =12

    1 cos 2θ sin 2θ 0

    cos 2θ cos2 2θ sin 2θ cos 2θ 0sin 2θ sin 2θ cos 2θ sin2 2θ 0

    0 0 0 0

    Poincare Sphere

    polarizer is a point on the Poincaré spheretransmitted intensity: cos2(l/2), l is arch length of great circlebetween incoming polarization and polarizer on Poincaré sphere

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 26

  • Brewster Angle Polarizer

    rp =tan(θi−θt )tan(θi+θt )

    = 0 when θi + θt = π2corresponds to Brewster angle of incidence of tan θB =

    n2n1

    occurs when reflected wave is perpendicular to transmitted wavereflected light is completely s-polarizedtransmitted light is moderately polarized

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 27

  • Wire Grid Polarizers

    parallel conducting wires, spacing d . λ act as polarizerelectric field parallel to wires induces electrical currents in wiresinduced electrical current reflects polarization parallel to wirespolarization perpendicular to wires is transmittedrule of thumb:

    d < λ/2⇒ strong polarizationd � λ⇒ high transmission of both polarization states (weakpolarization)

    mostly used in infrared

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 28

  • Polaroid-type Polarizers

    developed by Edwin Land in 1938⇒ Polaroidsheet polarizers: stretched polyvynil alcohol (PVA) sheet,laminated to sheet of cellulose acetate butyrate, treated withiodinePVA-iodine complex analogous to short, conducting wirecheap, can be manufactured in large sizes

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 29

  • Crystal-Based Polarizerscrystals are basis of highest-qualitypolarizersprecise arrangement of atom/molecules andanisotropy of index of refraction separateincoming beam into two beams withprecisely orthogonal linear polarizationstateswork well over large wavelength rangemany different configurationscalcite most often used in crystal-basedpolarizers because of large birefringence,low absorption in visiblemany other suitable materials

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 30

  • Indices of Refraction of Crystalin anisotropic material: dielectric constant is a tensorMaxwell equations imply symmetric dielectric tensor

    � = �T =

    �11 �12 �13�12 �22 �23�13 �23 �33

    symmetric tensor of rank 2⇒ Cartesian coordinate system existswhere tensor is diagonal3 principal indices of refraction in coordinate system spanned byprincipal axes

    ~D =

    n2x 0 00 n2y 00 0 n2z

    ~E

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 31

  • Uniaxial Materials

    isotropic materials: nx = ny = nzanisotropic materials:nx 6= ny 6= nzuniaxial materials: nx = ny 6= nzordinary index of refraction:no = nx = nyextraordinary index of refraction:ne = nzrotation of coordinate systemaround z has no effectmost materials used in polarimetryare (almost) uniaxial

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 32

  • Plane Waves in Anisotropic Media

    no net charges (∇ · ~D = 0): ~D · ~k = 0~D 6‖ ~E ⇒ ~E 6⊥ ~kconstant, scalar µ, vanishing currentdensity⇒ ~H ‖ ~B∇ · ~H = 0⇒ ~H ⊥ ~k∇× ~H = 1c

    ∂~D∂t ⇒ ~H ⊥ ~D

    ∇× ~E = −µc∂~H∂t ⇒ ~H ⊥ ~E

    ~D, ~E , and ~k all in one plane~H, ~B perpendicular to that planePoynting vector ~S = c4π

    ~E × ~Hperpendicular to ~E and ~H ⇒ ~S (ingeneral) not parallel to ~kenergy (in general) not transported indirection of wave vector ~k

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 33

  • Crystal-Based Polarizing Beamsplitter

    one linear polarization goes straight through as in isotropicmaterial (ordinary ray)perpendicular linear polarization propagates at an angle(extraordinary ray)different optical path lengthscrystal aberrations

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 34

  • Total Internal Reflection (TIR)

    Snell’s law: sin θt = n1n2 sin θiwave from high-index medium into lower index medium (e.g. glassto air): n1/n2 > 1right-hand side > 1 for sin θi >

    n2n1

    all light is reflected in high-index medium⇒ total internal reflectiontransmitted wave has complex phase angle⇒ damped wavealong interface

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 35

  • Total Internal Reflection (TIR) in Crystals

    TIR also in anisotropic mediano 6= ne ⇒ one beam may be totallyreflected while other is transmittedprincipal of most crystal polarizersexample: calcite prism, normal incidence,optic axis parallel to first interface, exit faceinclined by 40◦

    ⇒ extraordinary ray not refracted, two rayspropagate according to indices no,neat second interface rays (and wave vectors)at 40◦ to surface632.8 nm: no = 1.6558, ne = 1.4852requirement for total reflection nUnI sin θU > 1with nI = 1⇒ extraordinary ray transmitted,ordinary ray undergoes TIR

    no, n

    e

    e

    o

    40°

    40°

    c

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 36

  • Wollaston Prism

    Savart Plate

    Foster Prism

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 37

  • Retarders or Wave Plates

    retards (delays) phase of one electric field component withrespect to orthogonal componentanisotropic material (crystal) has index of refraction that dependson polarization

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 38

  • Phase Delay between Ordinary and Extraordinary Raysordinary and extraordinary wave propagate in same directionordinary ray propagates with speed cnoextraordinary beam propagates at different speed cne~Eo, ~Ee perpendicular to each other⇒ plane wave with arbitrarypolarization can be (coherently) decomposed into componentsparallel to ~Eo and ~Ee2 components will travel at different speeds(coherently) superposing 2 components after distance d ⇒ phasedifference between 2 components ωc (ne − no)d radiansphase difference⇒ change in polarization statebasis for constructing linear retarders

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 39

  • Retarder Propertiesdoes not change intensity or degree of polarizationcharacterized by two (not identical, not trivial) Stokes vectors ofincoming light that are not changed by retarder⇒ eigenvectors ofretarderdepending on polarization described by eigenvectors, retarder is

    linear retardercircular retarderelliptical retarder

    linear, circular retarders are special cases of elliptical retarderscircular retarders sometimes called rotators since they rotate theorientation of linearly polarized lightlinear retarders by far the most common type of retarder

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 40

  • Jones Matrix for Linear Retarderslinear retarder with fast axis at 0◦ characterized by Jones matrix

    Jr (δ) =(

    eiδ 00 1

    ), Jr (δ) =

    (ei

    δ2 0

    0 e−iδ2

    )

    δ: phase shift between two linear polarization components (inradians)absolute phase does not matter

    Mueller Matrix for Linear Retarder

    Mr =

    1 0 0 00 1 0 00 0 cos δ − sin δ0 0 sin δ cos δ

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 41

  • Quarter-Wave Plate on the Poincaré Sphere

    retarder eigenvector (fast axis) in Poincaré spherepoints on sphere are rotated around retarder axis by amount ofretardation

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 42

  • Phase Change on Total Internal Reflection (TIR)

    TIR induces phase changethat depends on polarizationcomplex ratios:rs,p = |rs,p|eiδs,p

    phase change δ = δs − δp

    tanδ

    2=

    cos θi

    √sin2 θi −

    (n2n1

    )2sin2 θi

    relation valid between criticalangle and grazing incidenceat critical angle and grazingincidence δ = 0

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 43

  • Variable Retarderssensitive polarimeters requires retarders whose properties(retardance, fast axis orientation) can be varied quickly(modulated)retardance changes (change of birefringence):

    liquid crystalsFaraday, Kerr, Pockels cellspiezo-elastic modulators (PEM)

    fast axis orientation changes (change of c-axis direction):rotating fixed retarderferro-electric liquid crystals (FLC)

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 44

  • Liquid Crystals

    liquid crystals: fluids with elongated moleculesat high temperatures: liquid crystal is isotropicat lower temperature: molecules become ordered in orientationand sometimes also space in one or more dimensionsliquid crystals can line up parallel or perpendicular to externalelectrical field

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 45

  • Liquid Crystal Retarders

    dielectric constant anisotropy often large⇒ very responsive tochanges in applied electric fieldbirefringence δn can be very large (larger than typical crystalbirefringence)liquid crystal layer only a few µm thickbirefringence shows strong temperature dependence

    Christoph U. Keller, Leiden University, [email protected] ATI 2016, Lecture 4: Polarization 46