nsdd workshop, trieste, february 2006 nuclear structure (ii) collective models p. van isacker,...

47
NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

Upload: alexina-patterson

Post on 29-Dec-2015

223 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Nuclear Structure(II) Collective models

P. Van Isacker, GANIL, France

Page 2: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Overview of collective models

• (Rigid) rotor model

• (Harmonic quadrupole) vibrator model

• Liquid-drop model of vibrations and rotations

• Interacting boson model

• Particle-core coupling model

• Nilsson model

Page 3: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Evolution of Ex(2+)

J.L. Wood, private communication

Page 4: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Quantum-mechanical symmetric top• Energy spectrum:

• Large deformation large low Ex(2+).

• R42 energy ratio:

E rot I( ) =h2

2ℑI I +1( )

≡ A I I +1( ), I = 0,2,4,K

E rot 4+( ) / E rot 2+

( ) = 3.333K

Page 5: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Rigid rotor model

• Hamiltonian of quantum-mechanical rotor in terms of ‘rotational’ angular momentum R:

• Nuclei have an additional intrinsic part Hintr with ‘intrinsic’ angular momentum J.

• The total angular momentum is I=R+J.

ˆ H rot =h2

2

R12

ℑ 1

+R2

2

ℑ 2

+R3

2

ℑ 3

⎣ ⎢

⎦ ⎥=

h2

2

Ri2

ℑ ii=1

3

Page 6: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Rigid axially symmetric rotor

• For 1=2= ≠ 3 the rotor hamiltonian is

• Eigenvalues of H´rot:

• Eigenvectors KIM of H´rot satisfy:

ˆ H rot =h2

2ℑ i

Ii − Ji( )2

i=1

3

∑ =h2

2ℑ i

Ii2

i=1

3

∑ˆ ′ H rot

1 2 4 3 4 −

h2

ℑ i

IiJi

i=1

3

∑Coriolis

1 2 4 3 4 +

h2

2ℑ i

Ji2

i=1

3

∑intrinsic

1 2 4 3 4

′ E KI =h2

2ℑI I +1( ) +

h2

2

1

ℑ 3

−1

⎝ ⎜

⎠ ⎟K

2

I2 KIM = I I +1( ) KIM ,

Iz KIM = M KIM , I3 KIM = K KIM

Page 7: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Ground-state band of an axial rotor• The ground-state spin of

even-even nuclei is I=0. Hence K=0 for ground-state band:

E I =h2

2ℑI I +1( )

Page 8: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

The ratio R42

Page 9: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Electric (quadrupole) properties

• Partial -ray half-life:

• Electric quadrupole transitions:

• Electric quadrupole moments:

B E2;Ii → If( ) =1

2Ii +1If M f ekrk

2Y2μ θk,ϕ k( )k=1

A

∑ IiM i

2

M f μ

∑M i

eQ I( ) = IM = I16π

5ekrk

2

k=1

A

∑ Y20 θk,ϕ k( ) IM = I

T1/ 2γ Eλ( ) = ln2

h

λ +1

λ 2λ +1( )!![ ]2

hc

⎝ ⎜

⎠ ⎟

2λ +1

B Eλ( ) ⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪

−1

Page 10: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Magnetic (dipole) properties

• Partial -ray half-life:

• Magnetic dipole transitions:

• Magnetic dipole moments:

B M1;Ii → If( ) =1

2Ii +1If M f gk

l lk,μ + gkssk,μ( ) IiM i

k=1

A

∑2

M f μ

∑M i

μ I( ) = IM = I gkl lk,z + gk

ssk,z( )k=1

A

∑ IM = I

T1/ 2γ Mλ( ) = ln2

h

λ +1

λ 2λ +1( )!![ ]2

hc

⎝ ⎜

⎠ ⎟

2λ +1

B Mλ( ) ⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪

−1

Page 11: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

E2 properties of rotational nuclei

• Intra-band E2 transitions:

• E2 moments:

• Q0(K) is the ‘intrinsic’ quadrupole moment:

B E2;KIi → KIf( ) =5

16πIiK 20 IfK

2e2Q0 K( )

2

Q KI( ) =3K 2 − I I +1( )I +1( ) 2I + 3( )

Q0 K( )

e ˆ Q 0 ≡ ρ ′ r ( )∫ r2 3cos2 ′ θ −1( )d ′ r , Q0 K( ) = K ˆ Q 0 K

Page 12: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

E2 properties of ground-state bands

• For the ground state (usually K=I):

• For the gsb in even-even nuclei (K=0):

Q K = I( ) =I 2I −1( )

I +1( ) 2I + 3( )Q0 K( )

B E2;I → I − 2( ) =15

32π

I I −1( )2I −1( ) 2I +1( )

e2Q02

Q I( ) = −I

2I + 3Q0

⇒ eQ 21+

( ) =2

716π ⋅B E2;21

+ → 01+

( )

Page 13: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Generalized intensity relations

• Mixing of K arises from– Dependence of Q0 on I (stretching)

– Coriolis interaction– Triaxiality

• Generalized intra- and inter-band matrix elements (eg E2):

B E2;K iIi → K fIf( )

IiK i 2K f − K i IfK f

= M0 + M1Δ + M2Δ2 +L

with Δ = If If +1( ) − Ii Ii +1( )

Page 14: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Inter-band E2 transitions• Example of g

transitions in 166Er:

B E2;Iγ → Ig( )

Iγ 2 2 − 2 Ig0

= M0 + M1Δ + M2Δ2 +L

Δ = Ig Ig +1( ) − Iγ Iγ +1( )

W.D. Kulp et al., Phys. Rev. C 73 (2006) 014308

Page 15: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Modes of nuclear vibration

• Nucleus is considered as a droplet of nuclear matter with an equilibrium shape. Vibrations are modes of excitation around that shape.

• Character of vibrations depends on symmetry of equilibrium shape. Two important cases in nuclei:– Spherical equilibrium shape– Spheroidal equilibrium shape

Page 16: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Vibrations about a spherical shape

• Vibrations are characterized by a multipole quantum number in surface parametrization:

=0: compression (high energy) =1: translation (not an intrinsic excitation) =2: quadrupole vibration

R θ,ϕ( ) = R0 1+ α λμYλμ* θ,ϕ( )

μ =−λ

∑λ

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

⇔ ⇔

Page 17: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Properties of spherical vibrations• Energy spectrum:

• R42 energy ratio:

• E2 transitions:

Evib n( ) = n + 5

2( )hω, n = 0,1K

Evib 4+( ) / Evib 2+

( ) = 2

B E2;21+ → 01

+( ) = α 2

B E2;22+ → 01

+( ) = 0

B E2;n = 2 → n =1( ) = 2α 2

Page 18: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Example of 112Cd

Page 19: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Possible vibrational nuclei from R42

Page 20: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Vibrations about a spheroidal shape

• The vibration of a shape with axial symmetry is characterized by a.

• Quadrupole oscillations: =0: along the axis of

symmetry () =1: spurious rotation =2: perpendicular to

axis of symmetry ()

c βγ

⇔γ⇔

c β

Page 21: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Spectrum of spheroidal vibrations

Page 22: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Example of 166Er

Page 23: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Rigid triaxial rotor

• Triaxial rotor hamiltonian 1 ≠ 2 ≠ 3 :

• H´mix non-diagonal in axial basis KIM K is not a conserved quantum number

ˆ ′ H rot =h2

2ℑ i

Ii2

i=1

3

∑ =h2

2ℑI2 +

h2

2ℑ f

I32

ˆ ′ H axial

1 2 4 4 3 4 4

+h2

2ℑ g

I+2 + I−

2( )

ˆ ′ H mix

1 2 4 4 3 4 4

1

ℑ=

1

2

1

ℑ 1

+1

ℑ 2

⎝ ⎜

⎠ ⎟,

1

ℑ f

=1

ℑ 3

−1

ℑ,

1

ℑ g

=1

4

1

ℑ 1

−1

ℑ 2

⎝ ⎜

⎠ ⎟

Page 24: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Rigid triaxial rotor spectra

=30o

=15o

Page 25: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Tri-partite classification of nuclei

• Empirical evidence for seniority-type, vibrational- and rotational-like nuclei:

• Need for model of vibrational nuclei. N.V. Zamfir et al., Phys. Rev. Lett. 72 (1994) 3480

Page 26: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Interacting boson model

• Describe the nucleus as a system of N interacting s and d bosons. Hamiltonian:

• Justification from– Shell model: s and d bosons are associated with S

and D fermion (Cooper) pairs.– Geometric model: for large boson number the IBM

reduces to a liquid-drop hamiltonian.

ˆ H IBM = ε iˆ b i

+ ˆ b ii=1

6

∑ + υ i1i2i3i4ˆ b i1

+ ˆ b i2+ ˆ b i3

ˆ b i4i1i2i3i4 =1

6

Page 27: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Dimensions• Assume available 1-fermion states. Number

of n-fermion states is

• Assume available 1-boson states. Number of n-boson states is

• Example: 162Dy96 with 14 neutrons (=44) and 16 protons (=32) (132Sn82 inert core).– SM dimension: ~7·1019

– IBM dimension: 15504

n

⎝ ⎜

⎠ ⎟=

Ω!

n! Ω − n( )!

+ n −1

n

⎝ ⎜

⎠ ⎟=

Ω + n −1( )!

n! Ω −1( )!

Page 28: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Dynamical symmetries

• Boson hamiltonian is of the form

• In general not solvable analytically.

• Three solvable cases with SO(3) symmetry:€

ˆ H IBM = ε iˆ b i

+ ˆ b ii=1

6

∑ + υ i1i2i3i4ˆ b i1

+ ˆ b i2+ ˆ b i3

ˆ b i4i1i2i3i4 =1

6

U 6( )⊃U 5( )⊃SO 5( )⊃SO 3( )

U 6( )⊃SU 3( )⊃SO 3( )

U 6( )⊃SO 6( )⊃SO 5( )⊃SO 3( )

Page 29: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

U(5) vibrational limit: 110Cd62

Page 30: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

SU(3) rotational limit: 156Gd92

Page 31: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

SO(6) -unstable limit: 196Pt118

Page 32: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Applications of IBM

Page 33: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Classical limit of IBM• For large boson number N the minimum of

V()=N;H approaches the exact ground-state energy:

V β,γ( )∝

U(5) :β 2

1+ β 2

SU(3) :β 4 − 4 2β 3 cos3γ + 8β 2

8 1+ β 2( )

2

SO(6) :1− β 2

1+ β 2

⎝ ⎜

⎠ ⎟

2

⎪ ⎪ ⎪ ⎪

⎪ ⎪ ⎪ ⎪

Page 34: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Phase diagram of IBM

J. Jolie et al. , Phys. Rev. Lett. 87 (2001) 162501.

Page 35: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

The ratio R42

Page 36: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Extensions of IBM

• Neutron and proton degrees freedom (IBM-2):– F-spin multiplets (N+N=constant)

– Scissors excitations

• Fermion degrees of freedom (IBFM):– Odd-mass nuclei– Supersymmetry (doublets & quartets)

• Other boson degrees of freedom:– Isospin T=0 & T=1 pairs (IBM-3 & IBM-4)– Higher multipole (g,…) pairs

Page 37: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Scissors mode• Collective displacement

modes between neutrons and protons:– Linear displacement

(giant dipole resonance): R-R E1 excitation.

– Angular displacement (scissors resonance): L-L M1 excitation.

Page 38: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Supersymmetry• A simultaneous description of even- and odd-mass

nuclei (doublets) or of even-even, even-odd, odd-even and odd-odd nuclei (quartets).

• Example of 194Pt, 195Pt, 195Au & 196Au:

Page 39: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Bosons + fermions

• Odd-mass nuclei are fermions.

• Describe an odd-mass nucleus as N bosons + 1 fermion mutually interacting. Hamiltonian:

• Algebra:

• Many-body problem is solved analytically for certain energies and interactions .

ˆ H IBFM = ˆ H IBM + ε j ˆ a j+ ˆ a j

j=1

Ω

∑ + υ i1 j1i2 j2

ˆ b i1+ ˆ a j1

+ ˆ b i2 ˆ a j2

j1 j2 =1

Ω

∑i1i2 =1

6

U 6( )⊕U Ω( ) =ˆ b i1

+ ˆ b i2ˆ a j1

+ ˆ a j2

⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪

Page 40: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Example: 195Pt117

Page 41: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Example: 195Pt117 (new data)

Page 42: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Nuclear supersymmetry

• Up to now: separate description of even-even and odd-mass nuclei with the algebra

• Simultaneous description of even-even and odd-mass nuclei with the superalgebra

U 6( )⊕U Ω( ) =ˆ b i1

+ ˆ b i2ˆ a j1

+ ˆ a j2

⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪

U 6/Ω( ) =ˆ b i1

+ ˆ b i2ˆ b i1

+ ˆ a j2

ˆ a j1+ ˆ b i2 ˆ a j1

+ ˆ a j2

⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪

Page 43: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

U(6/12) supermultiplet

Page 44: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Example: 194Pt116 &195Pt117

Page 45: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Example: 196Au117

Page 46: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Bibliography• A. Bohr and B.R. Mottelson, Nuclear Structure. I

Single-Particle Motion (Benjamin, 1969).• A. Bohr and B.R. Mottelson, Nuclear Structure. II

Nuclear Deformations (Benjamin, 1975).• R.D. Lawson, Theory of the Nuclear Shell Model

(Oxford UP, 1980).• K.L.G. Heyde, The Nuclear Shell Model (Springer-

Verlag, 1990).• I. Talmi, Simple Models of Complex Nuclei (Harwood,

1993).

Page 47: NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Bibliography (continued)• P. Ring and P. Schuck, The Nuclear Many-Body

Problem (Springer, 1980).• D.J. Rowe, Nuclear Collective Motion (Methuen,

1970).• D.J. Rowe and J.L. Wood, Fundamentals of Nuclear

Collective Models, to appear.• F. Iachello and A. Arima, The Interacting Boson

Model (Cambridge UP, 1987).