neural network embedding of the over-dispersed poisson reserving modelb9f3124e-8a75... · neural...

33
Neural Network Embedding of the Over-Dispersed Poisson Reserving Model Andrea Gabrielli RiskLab ETH Z¨ urich Schweizerische Aktuarvereinigung SAV 110. Mitgliederversammlung Luzern 30. August 2019 Andrea Gabrielli, ETH Z¨ urich 110. Mitgliederversammlung SAV Luzern, 30. August 2019 1 / 20

Upload: others

Post on 12-Jul-2020

13 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Neural Network Embedding of the Over-Dispersed Poisson Reserving Modelb9f3124e-8a75... · Neural Network Embedding of the Over-Dispersed Poisson Reserving Model Andrea Gabrielli RiskLab

Neural Network Embedding of the Over-DispersedPoisson Reserving Model

Andrea GabrielliRiskLab

ETH Zurich

Schweizerische Aktuarvereinigung SAV110. Mitgliederversammlung

Luzern30. August 2019

Andrea Gabrielli, ETH Zurich 110. Mitgliederversammlung SAV Luzern, 30. August 2019 1 / 20

Page 2: Neural Network Embedding of the Over-Dispersed Poisson Reserving Modelb9f3124e-8a75... · Neural Network Embedding of the Over-Dispersed Poisson Reserving Model Andrea Gabrielli RiskLab

Neural Network Embedding of the ODP Reserving Model

Idea

CANN (Combined Actuarial Neural Network) approach

Embedding of cross-classified over-dispersed Poisson (ccODP)reserving model into neural network architecture

Starting point of neural network calibration: ccODP model

=⇒ Learning model structure beyond ccODP model (boosting)

Andrea Gabrielli, ETH Zurich 110. Mitgliederversammlung SAV Luzern, 30. August 2019 2 / 20

Page 3: Neural Network Embedding of the Over-Dispersed Poisson Reserving Modelb9f3124e-8a75... · Neural Network Embedding of the Over-Dispersed Poisson Reserving Model Andrea Gabrielli RiskLab

Neural Network Embedding of the ODP Reserving Model

Example Data

Simulated from Individual Claims History Simulation Machine

1 ≤ i ≤ I: accident years, 0 ≤ j ≤ J : development delays

Aggregated (incremental) payments Yi ,j for all claims in LoB 1:

Accident Development delay jyear i 0 1 2 3 4 5 6 7 8 9 10 11

1 9’416 4’850 1’596 871 594 446 322 242 188 177 159 1302 9’822 5’293 1’826 1’026 657 457 364 292 228 191 1463 9’613 4’903 1’665 970 594 443 325 263 212 1764 9’788 5’250 1’823 1’086 744 550 431 303 2265 9’955 5’722 2’089 1’159 791 558 458 3546 10’453 6’122 2’214 1’311 859 630 4977 11’130 6’476 2’401 1’356 890 6778 11’268 6’629 2’504 1’493 1’0089 11’475 6’953 2’648 1’47810 12’172 7’084 2’74611 12’816 8’02812 13’239

Andrea Gabrielli, ETH Zurich 110. Mitgliederversammlung SAV Luzern, 30. August 2019 3 / 20

Page 4: Neural Network Embedding of the Over-Dispersed Poisson Reserving Modelb9f3124e-8a75... · Neural Network Embedding of the Over-Dispersed Poisson Reserving Model Andrea Gabrielli RiskLab

Neural Network Embedding of the ODP Reserving Model

Cross-Classified Over-Dispersed Poisson (ccODP) Model

ODP model: Yi ,j/φind.∼ Poi(µi ,j/φ), φ > 0

Cross-classification: logµi ,j = αi + βj

=⇒ E[Yi ,j ] = Var(Yi ,j)/φ = µi ,j = exp{αi + βj}

Minimize Poisson deviance statistics =⇒ MLEs (αi )i , (βj)j

Estimates: Y ODPi ,j = µODP

i ,j = exp{αi + βj

}ODP reserves =

∑i+j>I

µODPi ,j = Chain-ladder (CL) reserves

Andrea Gabrielli, ETH Zurich 110. Mitgliederversammlung SAV Luzern, 30. August 2019 4 / 20

Page 5: Neural Network Embedding of the Over-Dispersed Poisson Reserving Modelb9f3124e-8a75... · Neural Network Embedding of the Over-Dispersed Poisson Reserving Model Andrea Gabrielli RiskLab

Neural Network Embedding of the ODP Reserving Model

Cross-Classified Over-Dispersed Poisson (ccODP) Model

ODP model: Yi ,j/φind.∼ Poi(µi ,j/φ), φ > 0

Cross-classification: logµi ,j = αi + βj

=⇒ E[Yi ,j ] = Var(Yi ,j)/φ = µi ,j = exp{αi + βj}

Minimize Poisson deviance statistics =⇒ MLEs (αi )i , (βj)j

Estimates: Y ODPi ,j = µODP

i ,j = exp{αi + βj

}ODP reserves =

∑i+j>I

µODPi ,j = Chain-ladder (CL) reserves

Andrea Gabrielli, ETH Zurich 110. Mitgliederversammlung SAV Luzern, 30. August 2019 4 / 20

Page 6: Neural Network Embedding of the Over-Dispersed Poisson Reserving Modelb9f3124e-8a75... · Neural Network Embedding of the Over-Dispersed Poisson Reserving Model Andrea Gabrielli RiskLab

Neural Network Embedding of the ODP Reserving Model

Results

6 LoBs from Individual Claims History Simulation Machine

Results:

LoB 1 LoB 2 LoB 3 LoB 4 LoB 5 LoB 6 total(i) true claims reserves 39’689 37’037 16’878 71’630 72’548 31’117 268’899(ii) CL/ccODP reserves 38’569 35’460 15’692 67’574 70’166 29’409 256’870(iii)(iv)(v) bias CL/ccODP -2.8% -4.3% -7.0% -5.7% -3.3% -5.5% -4.5%(vi)(vii)

Question: Can we do better?

=⇒ Embed ccODP model into neural network architecture

Andrea Gabrielli, ETH Zurich 110. Mitgliederversammlung SAV Luzern, 30. August 2019 5 / 20

Page 7: Neural Network Embedding of the Over-Dispersed Poisson Reserving Modelb9f3124e-8a75... · Neural Network Embedding of the Over-Dispersed Poisson Reserving Model Andrea Gabrielli RiskLab

Neural Network Embedding of the ODP Reserving Model

Results

6 LoBs from Individual Claims History Simulation Machine

Results:

LoB 1 LoB 2 LoB 3 LoB 4 LoB 5 LoB 6 total(i) true claims reserves 39’689 37’037 16’878 71’630 72’548 31’117 268’899(ii) CL/ccODP reserves 38’569 35’460 15’692 67’574 70’166 29’409 256’870(iii)(iv)(v) bias CL/ccODP -2.8% -4.3% -7.0% -5.7% -3.3% -5.5% -4.5%(vi)(vii)

Question: Can we do better?

=⇒ Embed ccODP model into neural network architecture

Andrea Gabrielli, ETH Zurich 110. Mitgliederversammlung SAV Luzern, 30. August 2019 5 / 20

Page 8: Neural Network Embedding of the Over-Dispersed Poisson Reserving Modelb9f3124e-8a75... · Neural Network Embedding of the Over-Dispersed Poisson Reserving Model Andrea Gabrielli RiskLab

Neural Network Embedding of the ODP Reserving Model

ccODP Model as Neural Network

input embedding

outputAY i

DY j

ccODP exponential of the sum

Input layer: (i , j) ∈ {1, . . . , I} × {0, . . . , J}

Embedding layers:

α(·) : {1, . . . , I} → R, i 7→ α(i) = αi ,

β(·) : {0, . . . , J} → R, j 7→ β(j) = βj .

ccODP: µODPi ,j = exp

{αi + βj

}Andrea Gabrielli, ETH Zurich 110. Mitgliederversammlung SAV Luzern, 30. August 2019 6 / 20

Page 9: Neural Network Embedding of the Over-Dispersed Poisson Reserving Modelb9f3124e-8a75... · Neural Network Embedding of the Over-Dispersed Poisson Reserving Model Andrea Gabrielli RiskLab

Neural Network Embedding of the ODP Reserving Model

Neural Network Embedding (1/3)

input embedding

hidden1

hidden2

hidden3

output

AY i

DY j

bCCNN

skip connection (ccODP)

NN

Neural network: (non-linear) parametric regression function

Input layer: (i , j) ∈ {1, . . . , I} × {0, . . . , J}

Embedding layers: (i , j) 7→(αi , βj

)

Andrea Gabrielli, ETH Zurich 110. Mitgliederversammlung SAV Luzern, 30. August 2019 7 / 20

Page 10: Neural Network Embedding of the Over-Dispersed Poisson Reserving Modelb9f3124e-8a75... · Neural Network Embedding of the Over-Dispersed Poisson Reserving Model Andrea Gabrielli RiskLab

Neural Network Embedding of the ODP Reserving Model

Neural Network Embedding (2/3)

input embedding

hidden1

hidden2

hidden3

output

AY i

DY j

bCCNN

skip connection (ccODP)

NN

Three hidden layers with (q1, q2, q3) = (20, 15, 10)

First hidden layer: z(1) =(z(1)

1 , . . . , z(1)q1

)∈ Rq1 , where

z(1)l = tanh

(b(1)

l + w (1)l ,1 αi + w (1)

l ,2 βj)∈ (−1, 1)

Andrea Gabrielli, ETH Zurich 110. Mitgliederversammlung SAV Luzern, 30. August 2019 8 / 20

Page 11: Neural Network Embedding of the Over-Dispersed Poisson Reserving Modelb9f3124e-8a75... · Neural Network Embedding of the Over-Dispersed Poisson Reserving Model Andrea Gabrielli RiskLab

Neural Network Embedding of the ODP Reserving Model

Neural Network Embedding (3/3)

input embedding

hidden1

hidden2

hidden3

output

AY i

DY j

bCCNN

skip connection (ccODP)

NN

Second hidden layer: z(2) =(z(2)

1 , . . . , z(2)q2

)∈ Rq2 , where

z(2)l = tanh

(b(2)

l + 〈w (2)l , z(1)〉

)Third hidden layer: z(3) ∈ Rq3

Andrea Gabrielli, ETH Zurich 110. Mitgliederversammlung SAV Luzern, 30. August 2019 9 / 20

Page 12: Neural Network Embedding of the Over-Dispersed Poisson Reserving Modelb9f3124e-8a75... · Neural Network Embedding of the Over-Dispersed Poisson Reserving Model Andrea Gabrielli RiskLab

Neural Network Embedding of the ODP Reserving Model

Blended Cross-Classified Neural Network (bCCNN)

input embedding

hidden1

hidden2

hidden3

output

AY i

DY j

bCCNN

skip connection (ccODP)

NN

Output: µbCCNNi ,j = exp

{b + 〈w , z(3)(i , j)〉

}

Initialization: b = 0, w = 0 =⇒ µ(i , j) = exp{αi + βj

}=⇒ Starting point of neural network calibration: ccODP model

Andrea Gabrielli, ETH Zurich 110. Mitgliederversammlung SAV Luzern, 30. August 2019 10 / 20

Page 13: Neural Network Embedding of the Over-Dispersed Poisson Reserving Modelb9f3124e-8a75... · Neural Network Embedding of the Over-Dispersed Poisson Reserving Model Andrea Gabrielli RiskLab

Neural Network Embedding of the ODP Reserving Model

Blended Cross-Classified Neural Network (bCCNN)

input embedding

hidden1

hidden2

hidden3

output

AY i

DY j

bCCNN

skip connection (ccODP)

NN

Output: µbCCNNi ,j = exp

{αi + βj + b + 〈w , z(3)(i , j)〉

}

Initialization: b = 0, w = 0 =⇒ µ(i , j) = exp{αi + βj

}=⇒ Starting point of neural network calibration: ccODP model

Andrea Gabrielli, ETH Zurich 110. Mitgliederversammlung SAV Luzern, 30. August 2019 10 / 20

Page 14: Neural Network Embedding of the Over-Dispersed Poisson Reserving Modelb9f3124e-8a75... · Neural Network Embedding of the Over-Dispersed Poisson Reserving Model Andrea Gabrielli RiskLab

Neural Network Embedding of the ODP Reserving Model

Blended Cross-Classified Neural Network (bCCNN)

input embedding

hidden1

hidden2

hidden3

output

AY i

DY j

bCCNN

skip connection (ccODP)

NN

Output: µbCCNNi ,j = exp

{αi + βj + b + 〈w , z(3)(i , j)〉

}Initialization: b = 0, w = 0 =⇒ µbCCNN

i ,j = exp{αi + βj

}= µODP

i ,j

=⇒ Starting point of neural network calibration: ccODP model

Andrea Gabrielli, ETH Zurich 110. Mitgliederversammlung SAV Luzern, 30. August 2019 10 / 20

Page 15: Neural Network Embedding of the Over-Dispersed Poisson Reserving Modelb9f3124e-8a75... · Neural Network Embedding of the Over-Dispersed Poisson Reserving Model Andrea Gabrielli RiskLab

Neural Network Embedding of the ODP Reserving Model

Neural Network Calibration

Neural network parameter: θ ∈ Rq with q = 547

Minimize Poisson deviance statistics L(θ) with gradient descent:

θ ← θ − ρ∇θL(θ), ρ > 0

Problem: For how long shouldwe run gradient descent?

Idea: Split claims=⇒ training triangle andvalidation triangle

●●●●●●●●●●●

●●●●●●●●●●

●●●

●●●

●●●●●●

●●●

●●●●●

●●●

●●●●●●

●●

●●●●●●●●●●●

●●

●●●●●

●●

●●●●●●●●●●●

●●●●●●●●

●●●

●●●●●

●●●●●

●●

●●●

●●

●●●●●●●●●

●●

●●●●

●●

●●

●●●●●●●●●●●

●●

●●●●●●●●●●●

●●

●●●●●●●

●●●●

●●●

●●●●●●

●●

●●

●●●●

●●

●●

●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●

●●

●●●

●●●

●●

●●

●●●

●●

●●●●●●

●●

●●

●●●

●●●●

●●●

●●

●●

●●●●●●●●

●●●●●

●●●

●●●●

●●●●

●●●●●

●●●

●●

●●●●●

●●●●

●●●

●●

●●

●●

●●●●

●●●●

●●●●●●

●●●●●

●●●●●

●●●

●●●

●●●●

●●

●●

●●

●●●

●●

●●●

●●●●●

●●●

●●

●●

●●

●●●●●●

●●

●●

●●●●

●●

●●

●●●●●

●●

●●●

●●

●●●

●●●●●

●●●●●●●

●●●●●●●●

●●

●●●

●●●●

●●●

●●●

●●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●●●●●●

●●●

●●●●●●

●●

●●●●●

●●●●●●●

●●●●

●●

●●●●

●●

●●

●●

●●

●●●●●

●●

●●

●●●

●●

●●●●

●●●

●●●●●●

●●

●●●●

●●●

●●

●●●

●●●●●●●

●●

●●●

●●

●●●●

●●

●●●●●

●●

●●●●●●●●

●●

●●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●●

●●●

●●●

●●●

●●

●●●●●

●●●

●●

●●

●●●

●●

●●

●●●●

●●●●●●

●●●

●●

●●●●●●●●●●●●

●●

●●●●

●●●●●●

●●●●

●●

●●●●●

●●●●●●●

●●●●●

●●●●●

0 200 400 600 800 1000

020

040

060

080

010

0012

00

blended for individual LoB 1

gradient descent iteration

devi

ance

loss

es

●●●●●●●

●●●●●●●●●●●●●

●●

●●●●●●

●●●●

●●

●●

●●

●●●

●●

●●●●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●●

●●●

●●

●●

●●●

●●

●●

●●

●●

●●●

●●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●●●

●●●

●●●

●●

●●●●

●●

●●

●●●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●●

●●

●●

●●●

●●●●

●●

●●●

●●

●●

●●●

●●

●●

●●●

●●

●●

●●

●●

●●●

●●●●

●●

●●

●●

●●●

●●●

●●

●●

●●

training loss (in−sample)validation loss (out−of−sample)

Andrea Gabrielli, ETH Zurich 110. Mitgliederversammlung SAV Luzern, 30. August 2019 11 / 20

Page 16: Neural Network Embedding of the Over-Dispersed Poisson Reserving Modelb9f3124e-8a75... · Neural Network Embedding of the Over-Dispersed Poisson Reserving Model Andrea Gabrielli RiskLab

Neural Network Embedding of the ODP Reserving Model

Neural Network Calibration

Neural network parameter: θ ∈ Rq with q = 547

Minimize Poisson deviance statistics L(θ) with gradient descent:

θ ← θ − ρ∇θL(θ), ρ > 0

Problem: For how long shouldwe run gradient descent?

Idea: Split claims=⇒ training triangle andvalidation triangle

●●●●●●●●●●●

●●●●●●●●●●

●●●

●●●

●●●●●●

●●●

●●●●●

●●●

●●●●●●

●●

●●●●●●●●●●●

●●

●●●●●

●●

●●●●●●●●●●●

●●●●●●●●

●●●

●●●●●

●●●●●

●●

●●●

●●

●●●●●●●●●

●●

●●●●

●●

●●

●●●●●●●●●●●

●●

●●●●●●●●●●●

●●

●●●●●●●

●●●●

●●●

●●●●●●

●●

●●

●●●●

●●

●●

●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●

●●

●●●

●●●

●●

●●

●●●

●●

●●●●●●

●●

●●

●●●

●●●●

●●●

●●

●●

●●●●●●●●

●●●●●

●●●

●●●●

●●●●

●●●●●

●●●

●●

●●●●●

●●●●

●●●

●●

●●

●●

●●●●

●●●●

●●●●●●

●●●●●

●●●●●

●●●

●●●

●●●●

●●

●●

●●

●●●

●●

●●●

●●●●●

●●●

●●

●●

●●

●●●●●●

●●

●●

●●●●

●●

●●

●●●●●

●●

●●●

●●

●●●

●●●●●

●●●●●●●

●●●●●●●●

●●

●●●

●●●●

●●●

●●●

●●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●●●●●●

●●●

●●●●●●

●●

●●●●●

●●●●●●●

●●●●

●●

●●●●

●●

●●

●●

●●

●●●●●

●●

●●

●●●

●●

●●●●

●●●

●●●●●●

●●

●●●●

●●●

●●

●●●

●●●●●●●

●●

●●●

●●

●●●●

●●

●●●●●

●●

●●●●●●●●

●●

●●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●●

●●●

●●●

●●●

●●

●●●●●

●●●

●●

●●

●●●

●●

●●

●●●●

●●●●●●

●●●

●●

●●●●●●●●●●●●

●●

●●●●

●●●●●●

●●●●

●●

●●●●●

●●●●●●●

●●●●●

●●●●●

0 200 400 600 800 1000

020

040

060

080

010

0012

00

blended for individual LoB 1

gradient descent iteration

devi

ance

loss

es

●●●●●●●

●●●●●●●●●●●●●

●●

●●●●●●

●●●●

●●

●●

●●

●●●

●●

●●●●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●●

●●●

●●

●●

●●●

●●

●●

●●

●●

●●●

●●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●●●

●●●

●●●

●●

●●●●

●●

●●

●●●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●●

●●

●●

●●●

●●●●

●●

●●●

●●

●●

●●●

●●

●●

●●●

●●

●●

●●

●●

●●●

●●●●

●●

●●

●●

●●●

●●●

●●

●●

●●

training loss (in−sample)validation loss (out−of−sample)

Andrea Gabrielli, ETH Zurich 110. Mitgliederversammlung SAV Luzern, 30. August 2019 11 / 20

Page 17: Neural Network Embedding of the Over-Dispersed Poisson Reserving Modelb9f3124e-8a75... · Neural Network Embedding of the Over-Dispersed Poisson Reserving Model Andrea Gabrielli RiskLab

Neural Network Embedding of the ODP Reserving Model

Neural Network Calibration

Neural network parameter: θ ∈ Rq with q = 547

Minimize Poisson deviance statistics L(θ) with gradient descent:

θ ← θ − ρ∇θL(θ), ρ > 0

Problem: For how long shouldwe run gradient descent?

Idea: Split claims=⇒ training triangle andvalidation triangle

●●●●●●●●●●●

●●●●●●●●●●

●●●

●●●

●●●●●●

●●●

●●●●●

●●●

●●●●●●

●●

●●●●●●●●●●●

●●

●●●●●

●●

●●●●●●●●●●●

●●●●●●●●

●●●

●●●●●

●●●●●

●●

●●●

●●

●●●●●●●●●

●●

●●●●

●●

●●

●●●●●●●●●●●

●●

●●●●●●●●●●●

●●

●●●●●●●

●●●●

●●●

●●●●●●

●●

●●

●●●●

●●

●●

●●●●

●●●●

●●●

●●●

●●●●

●●●

●●●

●●

●●●

●●●

●●

●●

●●●

●●

●●●●●●

●●

●●

●●●

●●●●

●●●

●●

●●

●●●●●●●●

●●●●●

●●●

●●●●

●●●●

●●●●●

●●●

●●

●●●●●

●●●●

●●●

●●

●●

●●

●●●●

●●●●

●●●●●●

●●●●●

●●●●●

●●●

●●●

●●●●

●●

●●

●●

●●●

●●

●●●

●●●●●

●●●

●●

●●

●●

●●●●●●

●●

●●

●●●●

●●

●●

●●●●●

●●

●●●

●●

●●●

●●●●●

●●●●●●●

●●●●●●●●

●●

●●●

●●●●

●●●

●●●

●●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●●●●●●

●●●

●●●●●●

●●

●●●●●

●●●●●●●

●●●●

●●

●●●●

●●

●●

●●

●●

●●●●●

●●

●●

●●●

●●

●●●●

●●●

●●●●●●

●●

●●●●

●●●

●●

●●●

●●●●●●●

●●

●●●

●●

●●●●

●●

●●●●●

●●

●●●●●●●●

●●

●●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●●

●●●

●●●

●●●

●●

●●●●●

●●●

●●

●●

●●●

●●

●●

●●●●

●●●●●●

●●●

●●

●●●●●●●●●●●●

●●

●●●●

●●●●●●

●●●●

●●

●●●●●

●●●●●●●

●●●●●

●●●●●

0 200 400 600 800 1000

020

040

060

080

010

0012

00

blended for individual LoB 1

gradient descent iteration

devi

ance

loss

es

●●●●●●●

●●●●●●●●●●●●●

●●

●●●●●●

●●●●

●●

●●

●●

●●●

●●

●●●●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●●

●●●

●●

●●

●●●

●●

●●

●●

●●

●●●

●●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●●●

●●●

●●●

●●

●●●●

●●

●●

●●●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●●

●●

●●

●●●

●●●●

●●

●●●

●●

●●

●●●

●●

●●

●●●

●●

●●

●●

●●

●●●

●●●●

●●

●●

●●

●●●

●●●

●●

●●

●●

training loss (in−sample)validation loss (out−of−sample)

Andrea Gabrielli, ETH Zurich 110. Mitgliederversammlung SAV Luzern, 30. August 2019 11 / 20

Page 18: Neural Network Embedding of the Over-Dispersed Poisson Reserving Modelb9f3124e-8a75... · Neural Network Embedding of the Over-Dispersed Poisson Reserving Model Andrea Gabrielli RiskLab

Neural Network Embedding of the ODP Reserving Model

Results

6 LoBs from Individual Claims History Simulation Machine

Results:

LoB 1 LoB 2 LoB 3 LoB 4 LoB 5 LoB 6 total(i) true claims reserves 39’689 37’037 16’878 71’630 72’548 31’117 268’899(ii) CL/ccODP reserves 38’569 35’460 15’692 67’574 70’166 29’409 256’870(iii) bCCNN reserves(iv)(v) bias CL/ccODP -2.8% -4.3% -7.0% -5.7% -3.3% -5.5% -4.5%(vi) bias bCCNN(vii)

Andrea Gabrielli, ETH Zurich 110. Mitgliederversammlung SAV Luzern, 30. August 2019 12 / 20

Page 19: Neural Network Embedding of the Over-Dispersed Poisson Reserving Modelb9f3124e-8a75... · Neural Network Embedding of the Over-Dispersed Poisson Reserving Model Andrea Gabrielli RiskLab

Neural Network Embedding of the ODP Reserving Model

Results

6 LoBs from Individual Claims History Simulation Machine

Results:

LoB 1 LoB 2 LoB 3 LoB 4 LoB 5 LoB 6 total(i) true claims reserves 39’689 37’037 16’878 71’630 72’548 31’117 268’899(ii) CL/ccODP reserves 38’569 35’460 15’692 67’574 70’166 29’409 256’870(iii) bCCNN reserves 39’233 35’899 15’815 70’219 70’936 30’671 262’773(iv)(v) bias CL/ccODP -2.8% -4.3% -7.0% -5.7% -3.3% -5.5% -4.5%(vi) bias bCCNN -1.1% -3.1% -6.3% -2.0% -2.2% -1.4% -2.3%(vii)

Andrea Gabrielli, ETH Zurich 110. Mitgliederversammlung SAV Luzern, 30. August 2019 12 / 20

Page 20: Neural Network Embedding of the Over-Dispersed Poisson Reserving Modelb9f3124e-8a75... · Neural Network Embedding of the Over-Dispersed Poisson Reserving Model Andrea Gabrielli RiskLab

Neural Network Embedding of the ODP Reserving Model

Multiple LoB Model

Input layer: (i , j ,m) ∈ {1, . . . , I} × {0, . . . , J} × {1, . . . , 6}

Embedding layers:

α(·) : {1, . . . , I} → R6, i 7→ α(i) =(αi |1, . . . , αi |6

),

β(·) : {0, . . . , J} → R6, j 7→ β(j) =(βi |1, . . . , βi |6

),

γ(·) : {1, . . . , 6} → R, m 7→ γ(m) = γm.

Output: µLoBi ,j,m = exp

{αi |m + βj|m + b + 〈w , z(3)(i , j ,m)〉

}

Andrea Gabrielli, ETH Zurich 110. Mitgliederversammlung SAV Luzern, 30. August 2019 13 / 20

Page 21: Neural Network Embedding of the Over-Dispersed Poisson Reserving Modelb9f3124e-8a75... · Neural Network Embedding of the Over-Dispersed Poisson Reserving Model Andrea Gabrielli RiskLab

Neural Network Embedding of the ODP Reserving Model

Results

6 LoBs from Individual Claims History Simulation Machine

Results:

LoB 1 LoB 2 LoB 3 LoB 4 LoB 5 LoB 6 total(i) true claims reserves 39’689 37’037 16’878 71’630 72’548 31’117 268’899(ii) CL/ccODP reserves 38’569 35’460 15’692 67’574 70’166 29’409 256’870(iii) bCCNN reserves 39’233 35’899 15’815 70’219 70’936 30’671 262’773(iv) multiple LoB reserves 40’271 37’027 16’400 70’563 73’314 30’730 268’305(v) bias CL/ccODP -2.8% -4.3% -7.0% -5.7% -3.3% -5.5% -4.5%(vi) bias bCCNN -1.1% -3.1% -6.3% -2.0% -2.2% -1.4% -2.3%(vii) bias multiple LoB 1.5% 0.0% -2.8% -1.5% 1.1% -1.2% -0.2%

Andrea Gabrielli, ETH Zurich 110. Mitgliederversammlung SAV Luzern, 30. August 2019 14 / 20

Page 22: Neural Network Embedding of the Over-Dispersed Poisson Reserving Modelb9f3124e-8a75... · Neural Network Embedding of the Over-Dispersed Poisson Reserving Model Andrea Gabrielli RiskLab

Neural Network Embedding of the ODP Reserving Model

Prediction Uncertainty (with Bootstrap)

Conditional root mean square error of prediction (rmsep):

rmsep(

Rtrue, RODP∣∣DI)

=√

E[

(Rtrue − RODP)2∣∣DI]

=√

Var (Rtrue| DI) + (RODP − E [Rtrue| DI ])2

Results:

LoB 1 LoB 2 LoB 3 LoB 4 LoB 5 LoB 6 total(i) rmsep CL/ccODP 1’076 1’316 475 2’150 1’938 975 3’528(ii) bias CL/ccODP -1’120 -1’577 -1’186 -4’056 -2’382 -1’708 -12’029(iii) rmsep bCCNN 1’171 1’299 508 2’105 2’029 1’072 3’607(iv) bias bCCNN -456 -1’138 -1’063 -1’411 -1’612 -446 -6’126(v) rmsep multiple LoB 1’102 1’357 498 2’098 1’989 1’033 3’757(vi) bias multiple LoB 582 -10 -478 -1’067 766 -387 -594

Andrea Gabrielli, ETH Zurich 110. Mitgliederversammlung SAV Luzern, 30. August 2019 15 / 20

Page 23: Neural Network Embedding of the Over-Dispersed Poisson Reserving Modelb9f3124e-8a75... · Neural Network Embedding of the Over-Dispersed Poisson Reserving Model Andrea Gabrielli RiskLab

Neural Network Embedding of the ODP Reserving Model

Prediction Uncertainty (with Bootstrap)

Conditional root mean square error of prediction (rmsep):

rmsep(

Rtrue, RODP∣∣DI)

=√

E[

(Rtrue − RODP)2∣∣DI]

=√

Var (Rtrue| DI) + (RODP − E [Rtrue| DI ])2

Results:

LoB 1 LoB 2 LoB 3 LoB 4 LoB 5 LoB 6 total(i) rmsep CL/ccODP 1’076 1’316 475 2’150 1’938 975 3’528

(ii) bias CL/ccODP -1’120 -1’577 -1’186 -4’056 -2’382 -1’708 -12’029(iii)(iv)(v)(vi)

Andrea Gabrielli, ETH Zurich 110. Mitgliederversammlung SAV Luzern, 30. August 2019 15 / 20

Page 24: Neural Network Embedding of the Over-Dispersed Poisson Reserving Modelb9f3124e-8a75... · Neural Network Embedding of the Over-Dispersed Poisson Reserving Model Andrea Gabrielli RiskLab

Neural Network Embedding of the ODP Reserving Model

Prediction Uncertainty (with Bootstrap)

Conditional root mean square error of prediction (rmsep):

rmsep(

Rtrue, RODP∣∣DI)

=√

E[

(Rtrue − RODP)2∣∣DI]

=√

Var (Rtrue| DI) + (RODP − E [Rtrue| DI ])2

Results:

LoB 1 LoB 2 LoB 3 LoB 4 LoB 5 LoB 6 total(i) rmsep CL/ccODP 1’076 1’316 475 2’150 1’938 975 3’528

(ii) bias CL/ccODP -1’120 -1’577 -1’186 -4’056 -2’382 -1’708 -12’029(iii) rmsep bCCNN 1’171 1’299 508 2’105 2’029 1’072 3’607(iv) bias bCCNN -456 -1’138 -1’063 -1’411 -1’612 -446 -6’126(v)(vi)

Andrea Gabrielli, ETH Zurich 110. Mitgliederversammlung SAV Luzern, 30. August 2019 15 / 20

Page 25: Neural Network Embedding of the Over-Dispersed Poisson Reserving Modelb9f3124e-8a75... · Neural Network Embedding of the Over-Dispersed Poisson Reserving Model Andrea Gabrielli RiskLab

Neural Network Embedding of the ODP Reserving Model

Prediction Uncertainty (with Bootstrap)

Conditional root mean square error of prediction (rmsep):

rmsep(

Rtrue, RODP∣∣DI)

=√

E[

(Rtrue − RODP)2∣∣DI]

=√

Var (Rtrue| DI) + (RODP − E [Rtrue| DI ])2

Results:

LoB 1 LoB 2 LoB 3 LoB 4 LoB 5 LoB 6 total(i) rmsep CL/ccODP 1’076 1’316 475 2’150 1’938 975 3’528(ii) bias CL/ccODP -1’120 -1’577 -1’186 -4’056 -2’382 -1’708 -12’029(iii) rmsep bCCNN 1’171 1’299 508 2’105 2’029 1’072 3’607(iv) bias bCCNN -456 -1’138 -1’063 -1’411 -1’612 -446 -6’126(v) rmsep multiple LoB 1’102 1’357 498 2’098 1’989 1’033 3’757(vi) bias multiple LoB 582 -10 -478 -1’067 766 -387 -594

Andrea Gabrielli, ETH Zurich 110. Mitgliederversammlung SAV Luzern, 30. August 2019 15 / 20

Page 26: Neural Network Embedding of the Over-Dispersed Poisson Reserving Modelb9f3124e-8a75... · Neural Network Embedding of the Over-Dispersed Poisson Reserving Model Andrea Gabrielli RiskLab

Neural Network Embedding of the ODP Reserving Model

Relative Model Differences

For each cell (i , j):

µLoBi ,j,· − µODP

i ,jµODP

i ,j

ccODP versus multiple bCCNN reserves of LoB 1

development years

acci

dent

yea

rs

−0.04

−0.02

0.00

0.02

0.04

0.06

2005

2004

2003

2002

2001

2000

1999

1998

1997

1996

1995

1994

0 1 2 3 4 5 6 7 8 9 10 11

=⇒ slower payout pattern in more recent accident years

Andrea Gabrielli, ETH Zurich 110. Mitgliederversammlung SAV Luzern, 30. August 2019 16 / 20

Page 27: Neural Network Embedding of the Over-Dispersed Poisson Reserving Modelb9f3124e-8a75... · Neural Network Embedding of the Over-Dispersed Poisson Reserving Model Andrea Gabrielli RiskLab

Neural Network Embedding of the ODP Reserving Model

Relative Model Differences

For each cell (i , j):

µLoBi ,j,· − µODP

i ,jµODP

i ,j

ccODP versus multiple bCCNN reserves of LoB 1

development years

acci

dent

yea

rs

−0.04

−0.02

0.00

0.02

0.04

0.06

2005

2004

2003

2002

2001

2000

1999

1998

1997

1996

1995

1994

0 1 2 3 4 5 6 7 8 9 10 11

=⇒ slower payout pattern in more recent accident years

Andrea Gabrielli, ETH Zurich 110. Mitgliederversammlung SAV Luzern, 30. August 2019 16 / 20

Page 28: Neural Network Embedding of the Over-Dispersed Poisson Reserving Modelb9f3124e-8a75... · Neural Network Embedding of the Over-Dispersed Poisson Reserving Model Andrea Gabrielli RiskLab

Neural Network Embedding of the ODP Reserving Model

Cumulative Development Factors

ccODP model:

f ODPj =

∑jl=0 µ

ODPi ,l

µODPi ,0

=∑j

l=0 exp{βl}

exp{β0}

Multiple LoB model:

f LoBi ,j =

∑jl=0 µ

LoBi ,l ,·

µLoBi ,0,·

2 4 6 8 10 12

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

cumulative development factors of LoB 1

development years

1

12

ccODP CL factorsbCCNN AYs 2−11bCCNN AYs 1&12

=⇒ accident year dependent cumulative development factors

Andrea Gabrielli, ETH Zurich 110. Mitgliederversammlung SAV Luzern, 30. August 2019 17 / 20

Page 29: Neural Network Embedding of the Over-Dispersed Poisson Reserving Modelb9f3124e-8a75... · Neural Network Embedding of the Over-Dispersed Poisson Reserving Model Andrea Gabrielli RiskLab

Neural Network Embedding of the ODP Reserving Model

Cumulative Development Factors

ccODP model:

f ODPj =

∑jl=0 µ

ODPi ,l

µODPi ,0

=∑j

l=0 exp{βl}

exp{β0}

Multiple LoB model:

f LoBi ,j =

∑jl=0 µ

LoBi ,l ,·

µLoBi ,0,·

2 4 6 8 10 121.

51.

61.

71.

81.

92.

02.

12.

2

cumulative development factors of LoB 1

development years

1

12

ccODP CL factorsbCCNN AYs 2−11bCCNN AYs 1&12

=⇒ accident year dependent cumulative development factors

Andrea Gabrielli, ETH Zurich 110. Mitgliederversammlung SAV Luzern, 30. August 2019 17 / 20

Page 30: Neural Network Embedding of the Over-Dispersed Poisson Reserving Modelb9f3124e-8a75... · Neural Network Embedding of the Over-Dispersed Poisson Reserving Model Andrea Gabrielli RiskLab

Neural Network Embedding of the ODP Reserving Model

Bias (100 Datasets)

Simulate 100 datasets fromIndividual Claims HistorySimulation Machine

100 biases for:ccODP/CL modelbCCNN modelmultiple LoB model

●●

−60

00−

4000

−20

000

2000

4000

6000

reserves over different seeds of LoB 1

CL single LoB bCCNN multiple LoBs bCCNN

=⇒ learning additional model structure

Andrea Gabrielli, ETH Zurich 110. Mitgliederversammlung SAV Luzern, 30. August 2019 18 / 20

Page 31: Neural Network Embedding of the Over-Dispersed Poisson Reserving Modelb9f3124e-8a75... · Neural Network Embedding of the Over-Dispersed Poisson Reserving Model Andrea Gabrielli RiskLab

Neural Network Embedding of the ODP Reserving Model

Bias (100 Datasets)

Simulate 100 datasets fromIndividual Claims HistorySimulation Machine

100 biases for:ccODP/CL modelbCCNN modelmultiple LoB model

●●

−60

00−

4000

−20

000

2000

4000

6000

reserves over different seeds of LoB 1

CL single LoB bCCNN multiple LoBs bCCNN

=⇒ learning additional model structure

Andrea Gabrielli, ETH Zurich 110. Mitgliederversammlung SAV Luzern, 30. August 2019 18 / 20

Page 32: Neural Network Embedding of the Over-Dispersed Poisson Reserving Modelb9f3124e-8a75... · Neural Network Embedding of the Over-Dispersed Poisson Reserving Model Andrea Gabrielli RiskLab

Neural Network Embedding of the ODP Reserving Model

Conclusions

Learning additional model structure through embedding

Number of training iterations has to be chosen carefully

Small number of iterations allows us to apply bootstrap

Extension: embedding of numbers of claims and payments

Andrea Gabrielli, ETH Zurich 110. Mitgliederversammlung SAV Luzern, 30. August 2019 19 / 20

Page 33: Neural Network Embedding of the Over-Dispersed Poisson Reserving Modelb9f3124e-8a75... · Neural Network Embedding of the Over-Dispersed Poisson Reserving Model Andrea Gabrielli RiskLab

Neural Network Embedding of the ODP Reserving Model

References

1 Gabrielli, A. (2019). A neural network boosted double over-dispersedPoisson claims reserving model. SSRN Manuscript, ID 3365517.

2 Gabrielli, A., Richman, R., Wuthrich, M.V. (2018). Neural networkembedding of the over-dispersed Poisson reserving model. SSRNManuscript, ID 3288454 (to be published in the ScandinavianActuarial Journal).

3 Gabrielli, A., Wuthrich, M.V. (2018). An individual claims historysimulation machine. Risks 6/2, 29.

4 Wuthrich, M.V., Merz, M. (2019). Editorial: Yes, we CANN! ASTINBulletin 49/1, 1-3.

Andrea Gabrielli, ETH Zurich 110. Mitgliederversammlung SAV Luzern, 30. August 2019 20 / 20