neutron capture and waste transmutation - uvific.uv.es/~euschool/lec_tain.pdf · j.l. tain neutron...

57
Neutron Capture and Waste Transmutation J.L. Tain Instituto de Física Corpuscular C.S.I.C - Univ. Valencia Euro Summer School on Exotic Beams Valencia, September 4-12, 2003

Upload: others

Post on 24-Sep-2019

15 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

Neutron Capture and WasteTransmutation

J.L. Tain

Instituto de Física Corpuscular

C.S.I.C - Univ. Valencia

Euro Summer School on Exotic Beams Valencia, September 4-12, 2003

Page 2: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 2

Layout of the lectures

• Transmutation of radioactive waste, ADS& Nuclear Data (F J. Benlliure)

• Neutron capture: theory and practice

Page 3: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

Nuclear Waste, Transmutation,ADS

& Nuclear Data

Page 4: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 4

Nuclear power plants in the world:

• 441 plants in operation,32 under construction

http://www.iaea.org

UE Total: 141

Page 5: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 5

Nuclear electricity generation:

Total:

• Installed: 359 GW(e)

• Produced: 2574 TWh(81.7% availability)

Share:

• World average: 17.3%

• EU average: 33.6%

Page 6: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 6

Nuclear Fission Reactors

Most reactors in use are ofLight Water Reactor type, eitherBoiling Water Reactors orPressurized Water Reactors:

Fuel: UO2 , 2- 4% 235U

Moderator-Coolant: H2O

n-spectrum: thermal

PWRn

235U

fissionfragments

n

n

235U

CHAIN REACTION

Reactors operate at CRITICAL POINT(neutron balance) which must be kept:REACTOR CONTROL

Page 7: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 7

Nuclear waste generation:

The loaded fuel is transformed during the energy generation process:

n + 235U →→ 3n + 134I + 99Y;

134I(52min) →→ 134Xe.

99Y(1.5s) →→ 99Zr(2s) →→ 99Nb(15s) →→ 99Mo(66h) →→ 99Tc(2.1×105y)

n + 238U →→ 239U;

239U(23.5min) →→ 239Np(2.4d) →→ 239Pu(2.4×104y)

Actually a complex set of reactions will take place…

FFission ission PProductroduct

TRTRans-ans-UUranicsranics

n + 239Pu →→ 240Pu(6.5 ×103y); n + 240Pu →→ 241Pu(14.4y) →→ 241Am(432y)

Minor Actinides

FISSION

CAPTURE

Page 8: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 8

Partial reaction chain of the U-Pu cycle:

Page 9: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 9

As a consequence an inventory of long lived highly radioactiveisotopes builds up in a reactor ∀ High Level Waste

266 kg Pu (156kg 239Pu)

20 kg MA

946 kg FP ( 63kg long-lived FP)

0,062%

1,003%

0,097% 0,002%

0%

1%

2%

3%

4%

5%

Fragmentosde Fisión

Neptunio Plutonio Americio Curio

A 1GWe (3GWth) Pressurized Water Reactor, producing 7TWh (80% avail.),burns 1 ton/year fissile material.

Loaded with 27.3 Ton of 3.5% enriched UO2 (954kg 235U) produces after aburn-up of 33GWd/ton (~1 year):

and still contain 280kg 235U plus111kg 236U

Page 10: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 10

The hazard they represent can be measured by the evolution oftheir radio-toxicity:

Page 11: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 11

One possible strategy to reduce the hazard of HLW in the long term isprovided by transmutation (and/or incineration):

Actinides:

• Fission:

n + 243Am(7.4×103y) →→ FF’s + n’s

• Capture (+ Decay) + Fission:

n + 243Am →→ 244Am(10.1h) →→ 244Cm;

n + 244Cm(18.1y) →→ FF’s + n’s

Long-lived FP:

• Capture:

n + 99Tc(2.1×105y) →→ 100Tc(15.8s) →→ 100Ru.

Is it possible to usethe same reactionsthat create the wasteto destroy it?

The key point is theseparation of thedifferent componentsfrom spent fuel (orpartitioning)

Page 12: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 12

Neutron induced reactions: strong energy dependence …

235U

Page 13: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 13

…and isotope dependence:

Fission: Capture:

Therefore there are several possible (from physics point of view)solutions to the problem of “burning” HLW

Page 14: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 14

For example, the burning of TRU isfavoured by “fast” n spectrum ...

In any case asurplus of nare needed totransmute …

Page 15: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 15

The scientific considerations,together with technological,military and politicalconsiderations has lead to theproposal of different schemesfor the management of HLW.

A currently consideredscheme is the doublestrata scenario: FF

Page 16: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 16

Accelerator Driven Systems:

A nuclear reactor with a subcritical core which uses an accelerator toproduce the neutrons necessary to maintain the chain reaction:

For example: a veryhigh intensity ~1 GeVproton acceleratorproducing neutronsby spallation on amolten Pb or Pb/Bitarget which acts alsoas the coolant, withsolid actinide fuel.

Advantage: lessdependence on fuelcomposition

Page 17: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 17

An ADS can also be utilized for energy production and if based onTh-U fuel cycle, will generate a reduced amount of TRU ...

ThU-cycle

UPu-cycle

fertile

fissile

Energy Amplifier

Page 18: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 18

Present in nuclear wastes Thermal and Fast FissionMedium Half-Life (<100 años) Fast FissiónShort Half-Life (< 30 dias) Low Fission Cross SectionHigh A actinides

Av. Flux Intensity (n/cm2/s)3,00E+15

Cm242 Cm243 Cm244 Cm245 Cm246 Cm247Second 1 Time Unit α α α / SF α / SF α / SF αHour 3600 31570560 100 / 6.2E-6 9 9 . 7 / 0 . 2 9 / 5 . 3 E - 9 100 / 1.35E-4 100 / 6.1E-7 100 / 3E-2 100

Day 86400 0,446 29,068 18,080 8490,695 4724,813 15582935,494

Year 3E+07 18,130 2,798 6,257 2,922 16,459

64,7% 8,0% 65,2% 11,4% 44,6%

Am241 Am242 Am242m Am243 Am244α / SF β− / EC IT / α / SF α / SF β− / EC

100 / 3.77E-10 82.7 / 17.3 9 9 . 5 / 0 . 4 6 / 1 E - 3 100 / 3.7E-9 100 / 4E-2

432,225 0,002 140,846 7361,922 0,001

3,652 17,792 1,844 4,892

44% : 44% 13,1% 8,4% 87,0%

Pu238 Pu239 Pu240 Pu241 Pu242 Pu243α / SF α / SF α / SF β− / α α / SF β−

100 / 1.9E-7 100 / 3.1E-10 100 / 5.7E-6 100 / 2.45E-3 100 / 5.5E-4 100

87,644 24083,608 6556,805 14,334 372891,707 0,001

4,220 3,477 9,033 2,688 11,354 6,775

37,5% 19,4% 54,8% 14,2% 61,1% 30,6%

Np237 Np238 Np239 Pu239 Symbol & Massα / SF β− β− α / SF Decay modes

100 / 2E-12 100 100 100 / 3.1E-10 Branching ratios2137656,095 0,006 0,006 24083,608 Half-Life

4,332 15,928 3,477 Absorption-Half-Life81,5% 13,1% 19,4% (n,γ)/absoption

TRU Transmutation SchemeFast Spectrum

Ln(2)/(σφ)

Transmutation of TRU: set of reactions

Page 19: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 19

Transmutation of TRU: new fuel compositions

Page 20: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 20

Challenges in the field of ADS:

• Waste separation (or partitioning) methods

• Design of a high power accelerator, the spallation targetand their coupling

• Study of reactor core behaviour and transmutation rates

Need for new or improved accuracy nuclear data:

• proton spallation reaction: n yield, residues (FF J. Benlliure)

• neutron induced reactions: fission, capture, (n,xn),… onactinides, fission products and structural materials

Page 21: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 21

An example of poorly known reaction…

Page 22: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 22

…another example of not so poorly known

Page 23: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 23

Page 24: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

Neutron radiative capture:Theory and practice

Page 25: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 25

Neutron reactions at low energies

A neutron is absorbed to form a “compoundnucleus”:

n + AZ →→ A+1Z*

which lives for a short time and decays:

A+1Z* →→ n + AZ (elasticelastic)

A+1Z* →→ n + AZ* (inelasticinelastic)

A+1Z* →→ A+1Z*’ + γγ (radiativeradiative capture capture)

A+1Z* →→ A1Z1* + A2Z2* + xn (fissionfission)

A+1Z* →→ A+1-xZ* + xn (n multiplicationn multiplication)

Other contributions:

Page 26: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 26

The CN formation probability is higher for certain neutron energies Encorresponding to quasi-bound or virtual states: resonances

ER = Sn + En Sn : neutron separation energy of CN ( <10MeV )→→ level separation D0 ~ 1 eV – 100 keV

A

A+1

ΓΓ = ΓΓn + ΓΓγγ + ΓΓf + …

(σσ = σσn + σσγγ + σσf + ...)

Life-time ↔↔ Energy-width: ΓΓ

ΓΓ ~ 1 meV – 100 keV

Page 27: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 27

log En

1/v resolved unresolved overlapping

log

σσ

resolution

ΓΓ > D0 : overlapping resonances

ΓΓ < D0, ΓΓ > ∆∆E: resolvedresonance region (RRR)

ΓΓ < D0, ΓΓ < ∆∆E: unresolvedresonance region (URR)

1/v: thermal

Shape of neutron cross-section

• In the RRR region, σσ is described using the R-Matrix formalism, inone of its usual approximations.

• In the URR region, average σσ are described by Hauser-Feshbachstatistical theory

• It is a parametric approach since nuclear theory cannot predict thevalues.

• Experimental information is strictly necessary.

Page 28: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 28

Single Level Breit-Wigner Formalism: (n,γγ)

σσγγ(E) = ππDD2 gJ

ΓΓn ΓΓγγ

(E-ER’)2 + ¼ΓΓ2

For ll-capture into an isolated spin J resonance at ER:

DD = hh/ √√ 2µµE (neutron wavelength)

gJ =2J + 1

2(2I + 1)

(spin stat. factor;

|I - ll ± ½| ≤≤ J ≤≤ |I - ll + ½| )

ΓΓ(E) = ΓΓn(E) + ΓγΓγ + …; (FWHM)

ΓΓn(E) = √√ E/ER ΓΓn(ER) , ll=0

… and the channel radius Rc

n+197Au, ll=0, J=2

ER = 4.9 eV

ΓΓn = 15.2 meV

ΓΓγγ = 122.5 meV

En (eV)

σσ γγ (b

arn

)

Page 29: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 29

SLBW formalism: elastic and capture cross sections

P0 = ΦΦ0 = k RC = ρρ, S0 = 0

Pll = ρρ2 Pll-1 / ((ll- Sll-1 )2 + Pll-12)

Sll = ρρ2(ll-Sll-1) / ((ll- Sll-1 )2 + Pll-12) - ll

ΦΦll = ΦΦll-1 – tan(Pll-1 / (ll -Sll-1))

ER’ = ER + ΓΓn(ER)Sll(ER) - Sll(E)

2Pll(ER)

ξξ = (E-ER’)2

ΓΓΓΓn = ΓΓn(ER)

Pll(E)

Pll(ER)

ΓΓ

ΓΓγγ ΓΓn

1 + ξξ2

1σσγγ = gJ4ππ

k2k = √√2µµE / hh

σσ = gJ [ sin2 ΦΦll + cos 2ΦΦll + sin 2ΦΦll ]ΓΓn

ΓΓ 1 + ξξ2

1 ΓΓn

ΓΓ

ξξ

1 + ξξ2

4ππ

k2

gJ =2J + 1

2(2I + 1)

ELASTICCAPTURE

potential resonant interference

(n,γγ)

(n,n)

238U

Page 30: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 30

• From the analysis of experimental data on capture, total, fission, …cross-sections, resonance parameters are obtained for every nucleus.

• All the information is combined, cross-checked for consistency, etc, ina process called “evaluation” until a recommended set of parameters isobtained.

• This information is published in a Evaluated Nuclear Data File using anaccepted standard format (ENDF-6)

• There exist several files:

• BROND-2.2 (1993, Russia)

• CENDL-3 (2002, China)

• ENDF/B-VI.8 (2002, US)

• JEFF-3.0 (2002, NEA+EU)

• JENDL-3.3 (2002, Japan)

Neutron Reaction Data

Page 31: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 31

Measurement of (n,γγ) cross-sections

σσγγ(E) =Number of capture reactions

Number of target nucleus per unit area x Number of neutrons of energy E

Nγγ

nT [at/barn]·Nn(E)σσγγ(E) = Nn nT Nγγ

Needs:

• sample of known mass and dimensions

• count the number of incident neutronsof energy E

• count the number of capture reactions

… but there are anumber ofexperimentalcomplications

Page 32: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 32

Neutron Beams

• Need to span a huge energy range: 1meV – 100MeV

• Since neutrons cannot be accelerated, they have to be producedby nuclear reactions at certain energy and eventually deceleratedby nuclear collisions (moderated)

• Energy determination:

• kinematics of two-body reaction

• mechanical selection of velocities (“chopper”)

• Time Of Flight measurement

• Sources:

• Radioactive

• Nuclear detonations

• Reactor

• Light-ion accelerator

• Electron LINACS

• Spallation

En = ½ mnL2

t2

Page 33: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 33

ForschungsZentrum Karlsruhe Van de Graaf

• 7Li(p,n)7Be, Q= -1.644MeV

• Ep ~ 2MeV →→ En ~ 5-200keV

• Rate: 250kHz, ∆∆t = 0.7ns

30keV > Thresh.

7Li-target

Page 34: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 34

Geel Electron LINear Accelerator

• (γγ,n), (γγ,f) on U (bremsstrahlung)

• Ee ~ 100MeV, Ie ~ 10-100µµA

• Rate: 100-800Hz, ∆∆t ~ 0.6-15ns

Page 35: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 35

… GELINA

U-TARGET &H2O MODER.

NEUTRON SPECTRA

H2O MODERATOR

n yield vs. Ee

1 MeV

1 eV

H2O Moder.

Bare U-target

Polyethylene Moder.

Page 36: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 36

CERN neutron Time Of Flight

n_TOF

• p-spallation on Pb target

• Ep = 20GeV, Ip = 7x1012 ppp

• Rate: 2.4s-1 , ∆∆t = 14ns

Page 37: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 37

PROTON BEAM LINE

p current monitor

p-intensitypickup

Entrance tothe target

Water cooledPb target

n beam tube

shielding

NEUTRON BEAM LINE

shielding

n_TOF

Page 38: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 38

Bending magnet

2nd collimator

shielding

EXPERIMENTAL AREA

n monitor

Sample changer

BEAM DUMP

n monitor

… n_TOF

Page 39: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 39

• The characteristics of the spallation-moderation process and thecollimators in use determine the neutron beam parameters: intensity-energy distribution, energy resolution and spatial distribution.

TARGET:

80x80x60 cm3 Pb + 5cm H2O

SPALLATION PROCESS: ~600 n/p

MODERATION:

ξ = ⟨⟨ ln(E i/Ef) ⟩⟩ ≅≅ 1+ ln

( ξξ(H)=1, ξξ(Pb)=0.01 )

A-1

A+1

(A-1)2

2A

Intensity distribution

… n_TOF

Page 40: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 40

The statistical nature of the moderation process produces variationson the time that a neutron of a given energy exits the target assembly

ResolutionFunction

… also important:time spread of beam

RF

∆∆t beam

Beam energy-resolution

time vs. energy

RF @ 5eV

RF @ 180keV

∆∆t2

t2

∆∆L2

L2

∆∆En2

En2

= 2 + 2

… n_TOF

Page 41: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 41

The collimation system determines the final number of neutronsarriving to the sample an its spatial distribution

Neutrons on sample

10-5

Beam profile

4cm ∅∅

… n_TOF

Page 42: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 42

Neutron Intensity Monitoring:• Reaction: n + 6Li →→ t + αα

• Si detectors

Si

Si

Si

Si 200µµg/cm2 on3µµm Mylar

… n_TOF

Page 43: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 43

Techniques for radiative capture detection:

• Detection of the capture nucleus

• Activation measurements

• Detection of γγ-ray cascade

• Total Absorption Spectrometers

• Total Energy Detectors

• Moxon-Rae Detectors

• Pulse Height Weighting Technique

n

• Irradiation: A(n,γγ)A+1

• A+1 radioactive with suitable T1/2

• Measurement of characteristicγγ-ray of known I γγ with Ge detector

Page 44: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 44

εεγγi : total efficiency for γγ-ray of energy Eγγi

εεpγγi : peak efficiency for γγ-ray of energy Eγγi

Define:

Then:

εεC = 1 - ΠΠ (1 - εεγγi)i=1

mγγ

total efficiency for cascade:

εεpC = ΠΠ εεp

γγii=1

mγγ

peak efficiency for cascade:

If εεpγγi = 1, ∀∀i ⇒⇒ εεp

C = εεC = 1 Total Absorption Spectrometer

Total Energy Detector

If εεγγi « 1 & εεγγi = kEγγi , ∀∀i ⇒⇒ εεC ≅≅ ΣΣ εεγγi = k ΣΣ Eγγi = k ECi=1

mγγ

i=1

mγγ

Eγγ1

Eγγ2

Eγγ3

EC

Page 45: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 45

n_TOF Total Absorption Calorimeter

• 40 BaF2 crystals

• ∆Ω∆Ω/4ππ = 95%

• ∆∆E ≅≅ 6%

Page 46: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 46

(from Karlsruhe 4ππ BaF2 detector)

BaF2(n,γγ) contamination

εε = 95% BACKGROUND REDUCTION

Deposited energy

Page 47: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 47

245Cm(n,γγ)

Deposited Energy

245Cm(n,γγ)

Multiplicity

• The good energy resolution and detector granularity makesfeasble the measurement of fisioning nuclei

n_TOF TAC

(Monte Carlo simulation D. Cano - CIEMAT)

Page 48: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 48

Total Energy Detectors

• Moxon-Rae type detectors:

The proportionality between efficiency and γγ-ray energyis obtained by construction:

(γγ,e-) converter + thin scintillator + photomultiplier

γγ e-

Maximumdepth ofescapingelectronsincreaseswith Eγγ …

But … proportionality onlyapproximate (need corrections)

Not much in use nowadays

Bi-converter

C-converter

Mo-converter

Bi/C-converter

εε γγ /

Eγγ

Eγγ

Page 49: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 49

• Pulse Height Weighting Technique:

Total Energy Detectors

The proportionality between efficiency and γ-ray energy is obtained bysoftware manipulation of the detector response (Maier-Leibniz):

If Rij represents the response distribution fora γ-ray of energy Eγj:

ΣΣ Rij = εε γγji=1

imax

ΣΣ Wi Rij = Eγγji=1

imax

it is possible to find a set of weighting factorsWi (dependent on energy deposited i) whichfulfil the proportionality condition (setting k=1):

for every Eγj

Rij

E γγ = 9MeV

E γγ = 2MeV

Wi

Page 50: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 50

How accurate can be theweighting function?

Using GEANT Monte Carlogenerated responses with fulldescription of setup (includingsample): σσσγσγ ≤≤ 2%

Fix “experimental” WF

sampledependent←←

1.15keV @56Fe

1.15keV @56Fe

Page 51: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 51

Detectors: C6D6 liquid scintillators

Advantage: low neutron sensitivity

Also detector dead material isimportant …

OptimizedBICRON

HOME MADE:

• C-fibre cell

• No cell window

• No PMT housing

… and surrounding materials

εεγγ = 3-5%

Page 52: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 52

Acquiring the data: full train of detector pulses

• Digitizer: 8bit-500MS/s FADC + 8MB memory

• On-line “zero” suppression

TOF & EC6D6

from pulse-shape fit

of PMT anode signal

• ∆∆t = 2ns

• En down to 0.6eV

• 0.5 MB/pulse/detector

Page 53: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 53

++ Yield: Yγγ (E) = Nγγ/Nn(E)

Nγγ

nT ·Nn(E)σσγγ(E) =

–nT ·σσ(E)• Self-shielding: Yγγ (E) = (1 - e )

σσγγ(E)

σσ(E)

• Multiple scattering correction:elastic collision(-s) + capture

• Thermal (-Doppler) broadening

Sample effects:

Beam effects:

Analysing the data

• Resolution Function

shielded

Single-scattering

T = 300K

58Ni(n,γγ)

ER =136.6keV

Page 54: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 54

Use a R-Matrix code as SAMMY to fit the data and extract the parameters:ER, ΓΓγγ , ΓΓn, …

197Au(n,γγ)

ER= 4.9eV

56Fe(n,γγ)

ER= 1.15keV

RF

T broad. single-scattering

doublescattering

Y =ΓΓγγ

ΓΓ

Page 55: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 55

Slow neutron capture nucleosynthesis (s-process)

• Pb-Bi isotopes: termination-point of s-process & ADS target-coolant

Page 56: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 56

800 eV

2.3keV

3 keV4.4keV

5 keV

12 keV

20 keV

209Bi(n,γ)

208Pb (n,γ)

354keV

527keV

17820 eV

2310 eV

5112 eV

12098 eV

15510 eV

802 eV

l = 0

9760 eV

4456 eV

6286 eV

6524 eV

9708 eV

3348 eV

l = 1

17440 eV17820 eV

20860 eV

21050 eV

209Bi(n,γγ)Preliminary dataon Pb-Bi capture

n_TOF σσγγlower for ll=0

Page 57: Neutron Capture and Waste Transmutation - UVific.uv.es/~euschool/lec_tain.pdf · J.L. Tain Neutron Capture and Waste Transmutation 30 • From the analysis of experimental data on

J.L. Tain Neutron Capture and Waste Transmutation 57

Bibliography:

• Nuclear Engineering, R.A. Knief, Taylor & Francis Ltd., 1992

• Hybrid Nuclear Reactors, H. Nifenecker et al., Prog. Part. Nucl.Phys. 43 (1999) 683

• http://www.radwaste.org

• The Elements of Nuclear Interaction Theory, A. Foderaro, MIT Press,1971

• Neutron Sources for Basic Physics and Applications, Ed. S.Cierjacks, NEA/OECD, Pergamon Press, 1983

• Neutron Radiative Capture, Ed. R.E. Chrien et al., NEA/OECD,Pergamon Press, 1984

• Evaluation and Analysis of Nuclear Resonance Data, F.H. Froehner,NEA-OECD, JEFF Report 18, 2000