optical subcarrier generation long xiao 03/12/2003

12
Optical Subcarrier Generation Long Xiao 03/12/2003

Upload: brenda-booker

Post on 20-Jan-2016

238 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Optical Subcarrier Generation Long Xiao 03/12/2003

Optical Subcarrier Generation

Long Xiao

03/12/2003

Page 2: Optical Subcarrier Generation Long Xiao 03/12/2003

Outline

Optical Subcarrier generate Optical phase locked loop (OPLL)

Page 3: Optical Subcarrier Generation Long Xiao 03/12/2003

Four Methods of Optical Generation of a Millimeter-wave subcarrier

Direct modulation of a laser diode.External modulation.Laser mode locking.Heterodyning of two single-mode

lasers.

Page 4: Optical Subcarrier Generation Long Xiao 03/12/2003

A Tunable Millimeter-Wave Optical Transmitter

Page 5: Optical Subcarrier Generation Long Xiao 03/12/2003

Photograph of Two Laser Module

Page 6: Optical Subcarrier Generation Long Xiao 03/12/2003

Spectrum of the Heterodyne Signal

The 0.3 nm wavelength separation between the outputs of two microchip-lasers corresponds to 90 GHz heterodyne signal.

Page 7: Optical Subcarrier Generation Long Xiao 03/12/2003

Performance of the Heterodyne System

Continuous tuning range (CTR): 45 GHz.

Sensitivity: 13.4 MHz/ V.

Phase noise: -90 dBc/Hz at 10 kHz offset.

Page 8: Optical Subcarrier Generation Long Xiao 03/12/2003

Diagram of the Optical Phase Locked Loop With Reference Signal

Master Laser

Slave Laser

PhotodectorReference

Signal

LoopFilter

OpticalCoupler

Page 9: Optical Subcarrier Generation Long Xiao 03/12/2003

Diagram of the Phase Locked Loop With Delay Line

Tunable

optical/millimeter wave transmitter

Photodetector

Loop filter

Photodetector

X

Output

Page 10: Optical Subcarrier Generation Long Xiao 03/12/2003

Packaged Optical Phase Locked Loop

Page 11: Optical Subcarrier Generation Long Xiao 03/12/2003

References

[1] Y. LI, A. J. C. Vieira, S. M. Goldwasser, P. R. Herczfeld, “Rapidly Tunable Millimeter-Wave Optical Transmitter for Lidar/Radar”, IEEE Transactions on Microwave Theory and Techniques, special issue on microwave and millimeter-wave photonics, Vol. 49, No. 10, pp. 2048-2054, October 2001.

[2] Y. Li, S. Goldwasser, P. R. Herczfeld, “Optical Generated Dynamically Tunable,Low Noise Millimeter Wave Signals Using Microchip Solid Satte Lasers.

[3] Yao, X. Steve, et al, “Optoelectronic oscillator for photonic systems”, IEEE Journal of Quantum Electronics, v32, n7, pp 1141-1149, Jul, 1996.

[4] Yao, X. Steve, et al, “Multiloop optoelectronic oscillator”, IEEE Journal of Quantum Electronics, v36, n1, pp 79-84, 2000.

[5] R. T. Ramos, A. J. Seeds, “Delay, Linewidth and Bandwidth Limitations in Optical Phase-locked Loop Design”, Electronics Letters, Vol. 26, No. 6, pp 389-391, March 1990.

[6] A. C. Bordonalli, C. Walton, A. J. Seeds, ”High-Performance Homodyne Optical Injection Phase-Lock Loop Using Wide-Linewidth Semiconductor Lasers”, IEEE Photonics Technology Letters, Vol. 8, No. 9, September 1996.

Page 12: Optical Subcarrier Generation Long Xiao 03/12/2003

References

[7] R. T. Ramos and A. J. Seeds, “comparison between first-order and second-order optical phase-lock loops”, IEEE microwave and guided wave letters, vol. 4, no. 1. January 1994.

[8] L. N. Langley, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, and A. J. Seeds, “packaged semiconductor laser optical phase-locked loop (OPLL) for Photonic generation, processing and transmission of microwave signals. IEEE Transcations on microwave theory and techniques, vol. 47, no. 7, July 1999.

[9] L. G. Kazovsky, and D. A. Atlas, “A 1320 nm experimental optical phase-locked loop”, IEEE Photonics technology letters, vol. 1. No. 11, November 1989.

[10] L. G. Kazovsky, and B. Jensen, “experimental relative frequency stabilization of a set of lasers using optical phase-locked loops”, IEEE Photonics technology letters, vol. 2. No. 7, July 1990.

[11] L. G. Kazovsky, and D. A. Atlas, “A 1320-nm experimental optical phase-locked loop: performance investigation and PSK homodyne experiments at 140 Mb/s and 2 Gb/s”. Journal of Lightwave technology, vol. 8. No. 9. September 1990.