symmetries of the nuclear shell modelific.uv.es/~euschool/lec_isacker02.pdf · symmetries of the...

35
Symmetries in N~Z nuclei (II), Valencia, September 2003 Symmetries of the nuclear shell model P. Van Isacker, GANIL, France Racah’s SU(2) pairing model Wigner’s SU(4) symmetry Elliott’s SU(3) model of rotation Generalized pairing models* Generalized SU(3) models*

Upload: others

Post on 07-Jun-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Symmetries of the nuclear shell modelific.uv.es/~euschool/lec_isacker02.pdf · Symmetries of the nuclear shell model P. Van Isacker, GANIL, France Racah’s SU(2) pairing model Wigner’s

Symmetries in N~Z nuclei (II), Valencia, September 2003

Symmetries of thenuclear shell model

P. Van Isacker, GANIL, France

Racah’s SU(2) pairing modelWigner’s SU(4) symmetryElliott’s SU(3) model of rotationGeneralized pairing models*Generalized SU(3) models*

Page 2: Symmetries of the nuclear shell modelific.uv.es/~euschool/lec_isacker02.pdf · Symmetries of the nuclear shell model P. Van Isacker, GANIL, France Racah’s SU(2) pairing model Wigner’s

Symmetries in N~Z nuclei (II), Valencia, September 2003

Nuclear shell model• Many-body quantum mechanical problem:

• Independent-particle assumption. Choose Vand neglect residual interaction:

H =pk

2

2mkk =1

A

 + W xk,xl( )k < l

A

 xk ≡r r k,

r s k ,r t k{ }, r p k = -ih

r — k[ ]

=pk

2

2mk

+ V xk( )È

Î Í ˘

˚ ˙ k =1

A

Âmean field

1 2 4 4 4 3 4 4 4

+ W xk ,xl( )k <l

A

 - V xk( )k =1

A

ÂÈ

Î Í ˘

˚ ˙

residual interaction1 2 4 4 4 4 3 4 4 4 4

H ª HIP =pk

2

2mk

+ V xk( )È

Î Í ˘

˚ ˙ k =1

A

Â

Page 3: Symmetries of the nuclear shell modelific.uv.es/~euschool/lec_isacker02.pdf · Symmetries of the nuclear shell model P. Van Isacker, GANIL, France Racah’s SU(2) pairing model Wigner’s

Symmetries in N~Z nuclei (II), Valencia, September 2003

Independent-particle shell model• Solution for one particle:

• Solution for many particles:

pk2

2mk

+ V xk( )È

Î Í ˘

˚ ˙ f i k( ) = Eif i k( ) f i k( ) ≡ fir r k ,r s k ,

r t k( )[ ]

F i1i2Ki A1,2,K, A( ) = fik

k( )k = 1

A

HIPFi1i2 Ki A1, 2,K, A( ) = Eik

k =1

A

ÂÊ

Ë Á ˆ

¯ Fi 1i2 KiA

1, 2,K, A( )

Page 4: Symmetries of the nuclear shell modelific.uv.es/~euschool/lec_isacker02.pdf · Symmetries of the nuclear shell model P. Van Isacker, GANIL, France Racah’s SU(2) pairing model Wigner’s

Symmetries in N~Z nuclei (II), Valencia, September 2003

Independent-particle shell model• Antisymmetric solution for many fermions

(Slater determinant):

• Example for A=2 fermions:

Yi1i2Ki A1,2,K, A( ) =

1A!

f i11( ) fi 1

2( ) K f i1 A( )fi 2

1( ) fi 22( ) K fi 2

A( )M M O M

fiA 1( ) f iA2( ) K fiA A( )

Yi1i2 1,2( ) =12

f i1 1( )fi 22( ) -f i1

2( )fi2 1( )[ ]

Page 5: Symmetries of the nuclear shell modelific.uv.es/~euschool/lec_isacker02.pdf · Symmetries of the nuclear shell model P. Van Isacker, GANIL, France Racah’s SU(2) pairing model Wigner’s

Symmetries in N~Z nuclei (II), Valencia, September 2003

Hartree-Fock approximation• Vary fi (i.e. V) to minize the expectation value

of H in a Slater determinant:

• Application requires choice of H. Many globalparametrizations (Skyrme, Gogny,…) havebeen developed.

dYi1i2 KiA

* 1, 2,K, A( )HYi1i2Ki A1,2,K,A( )dx1dx2 KdxAÚ

Yi1i 2KiA

* 1,2,K, A( )Yi1i2 KiA1, 2,K, A( )dx1dx2 KdxAÚ

= 0

Page 6: Symmetries of the nuclear shell modelific.uv.es/~euschool/lec_isacker02.pdf · Symmetries of the nuclear shell model P. Van Isacker, GANIL, France Racah’s SU(2) pairing model Wigner’s

Symmetries in N~Z nuclei (II), Valencia, September 2003

Poor man’s Hartree-Fock• Choose a simple, analytically solvable V that

approximates the microscopic HF potential:

• Contains– Harmonic oscillator potential with constant w.– Spin-orbit term with strength zls.– Orbit-orbit term with strength zll.

• Adjust w, zls and zll to best reproduce HF.

HIP =

pk2

2m+

12

mw 2rk2 -z ls

r l k ⋅

r s k -z ll lk2È

Î Í ˘

˚ ˙ k = 1

A

Â

Page 7: Symmetries of the nuclear shell modelific.uv.es/~euschool/lec_isacker02.pdf · Symmetries of the nuclear shell model P. Van Isacker, GANIL, France Racah’s SU(2) pairing model Wigner’s

Symmetries in N~Z nuclei (II), Valencia, September 2003

Symmetries of the shell model• Three bench-mark solutions:

– No residual interaction fi IP shell model.– Pairing (in jj coupling) fi Racah’s SU(2).– Quadrupole (in LS coupling) fi Elliott’s SU(3).

• Symmetry triangle:

HIP =pk

2

2m+

12

mw 2rk2 -z ls

r l k ⋅

r s k -z ll lk2È

Î Í ˘

˚ ˙ k = 1

A

Â

+ VRI xk,xl( )k <l

A

Â

Page 8: Symmetries of the nuclear shell modelific.uv.es/~euschool/lec_isacker02.pdf · Symmetries of the nuclear shell model P. Van Isacker, GANIL, France Racah’s SU(2) pairing model Wigner’s

Symmetries in N~Z nuclei (II), Valencia, September 2003

Racah’s SU(2) pairing model• Assume large spin-orbit splitting zls which

implies a jj coupling scheme.• Assume pairing interaction in a single-j shell:

• Spectrum of 210Pb:

j2 JMJ Vpairing j2JMJ =- 1

22 j + 1( )g, J = 0

0, J ≠ 0Ï Ì Ó

Page 9: Symmetries of the nuclear shell modelific.uv.es/~euschool/lec_isacker02.pdf · Symmetries of the nuclear shell model P. Van Isacker, GANIL, France Racah’s SU(2) pairing model Wigner’s

Symmetries in N~Z nuclei (II), Valencia, September 2003

SU(2) quasi-spin formalism• The pairing hamiltonian,

• …has a quasi-spin SU(2) algebraic structure:

• H has SU(2)…SO(2) dynamical symmetry:

• Eigensolutions of pairing hamiltonian:

H = E0 - gS+ ⋅ S- , S+ = 12 2j + 1 aj

+ ¥ aj+( )

0

0( ), S- = S+( )+

S+ ,S-[ ] = 12 2nj - 2j - 1( ) ≡ -2Sz, Sz ,S±[ ] = ±S±

-gS+ ⋅ S- = -g S2 - Sz2 + Sz( )

-gS+ ⋅ S- SMS = -g S S + 1( ) - MS MS - 1( )( ) SMS

A. Kerman, Ann. Phys. (NY) 12 (1961) 300

Page 10: Symmetries of the nuclear shell modelific.uv.es/~euschool/lec_isacker02.pdf · Symmetries of the nuclear shell model P. Van Isacker, GANIL, France Racah’s SU(2) pairing model Wigner’s

Symmetries in N~Z nuclei (II), Valencia, September 2003

Interpretation of pairing solution• Quasi-spin labels S and MS are related to

nucleon number nj and seniority u:

• Energy eigenvalues in terms of nj and u:

• Eigenstates have an S-pair character:

• Seniority u is the number of nucleons not in Spairs (pairs coupled to J=0).

S = 14 2j - u + 1( ), MS = 1

4 2nj - 2j - 1( )

j njuJMJ - gS+ ⋅ S- jnj uJMJ = - 14 g nj -u( ) 2j - nj +u + 3( )

j njuJMJ µ S+( ) nj -u( ) / 2 juuJMJ

G. Racah, Phys. Rev. 63 (1943) 367

Page 11: Symmetries of the nuclear shell modelific.uv.es/~euschool/lec_isacker02.pdf · Symmetries of the nuclear shell model P. Van Isacker, GANIL, France Racah’s SU(2) pairing model Wigner’s

Symmetries in N~Z nuclei (II), Valencia, September 2003

Pairing and superfluidity• Ground states of a pairing hamiltonian have

superfluid character:– Even-even nucleus (u=0):– Odd-mass nucleus (u=1):

• Nuclear superfluidity leads to– Constant energy of first 2+ in even-even nuclei.– Odd-even staggering in masses.– Two-particle (2n or 2p) transfer enhancement.

S+( )n j / 2 o

aj+ S+( )nj / 2 o

Page 12: Symmetries of the nuclear shell modelific.uv.es/~euschool/lec_isacker02.pdf · Symmetries of the nuclear shell model P. Van Isacker, GANIL, France Racah’s SU(2) pairing model Wigner’s

Symmetries in N~Z nuclei (II), Valencia, September 2003

Superfluidity in semi-magic nuclei• Even-even nuclei:

– Ground state hasu=0.

– First-excited state hasu=2.

– Pairing producesconstant energy gap:

• Example of Snnuclei:

Ex 21+( ) = 1

2 2j + 1( )g

Page 13: Symmetries of the nuclear shell modelific.uv.es/~euschool/lec_isacker02.pdf · Symmetries of the nuclear shell model P. Van Isacker, GANIL, France Racah’s SU(2) pairing model Wigner’s

Symmetries in N~Z nuclei (II), Valencia, September 2003

Shell structure of nuclei• Direct evidence for nuclear shell structure is

obtained from Ex(2+) (here scaled by A1/3):

Page 14: Symmetries of the nuclear shell modelific.uv.es/~euschool/lec_isacker02.pdf · Symmetries of the nuclear shell model P. Van Isacker, GANIL, France Racah’s SU(2) pairing model Wigner’s

Symmetries in N~Z nuclei (II), Valencia, September 2003

Superfluidity versus magicity• Two-nucleon separation energies S2n:

(a) Shell splitting dominates over interaction.(b) Interaction dominates over shell splitting.(c) S2n in tin isotopes.

Page 15: Symmetries of the nuclear shell modelific.uv.es/~euschool/lec_isacker02.pdf · Symmetries of the nuclear shell model P. Van Isacker, GANIL, France Racah’s SU(2) pairing model Wigner’s

Symmetries in N~Z nuclei (II), Valencia, September 2003

Generalized pairing models• Trivial generalization from a single-j shell to

several degenerate j shells:

• Pairing with neutrons and protons:– T=1 pairing: SO(5).– T=0 & T=1 pairing: SO(8).

• Non-degenerate shells:– Talmi’s generalized seniority.– Richardson’s integrable pairing model.

S+ µ 12 2j + 1 aj

+¥ a j

+( )0

0( )

Page 16: Symmetries of the nuclear shell modelific.uv.es/~euschool/lec_isacker02.pdf · Symmetries of the nuclear shell model P. Van Isacker, GANIL, France Racah’s SU(2) pairing model Wigner’s

Symmetries in N~Z nuclei (II), Valencia, September 2003

Pairing with neutrons and protons• For neutrons and protons two pairs and hence

two pairing interactions are possible:– Isoscalar (S=1,T=0):

– Isovector (S=0,T=1):-S+

01 ⋅ S-01 , S+

01 = l + 12 a

l 12

12

+ ¥ al 1

212

+Ê Ë

ˆ ¯

001( )

, S-01 = S+

01( )+

-S+10 ⋅ S-

10 , S+10 = l + 1

2 al 1

212

+ ¥ al 1

212

+Ê Ë

ˆ ¯

010( )

, S-10 = S+

10( )+

Page 17: Symmetries of the nuclear shell modelific.uv.es/~euschool/lec_isacker02.pdf · Symmetries of the nuclear shell model P. Van Isacker, GANIL, France Racah’s SU(2) pairing model Wigner’s

Symmetries in N~Z nuclei (II), Valencia, September 2003

Neutron-proton pairing hamiltonian• A hamiltonian with two pairing terms,

• …has an SO(8) algebraic structure.• H is solvable (or has dynamical symmetries)

for g0=0, g1=0 and g0=g1.

H = -g0S+10 ⋅ S-

10 - g1S+01 ⋅S-

01

Page 18: Symmetries of the nuclear shell modelific.uv.es/~euschool/lec_isacker02.pdf · Symmetries of the nuclear shell model P. Van Isacker, GANIL, France Racah’s SU(2) pairing model Wigner’s

Symmetries in N~Z nuclei (II), Valencia, September 2003

SO(8) ‘quasi-spin’ formalism• A closed algebra is obtained with the pair

operators S± with in addition

• This set of 28 operators forms the Lie algebraSO(8) with subalgebras

n = 2 2l + 1 al 1

212

+ ¥ al 1

212

+Ê Ë

ˆ ¯ 000

000( )

, Ymn = 2l + 1 al 1

212

+ ¥ al 1

212

+Ê Ë

ˆ ¯ 0 mn

011( )

Sm = 2l + 1 al 1

212

+ ¥ al 1

212

+Ê Ë

ˆ ¯

0m 0

010( )

, Tn = 2l + 1 al 1

212

+ ¥ al 1

212

+Ê Ë

ˆ ¯

00n

001( )

B.H. Flowers & S. Szpikowski, Proc. Phys. Soc. 84 (1964) 673

SO 6( ) ª SU 4( ) = S,T,Y{ }, SOS 5( ) = n,S,S±10{ },

SOT 5( ) = n,T,S±01{ }, SOS 3( ) = S{ }, SOT 3( ) = T{ }

Page 19: Symmetries of the nuclear shell modelific.uv.es/~euschool/lec_isacker02.pdf · Symmetries of the nuclear shell model P. Van Isacker, GANIL, France Racah’s SU(2) pairing model Wigner’s

Symmetries in N~Z nuclei (II), Valencia, September 2003

Solvable limits of the SO(8) model• Pairing interactions can expressed as follows:

• Symmetry lattice of the SO(8) model:

• fiAnalytic solutions for g0=0, g1=0 and g0=g1.

S+01 ⋅ S-

01 = 12C2 SOT 5( )[ ] - 1

2C2 SOT 3( )[ ] - 1

8(2l - n + 1)(2l - n +7)

S+01 ⋅ S-

01 + S+10 ⋅ S-

10 = 12 C2 SO 8( )[ ] - 1

2 C2 SO 6( )[ ] - 18 (2l - n + 1)(2l - n + 13)

S+10 ⋅ S-

10 = 12 C2 SOS 5( )[ ] - 1

2 C2 SOS 3( )[ ]- 18 (2l - n + 1)(2l - n + 7)

SO(8) …

SOS 5( ) ƒ SOT 3( )SO(6) ª SU 4( )

SOT 5( ) ƒ SOS 3( )

Ï

Ì Ô

Ó Ô

¸

˝ Ô

˛ Ô

… SOS 3( ) ƒ SOT 3( )

Page 20: Symmetries of the nuclear shell modelific.uv.es/~euschool/lec_isacker02.pdf · Symmetries of the nuclear shell model P. Van Isacker, GANIL, France Racah’s SU(2) pairing model Wigner’s

Symmetries in N~Z nuclei (II), Valencia, September 2003

Superfluidity of N=Z nuclei• Ground state of a T=1 pairing hamiltonian for

identical nucleons is superfluid, (S+)n/2oÒ.• Ground state of a T=0 & T=1 pairing

hamiltonian with equal number of neutronsand protons has different superfluid character:

• fi Condensate of a’s (q depends on g0/g1).• Observations:

– Isoscalar component in condensate survives onlyin N~Z nuclei, if anywhere at all.

– Spin-orbit term reduces isoscalar component.

cosq S+10 ⋅ S+

10 - sinq S+01 ⋅ S+

01( )n / 4o

Page 21: Symmetries of the nuclear shell modelific.uv.es/~euschool/lec_isacker02.pdf · Symmetries of the nuclear shell model P. Van Isacker, GANIL, France Racah’s SU(2) pairing model Wigner’s

Symmetries in N~Z nuclei (II), Valencia, September 2003

Superfluidity versus magicity

12e j - eaj

 S+ j( )Ê

Ë Á

ˆ

¯ ˜

a= 1

n / 2

’ o

1 - g 2j + 12e j - ea

- 4g 1ea - eb

= 0, a = 1,2,K,n/ 2b ≠a( )Â

R.W. Richardson, Phys. Lett. 5 (1963) 82

• Superfluid ground state for degenerate shells:

• ‘Superfluid’ ground state for non-degenerateshells (Richardson-Gaudin-Dukelsky):

S+ j( )j

ÂÊ

Ë Á

ˆ

¯ ˜

n / 2

o

Page 22: Symmetries of the nuclear shell modelific.uv.es/~euschool/lec_isacker02.pdf · Symmetries of the nuclear shell model P. Van Isacker, GANIL, France Racah’s SU(2) pairing model Wigner’s

Symmetries in N~Z nuclei (II), Valencia, September 2003

Wigner’s SU(4) symmetry• Assume the nuclear hamiltonian is invariant

under spin and isospin rotations:

• Since {Sm,Tn,Ymn} form an SU(4) algebra:– Hnucl has SU(4) symmetry.– Total spin S, total orbital angular momentum L,

total isospin T and SU(4) labels (lmn) areconserved quantum numbers.

Hnucl ,Sm[ ] = Hnucl ,Tn[ ] = Hnucl ,Ymn[ ] = 0

Sm = sm k( ),k = 1

A

 Tn = tn k( )k =1

A

 , Ymn = sm k( )k = 1

A

 tn k( )

E.P. Wigner, Phys. Rev. 51 (1937) 106F. Hund, Z. Phys. 105 (1937) 202

Page 23: Symmetries of the nuclear shell modelific.uv.es/~euschool/lec_isacker02.pdf · Symmetries of the nuclear shell model P. Van Isacker, GANIL, France Racah’s SU(2) pairing model Wigner’s

Symmetries in N~Z nuclei (II), Valencia, September 2003

Physical origin of SU(4) symmetry• SU(4) labels specify the separate spatial and

spin-isospin symmetry of the wavefunction:

• Nuclear interaction is short-range attractiveand hence favours maximal spatial symmetry.

Page 24: Symmetries of the nuclear shell modelific.uv.es/~euschool/lec_isacker02.pdf · Symmetries of the nuclear shell model P. Van Isacker, GANIL, France Racah’s SU(2) pairing model Wigner’s

Symmetries in N~Z nuclei (II), Valencia, September 2003

Breaking of SU(4) symmetry• Non-dynamical breaking of SU(4) symmetry

as a consequence of– Spin-orbit term in nuclear mean field.– Coulomb interaction.– Spin-dependence of residual interaction.

• Evidence for SU(4) symmetry breaking from– Masses: rough estimate of nuclear BE from

– b decay: Gamow-Teller operator Ym,±1 is agenerator of SU(4) fi selection rule in (lmn).

B N, Z( ) µ a + bg lmn( ) = a + b lmn C2 SU 4( )[ ] lmn

Page 25: Symmetries of the nuclear shell modelific.uv.es/~euschool/lec_isacker02.pdf · Symmetries of the nuclear shell model P. Van Isacker, GANIL, France Racah’s SU(2) pairing model Wigner’s

Symmetries in N~Z nuclei (II), Valencia, September 2003

SU(4) breaking from masses• Double binding energy difference dVnp

• dVnp in sd-shell nuclei:dVnp N,Z( ) = 1

4 B N,Z( ) - B N - 2,Z( ) - B N,Z - 2( ) + B N - 2, Z - 2( )[ ]

P. Van Isacker et al., Phys. Rev. Lett. 74 (1995) 4607

Page 26: Symmetries of the nuclear shell modelific.uv.es/~euschool/lec_isacker02.pdf · Symmetries of the nuclear shell model P. Van Isacker, GANIL, France Racah’s SU(2) pairing model Wigner’s

Symmetries in N~Z nuclei (II), Valencia, September 2003

SU(4) breaking from b decay• Gamow-Teller decay into odd-odd or even-

even N=Z nuclei:

P. Halse & B.R. Barrett, Ann. Phys. (NY) 192 (1989) 204

Page 27: Symmetries of the nuclear shell modelific.uv.es/~euschool/lec_isacker02.pdf · Symmetries of the nuclear shell model P. Van Isacker, GANIL, France Racah’s SU(2) pairing model Wigner’s

Symmetries in N~Z nuclei (II), Valencia, September 2003

Elliott’s SU(3) model of rotation• Harmonic oscillator mean field (no spin-orbit)

with residual interaction of quadrupole type:

• State labelling in LS coupling:

H =pk

2

2m+

12

mw 2rk2È

Î Í ˘

˚ ˙ k =1

A

 -kQ ⋅Q,

Qm =4p5

rk2Y2m ˆ r k( )

k = 1

A

 + pk2Y2m ˆ p k( )

k = 1

A

ÂÊ

Ë Á ˆ

¯

U 4w( )Ø

1M[ ]…

U L w( )Ø

˜ l ̃ m ̃ n ( )

…SUL 3( )Ø

l m ( )

…SOL 3( )Ø

L

Ê

Ë

Á Á

ˆ

¯

˜ ˜

ƒ

SUST 4( )Ø

lmn( )

…SU S 2( )Ø

S

ƒ SUT 2( )Ø

T

Ê

Ë

Á Á

ˆ

¯

˜ ˜

J.P. Elliott, Proc. Roy. Soc. A 245 (1958) 128; 562

Page 28: Symmetries of the nuclear shell modelific.uv.es/~euschool/lec_isacker02.pdf · Symmetries of the nuclear shell model P. Van Isacker, GANIL, France Racah’s SU(2) pairing model Wigner’s

Symmetries in N~Z nuclei (II), Valencia, September 2003

Importance and limitations of SU(3)• Historical importance:

– Bridge between the spherical shell model and theliquid droplet model through mixing of orbits.

– Spectrum generating algebra of Wigner’s SU(4)supermultiplet.

• Limitations:– LS (Russell-Saunders) coupling, not jj coupling

(zero spin-orbit splitting) fi beginning of sd shell.– Q is the algebraic quadrupole operator fi no

major-shell mixing.

Page 29: Symmetries of the nuclear shell modelific.uv.es/~euschool/lec_isacker02.pdf · Symmetries of the nuclear shell model P. Van Isacker, GANIL, France Racah’s SU(2) pairing model Wigner’s

Symmetries in N~Z nuclei (II), Valencia, September 2003

Generalized SU(3) models• How to obtain rotational features in a jj-

coupling limit of the nuclear shell model?• Several efforts since Elliott:

– Pseudo-spin symmetry.– Quasi-SU(3) symmetry (Zuker).– Effective symmetries (Rowe).– FDSM: fermion dynamical symmetry model.– ...

Page 30: Symmetries of the nuclear shell modelific.uv.es/~euschool/lec_isacker02.pdf · Symmetries of the nuclear shell model P. Van Isacker, GANIL, France Racah’s SU(2) pairing model Wigner’s

Symmetries in N~Z nuclei (II), Valencia, September 2003

Pseudo-spin symmetry• Apply a helicity transformation to the spin-

orbit + orbit-orbit nuclear mean field:

• Degeneraciesoccur for 4zll=zls.

uk-1 z ls

r l k ⋅

r s k +z ll lk2( )uk = 4z ll -z ls( )

r l k ⋅

r s k +z ll lk2 + cte

uk = 2ir s k ⋅

r r krk

K.T. Hecht & A. Adler, Nucl. Phys. A 137 (1969) 129A. Arima et al., Phys. Lett. B 30 (1969) 517R.D. Ratna et al., Nucl. Phys. A 202 (1973) 433J.N. Ginocchio, Phys. Rev. Lett. 78 (1998) 436

Page 31: Symmetries of the nuclear shell modelific.uv.es/~euschool/lec_isacker02.pdf · Symmetries of the nuclear shell model P. Van Isacker, GANIL, France Racah’s SU(2) pairing model Wigner’s

Symmetries in N~Z nuclei (II), Valencia, September 2003

Pseudo-SU(4) symmetry• Assume the nuclear hamiltonian is invariant

under pseudo-spin and isospin rotations:

• Consequences:– Hamiltonian has pseudo-SU(4) symmetry.– Total pseudo-spin, total pseudo-orbital angular

momentum, total isospin and pseudo-SU(4) labelsare conserved quantum numbers.

Hnucl , ˜ S m[ ] = Hnucl ,Tn[ ] = Hnucl , ˜ Y mn[ ] = 0

˜ S m = ˜ s m k( ),k = 1

A

 Tn = tn k( )k =1

A

 , ˜ Y mn = ˜ s m k( )k= 1

A

 tn k( )

D. Strottman., Nucl. Phys. A 188 (1971) 488

Page 32: Symmetries of the nuclear shell modelific.uv.es/~euschool/lec_isacker02.pdf · Symmetries of the nuclear shell model P. Van Isacker, GANIL, France Racah’s SU(2) pairing model Wigner’s

Symmetries in N~Z nuclei (II), Valencia, September 2003

Test of pseudo-SU(4) symmetry• Shell-model test of

pseudo-SU(4).• Realistic interaction in

pf5/2g9/2 space.• Example: 58Cu.

P. Van Isacker et al., Phys. Rev. Lett. 82 (1999) 2060

Page 33: Symmetries of the nuclear shell modelific.uv.es/~euschool/lec_isacker02.pdf · Symmetries of the nuclear shell model P. Van Isacker, GANIL, France Racah’s SU(2) pairing model Wigner’s

Symmetries in N~Z nuclei (II), Valencia, September 2003

Pseudo-SU(4) and b decay• Pseudo-spin transformed Gamow-Teller

operator is deformation dependent:

• Test: b decay of18Ne vs. 58Zn.

˜ s mtn ≡ u-1smtnu = -

13

smtn +203

1r 2

r r ¥ r r ( ) 2( )¥

r s [ ]m

1( )tn

A. Jokinen et al., Eur. Phys. A. 3 (1998) 271

Page 34: Symmetries of the nuclear shell modelific.uv.es/~euschool/lec_isacker02.pdf · Symmetries of the nuclear shell model P. Van Isacker, GANIL, France Racah’s SU(2) pairing model Wigner’s

Symmetries in N~Z nuclei (II), Valencia, September 2003

Quasi-SU(3) symmetry• Similar matrix elements of Q in LS and jj

coupling lead to approximate decoupling ofj=l-1/2 and j=l+1/2 spaces.

A. Zuker et al., Phys. Rev. C 52 (1995) R1741

Page 35: Symmetries of the nuclear shell modelific.uv.es/~euschool/lec_isacker02.pdf · Symmetries of the nuclear shell model P. Van Isacker, GANIL, France Racah’s SU(2) pairing model Wigner’s

Symmetries in N~Z nuclei (II), Valencia, September 2003

Fermion dynamical symmetry model• Construct shell-model hamiltonian in terms of

S and D pairs such that the S,D-spacedecouples from the full shell-model space.

• Generalization of pseudo-spin (j=k+i):

• Many possible combinations of single-particleorbits via an appropriate choice of k and i.

• Limitation: structure of pairs is algebraicallyimposed.

akm k imi

+ = kmk imi jmj al 1

2, jm j

+

jm j

Â

J.N. Ginocchio, Ann. Phys. (NY) 126 (1980) 234C.L. Wu et al., Phys. Rev. C 36 (1987) 1157