natural sciences - ssu.ac.kr with its emphasis on numbers, quantity, form, and relations, is a field...

28
College of Natural Sciences A Creative Approach to Science In 1984, the Mathematics, Physics, and Chemistry departments were separated from the College of Liberal Arts to form the College of Natural Sciences. The Department of Statistics was added in 1988. In 2001, the Bioinformatics and Life Science program was launched, making the College of Natural Sciences what it is today. We educate our students to analyze natural phenomena with methodologies that are mathematical and logical. We also instruct them to resolve problems with creativity and reason. Our ultimate aim is to train young scholars with the requisite capability and willingness to serve the nation and humanity through their academic pursuits. 129

Upload: vuminh

Post on 24-Mar-2018

217 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Natural Sciences - ssu.ac.kr with its emphasis on numbers, quantity, form, and relations, is a field of study which requires careful analysis and clear reasoning

College ofNaturalSciencesA Creative Approach to ScienceIn 1984, the Mathematics, Physics, and Chemistry departments were separated

from the College of Liberal Arts to form the College of Natural Sciences. The

Department of Statistics was added in 1988. In 2001, the Bioinformatics and Life

Science program was launched, making the College of Natural Sciences what it is

today. We educate our students to analyze natural phenomena with

methodologies that are mathematical and logical. We also instruct them to resolve

problems with creativity and reason. Our ultimate aim is to train young scholars

with the requisite capability and willingness to serve the nation and humanity

through their academic pursuits.

129

Page 2: Natural Sciences - ssu.ac.kr with its emphasis on numbers, quantity, form, and relations, is a field of study which requires careful analysis and clear reasoning

Mathematics, with its emphasis on numbers, quantity, form, and relations, is a field of study which requires careful

analysis and clear reasoning. It is, therefore, one of the most useful divisions of human knowledge, and the knowledge

and skills obtained from mathematics play an essential role in the development of technology-the tools, materials,techniques, and sources of power that make our lives easier and our nation more advanced. Mathematical training also

helps us learn how to solve our everyday problems more creatively and rationally.

Phone: 02 820 0410; [email protected]; office hours: Monday - Friday 9 a.m. - 12 p.m. 1 p.m 5: 30 p.m., Saturday 9a.m. 12 p.m.

Mathematics

130 Soongsil University Catalog

Generalrequiredcourse

Generalrequiredcourse

Generalrequiredcourse

Chapel

The Bible for Modern People

Freshman Communicative English I

Computer Practice I-Excel Course

(Selection out of 8 Fields of General

Elective Courses)

Calculus Ⅰ

Physics and Lab

Computer Programming and Practices

Chapel

Practical Reading & Writing

(Selection out of 8 Fields of General

Elective Courses)

Mathematical Analysis I

Set Theory

Linear Algebra I

Differential Equations

Chapel

Modern Algebra I

General Topology I

Complex Analysis I

Geometry

Advanced Calculus

Applied Linear Algebra

Topics in Topology

Topics in Algebra

Numerical Analysis

Financial Mathematics

Chapel

Reading & Writing

Freshman Communicative English II

Computer Practice II-PowerPoint Course

Servant Leader ship

(Selection out of 8 Fields of General

Elective Courses)

Calculus II

Chemistry and Lab

Statistics

Chapel

TOEIC 800

(Selection out of 8 Fields of General

Elective Courses)

Mathematical Analysis II

Linear Algebra II

Number Theory

Discrete Mathematics

Chapel

Modern Algebra II

General Topology II

Complex Analysis II

Differential Geometry

Mathematical Statistics

Topics in Analysis

Cryptology

History of Mathematics

Topics in Applied Mathematics

Generalelectivecourse

Generalelectivecourse

Majorrequiredcourse

Majorelectivecourse

Majorelectivecourse

Majorcompulsory

course

Majorrequiredcourse

Generalrequiredcourse

Generalrequiredcourse

Generalrequiredcourse

Generalelectivecourse

Generalelectivecourse

Majorelectivecourse

Majorelectivecourse

Majorcompulsory

course

Majorrequiredcourse

Majorrequiredcourse

Majorelectivecourse

Majorelectivecourse

1

2

3

4

※ Notes:

1) General elective courses should be completed over 15 credits, whose areas should spread over more than five areas including the foreignlanguages area out of eight areas.

2) A candidate for a double major in Mathematics is required to obtain at least 36 credits of major courses, including major compulsory courses.3) A minor candidate must complete at least 21 credits of major courses, including nine credits of required courses for a minor, as listed in the chart

above.

Minor

Minor

Minor

Minor

Year1st Semester 2nd Semester

Classification Course Titles Hours Points Level Notes Classification Course Titles Hours Points Level Notes

3 2

3 1

1 1

4-6

3 3

4 3

4 3

3 2

2-4

3 3 Intermediate

3 3 Intermediate

3 3 Intermediate

3 3 Intermediate

Intermediate

3 3 Intermediate

3 3 Intermediate

3 3 Intermediate

3 3 Intermediate

3 3 Advanced

3 3 Advanced

3 3 Advanced

3 3 Advanced

3 3 Intermediate

3 3 Intermediate

3 3

3 1

1 1

(32) 1

4-6

3 3

4 3

3 3

3 2

2-4

3 3 Intermediate

3 3 Intermediate

3 3 Intermediate

3 3 Intermediate

Intermediate

3 3 Intermediate

3 3 Intermediate

3 3 Intermediate

3 3 Intermediate

3 3 Advanced

3 3 Advanced

3 3 Advanced

3 3 Intermediate

3 3 Advanced

Page 3: Natural Sciences - ssu.ac.kr with its emphasis on numbers, quantity, form, and relations, is a field of study which requires careful analysis and clear reasoning

Faculty Members and Areas of Research

Yie, Sang-Suk, Professor, Topology, (Ph.D., SNU, 1987)

Kim, Yeon-Ok, Professor, Algebra, (Ph.D., Korea Univ, 1988)

Jeong, Kwang-Sik, Professor, Topology, (Ph.D., SNU, 1989)

Park, Eun-Soon, Professor, Algebra, (Ph.D., Kansas State Univ. 1989)

Hwang, Sun-Wook, Professor, Analysis & Math education, (Ph.D., Univ. of Connecticut, 1990)

Jeong, Dal-Young, Professor, Applied Mathematics, (Ph.D., City Univ. of New York, 1992)

Kim, Pil-Ho, Associate Professor, Analysis, (Ph.D., SNU, 1988)

Lee, Eui-Woo, Associate Professor, Applied Mathematics, (Ph.D., Ohio State Univ. 1993)

Kim, Jeong-Heon, Associate Professor, Complex Analysis, (Ph.D., Univ. of Illinois at Urbana Champaign, 1994)

Calculus I, 3-3This is a first course in calculus. Topics include basic concepts and techniques of differentiation and integration for

elementary functions including transcendental functions, antidifferentation, fundamental theorems of calculus, the

Riemann integral, and the polar coordinate system.

Physics and Lab, 4-3The same as the Physics and Lab course in the Physics Department.

Computer Programming and Practices, 4-3The same as Computer Programming and Practice course in the Statistics Department.

Calculus II, 3-3This is a second course in calculus including vector analysis. Topics include sequences, infinite series, power series,

inner products, cross products, vectors in Euclidean space, multiple integrals, and surface integrals.

Chemistry and Lab, 4-3The same as Chemistry and Lab course in the Chemistry Department.

Statistics, 3-3The same as Statistics course in the Statistics Department.

Mathematical Analysis I, II, 3-3This course involves the careful treatment of the theoretical aspects of the calculus of the functions of a real variable.

Topics include sequences, series, the limit and continuity of functions, differentiation, Riemann integrals, sequences

and series of functions, and uniform convergence.

Set Theory, 3-3This is a basic course of the foundations of mathematics. Topics include classes and sets, functions, relations, partially

ordered classes, the axiom of choice, Zorn's lemma, and the arithmetic of cardinal and ordinal numbers.

Linear Algebra I, II, 3-3This is an introductory course emphasizing the techniques of linear algebra. Topics include matrix operations,

determinants, the system of linear equations, vector spaces, linear transformations, eigenvalues, eigenvectors, and

applications to differential equations.

131

College of N

atural Sciences

Math

ematics

Page 4: Natural Sciences - ssu.ac.kr with its emphasis on numbers, quantity, form, and relations, is a field of study which requires careful analysis and clear reasoning

Differential Equations, 3-3This is a basic course emphasizing the techniques of ordinary differential equations. Topics include the existence and

uniqueness of solutions and the general theory of differential equations-first order differential equations, higher-order

differential equations, and systems of differential equations, series solutions, and Laplace transformations.

Number Theory, 3-3This course is an elementary introduction to number theory. Topics include divisors, prime numbers, congruences,

primitive roots, continued fractions, and algebraic numbers.

Discrete Mathematics, 3-3This course is designed to serve as an introduction to the concepts of finite mathematics. Topics include sets and

mathematical logic, counting, graph theory, Boolean algebra, basic probability, linear systems, matrices, linear

programming, and applications.

Modern Algebra I, II, 3-3This course is designed to serve as an introduction to the concepts of abstract algebra. Topics include groups,

subgroups, homomorphism, isomorphism, free groups, rings, commutative rings, ideals, modules, and fields.

General Topology I, II, 3-3This course is a study of topological spaces and maps. Topics include metric spaces, topological spaces, continuous

functions, product spaces, separable spaces, countability, connected sets, compactness, Tychonoff theorem,

metrizability, and paracompactness.

Complex Analysis I, II, 3-3This course is for students who desire a rigorous introduction to the theory of functions of a complex variable. Topics

include the complex number system, analytic functions, Cauchy's theorem, the maximum modulus theorem, series

expansion, the argument principle, and the residue theorem.

Geometry, 3-3This course is a study of the central aspects of two-dimensional Euclidean geometry. Topics include Euclid's postulates,

parallel postulates, projective geometry, hyperbolic geometry, and geometric transformations.

Advanced Calculus, 3-3This course includes a study of the careful development of elementary real analysis including such topics as the

functions of several variables, differentiation and integral of vector-valued functions, Jacobian, the inverse function

theorem, the implicit function theorem, and change of variables in integration.

Differential Geometry, 3-3This course involves the application of calculus to the study of the shape and curvature of curves and surfaces. Topics

include an introduction to vector fields, differential forms on Euclidean spaces, Frenet's formulas, geodesics, the

mappings of surfaces, and Riemann geometry.

Mathematical Statistics, 3-3This course introduces students to the useful and interesting ideas of the mathematical theory of probability and to a

number of applications of probability. Topics include probability, random variables, probability distribution functions,

confidence interval, and the testing of hypotheses.

132 Soongsil University Catalog

Page 5: Natural Sciences - ssu.ac.kr with its emphasis on numbers, quantity, form, and relations, is a field of study which requires careful analysis and clear reasoning

Applied Linear Algebra, 3-3This course involves the study of the careful development of linear algebra including such topics as the diagonalization

of matrices, orthogonalization, primary decomposition, numerical linear algebra, and linear differential equations.

Topics in Topology, 3-3This course includes a basic introduction to the study of algebraic topology. Topics include homotopy, fundamental

groups, covering spaces, simplicial complexes, and homology.

Topics in Algebra, 3-3This course is a study of field theory. Topics include the structures of finite groups, Galois Theory, homology, and

categories.

Numerical Analysis, 3-3This course is designed for students who want to learn basic numerical methods and programming skills. Topics

include the Gaussian elimination method for solving linear systems, bisection and Newton's method, numerical

differentiation and integration, interpolation and polynomial approximation, numerical methods for ordinary

differential equations, numerical methods for approximating eigenvalues, and error analysis.

Financial Mathematics, 3-3This course is an introduction to mathematical topics and problem solving technique used in finance and economics.

Topics include probability, partial differential equations, and numerical analysis.

Topics in Analysis, 3-3This course is a basic introduction to the study of measure theory and partial differential equations. Topics include the

real number system, measures, Lebesque integrals, convergence theorems of integrals, measures and derivatives, first

order partial differential equations, and elementary second-order partial differential equations (such as Laplace

equations, wave equations, heat equations).

Cryptology, 3-3The course covers encryption and decryption in secure codes. Topics include classical cryptosystems and their

cryptanalysis, the Data Encryption Standard, Euclidean algorithms, the Chinese remainder theorem, RSA cryptosystem,

primality testing, factoring algorithms, EIGamal cryptosystem, the discrete log problem, other public key

cryptosystems, signature schemes, hash functions, key distribution, and key agreement.

History of Mathematics, 3-3This course is designed to introduce students to the development of mathematical thinking from ancient to modern

times. It also covers some important mathematical results and their inference processes.

Topics in Applied Mathematics, 3-3This course is designed to cover advanced theories of applied mathematics and to introduce students to recent topics on

applied mathematics.

133

College of N

atural Sciences

Math

ematics

Page 6: Natural Sciences - ssu.ac.kr with its emphasis on numbers, quantity, form, and relations, is a field of study which requires careful analysis and clear reasoning

134 Soongsil University Catalog

The objectives of education in the Department of Physics are to provide a student with an environment that supports his

or her endeavor to become a worthy contributor to the welfare of mankind through studies of naturally occurring,

fundamental phenomena, and the search of applications to promote the quality of life based on the knowledge acquired.

In pursuit of these objectives, the Department of Physics expects of its students to strive for:

1. A profound understanding of the fundamental phenomena of nature

2. The advancement of analytical skills

3. A search for worthy applications of their knowledge and skills acquired through a physics education

Phone: 02-820-0420; [email protected]; office hours: Monday - Friday 9 a.m. - 12 p.m., 1 p.m - 5: 30 p.m.,Saturday 9 a.m. - 12 p.m.

Physics

Generalrequiredcourse

Generalrequiredcourse

Generalrequiredcourse

Chapel

The Bible for Modern People

Freshman Communicative English I

Computer Practice I-Excel Course

Selection out of 8 Fields of General

Elective Courses

Calculus 1

Physics 1 and Lab

Chemistry I and Lab

Physics 2

Chapel

Practical Reading & Writing

Selection out of 8 Fields of General

Elective Courses

Mechanics 1

Modern Physics

Modern Physics Lab

Mathematical Physics1

Wave Phenomena

Future Plans

Chapel

Quantum Mechanics 1

Statistical Physics 1

Electricity and Magnetism 2

Electromagnetism Lab

Application Programming

Solid State Physics

Nuclear and Particle Physics

Advanced Lab

Current Topics in Physics

Thesis Research in Physics 1

Chapel

Reading & Writing

Freshman Communicative English II

Computer Practice II-PowerPoint Course

Servant Leadership

Selection out of 8 Fields of General

Elective Courses

Calculus 2

Physics 3 and Lab

Chemistry 2 and Lab

Physics 4

Chapel

TOEIC 800

Selection out of 8 Fields of General

Elective Courses

Electricity and Magnetism 1

Mechanics 2

Mathematical Physics 2

Electronics

Electronics Lab

Chapel

Quantum Mechanics 2

Statistical Physics 2

Optics

Optics Lab

Computer Simulation

Semiconductor Physics

New Material Physics

Relativity and Cosmology

Thesis Research in Physics 2

Generalelectivecourse

Generalelectivecourse

Majorrequiredcourse

Majorelectivecourse

Majorelectivecourse

Majorcompulsory

course

Majorrequiredcourse

Majorrequiredcourse

Generalrequiredcourse

Generalrequiredcourse

Generalrequiredcourse

Generalelectivecourse

Generalelectivecourse

Majorelectivecourse

Majorelectivecourse

Majorcompulsory

course

Majorrequiredcourse

Majorelectivecourse

Majorelectivecourse

1

2

3

4

Year1st Semester 2nd Semester

Classification Course Titles Hours Points Level Notes Classification Course Titles Hours Points Level Notes

3 2

3 1

1 1

(32) 1

4-6

3 3

4 3

4 3

2 2 Intermediate

3 2

2-4

3 3 Intermediate Minor

3 3 Intermediate

3 3 Intermediate

3 3 Intermediate

4 2 Intermediate

3 3 Intermediate

3 3 Intermediate

3 3 Advanced

4 2 Advanced

3 3 Advanced

3 3 Advanced

3 3 Advanced

3 3 Advanced

2 1 Intermediate

3 3

3 1

1 1

4-6

3 3

4 3

4 3

2 2 Intermediate

3 2

2-4

3 3 Intermediate Minor

3 3 Intermediate

4 2 Intermediate

3 3 Intermediate

3 3 Intermediate

1 1 Intermediate

3 3 Intermediate Minor

3 3 Intermediate

3 3 Intermediate

4 2 Intermediate

3 3 Intermediate

3 3 Advanced

3 3 Advanced

4 2 Advanced

3 3 Advanced

2 1 Advanced

Page 7: Natural Sciences - ssu.ac.kr with its emphasis on numbers, quantity, form, and relations, is a field of study which requires careful analysis and clear reasoning

Faculty Members and Areas of Research

Koh, Jae-Gui, Professor, Physics of Magnetism, (Ph.D,. Soongsil Univ. 1984)

Lee, Tae-Hoon, Professor, Quantum Field Theory, (Ph.D,. SNU, 1988)

Kim, Chang-Bae, Professor, Plasma Physics, (Ph.D., Princeton Univ. 1989)

Kim, Jin-Min, Associate Professor, Statistical Physics, (Ph.D., Brown Univ, 1989)

Kim, Hee-Sang, Associate Professor, Theoretical Condensed Matter Physics, (Ph.D., Purdue Univ. 1994)

Chung, Jin-Seok, Associate Professor, Solid State Physics Experiment, (Ph.D,. Purdue Univ., 1996)

Yi, Hang-Mo, Assistant Professor, Condensed Matter Physics Theory, (Ph.D., University of Pennsylvania, 1996)

Lee, Yun-Sang, Full-time lecturer, Solid State Spectroscopy, (Ph.D.. Seoul National Univ. 2001)

Cheoun, Myung-Ki, Full-time lecturer, Theoretical Nuclear Physics, (Ph.D.. Tohoku [東北] University, Japan, 1991)

Calculus I, 3-3This is a first course in calculus. Topics include basic concepts and techniques of differentiation and integration for

elementary functions including transcendental functions, antidifferentation, fundamental theorems of calculus, the

Riemann integral, and the polar coordinate system.

Physics I and Lab, 4 3The basic laws of classical physics such as Newton's laws, the conservation of energy and momentum are taught in this

course. Various experiments will provide a way for the students to understand the profound concepts behind these

basic physical laws.

Chemistry I and Lab, 4-3This course introduces basic principles in chemistry about the structures of atoms and molecules, chemical reactions

and reaction equations, gas laws, thermodynamics, quantum chemistry, and molecular orbital theory. The Chemistry

Lab has a program to help students experience basic chemistry theories through simple experiments.

Physics II, 2 2Such physical concepts as equilibrium and elasticity, fluid dynamics, oscillations and waves, and thermodynamics are

taught in this course with an emphasis on the application of these abstract concepts to everyday life.

Calculus II, 3-3This is a second course in calculus including vector analysis. Topics include sequences, infinite series, power series,

inner products, cross products, vectors in Euclidean space, multiple integrals, and surface integrals.

Physics III and Lab, 4-3Basic laws of electricity and magnetism are taught, such as Coulomb's law, Gauss's law, Ohm's law, Ampere's law,

Faraday's law, and Maxwell's equations. The lectures accompany experiments which promote empirical understanding

135

College of N

atural Sciences

Ph

ysics

※ Notes:

1) General elective courses should be completed over 15 credits, whose areas should spread over more than five areas including the foreignlanguages area out of eight areas.

2) A candidate for a double major in Physics is required to obtain at least 36 credits of major courses, including major compulsory courses.3) A minor candidate must complete at least 21 credits of major courses, including nine credits of required courses for a minor, as listed in the chart

above. 4) To pursue a double major in Mathematics, students in Humanities, Law, Social Sciences and Business & Economics must take two courses from

Physics I and Lab, Physics II, Physics III and Lab, Physics IV, Mechanics I, Mathematical Physics I, Electricity and Magnetism I, QuantumMechanics I, Statistical Physics I and Application Programming. For students in Natural Science, Engineering and Information Technology, twocourses from Physics II, Physics IV, Mechanics I, Mathematical Physics I, Electricity and Magnetism I, Quantum Mechanics I, Statistical Physics Iand Application Programming.

5) All students must take at least one laboratory course from Modern Physics Laboratory, Electronics Lab, Electromagnetism Lab, Optics Lab andAdvanced Lab.

Page 8: Natural Sciences - ssu.ac.kr with its emphasis on numbers, quantity, form, and relations, is a field of study which requires careful analysis and clear reasoning

of the laws.

Chemistry II and Lab, 4-3This course follows that of Chemistry I, and introduces the phases of matter, the chemical properties of solutions, acid

bases, oxidation-reduction, equilibriums, and electrochemistry. The Chemistry Lab has a program introducing the basic

experiments learned during lectures.

Physics IV, 2-2In this course wave equations of electromagnetic waves are derived from Maxwell's equations. Concepts in geometrical

and wave optics are also taught.

Mechanics I, 3-3This course is for students familiar with calculus. Topics include elements of vector algebra, with an emphasis on point

mass mechanics. Newtonian mechanics, oscillations, Free, driven, and damped harmonic motion, the noninertial

reference system, gravitation and the central force problem, and the scattering problem are also taught.

Modern Physics, 3-3This course includes the following topics: the Michelson-Morley Experiment, Einstein's Postulates, the Lorentz

Transformation, relativistic momentum and energy, Blackbody Radiation, the photoelectric effect, Compton Scattering,

the Bohr Model, electron waves and Quantum Theory, the Electron Wave Function, the Uncertainty Principle, the

Schrödinger Equation, a Particle in a Square Well, Quantum Theory of the Hydrogen Atom, Magnetic Moments and

Electron Spin, the Spin-Orbit Effect, the Periodic Table, molecular bonding, energy levels and the Spectra of Diatomic

Molecular, the structure of solids, Fermi Electron Gas, the Quantum Theory of Electrical Conduction, the Band Theory

of Solids, Impurity Semiconductors, the properties of Nuclei, radioactivity, nuclear reactions, fission, fusion, the

interaction of particles with matter, and elementary particles.

Modern Physics Laboratory, 4-2In this experimental course, students familiarize themselves with experimental techniques for studying the physical

phenomena commonly observed at the atomic level and learn to analyze the results of experiments based on atomic

physics theory. Millikan's oil drop experiment, the diffraction of electron beams, the measurement of Plank's constant,

the Zeeman Effect, and ESR are a few examples among many experiments that constitute this course.

Mathematical Physics I, 3-3This course is the first half of the mathematical physics course that introduces basic mathematical techniques including

power series, complex numbers, vector analysis, Fourier analysis, differential equations, etc., with an emphasis on their

application in physics.

Wave Phenomena, 3-3Wave phenomena can be seen in a variety of natural phenomena like water waves, sounds, light, FM waves, earthquake

waves, De Broglie waves, etc. The goal of this course is to obtain knowledge about wave phenomena and its

application by studying interesting examples on basic concepts of waves and their relations. Topics include harmonic

oscillations, normal modes from coupled harmonic oscillations, traveling waves, waves in a string, forced vibrations

and resonance, reflection, interference, and the diffraction of waves.

Future Plans, 1-1In this course students are guided in conceptualizing and planning for their long-term career goals after their college

136 Soongsil University Catalog

Page 9: Natural Sciences - ssu.ac.kr with its emphasis on numbers, quantity, form, and relations, is a field of study which requires careful analysis and clear reasoning

education. Various resources will be provided such as presentations by Physics faculty members on topics ranging from

their research interests to current science and technology trends and by alumni on their professional achievements after

graduation and their current careers. Students are expected to make fairly well-defined career goals by successfully

completing this course.

Electricity and Magnetism I, 3-3The topics covered in this course include the following: vector analysis, curvilinear coordinates, electrostatics,

solutions of Laplace's equations in spherical and cylindrical coordinates, electrostatic energy, conductors, macroscopic

and microscopic theory of dielectrics, and magnetostatics.

Mechanics II, 3-3This course is a continuation of Mechanics. Topics include: the many particle system, collisions, rigid body, impulse

and collisions involving rigid bodies, principle axes, Eulers angles, precession, Gyroscope, Gyrocompass, Newtonian,

Lagrangian, and Hamiltonian mechanics, coupled systems, the general theory of small oscillations, and vibrating

strings.

Mathematical Physics II, 3-3This course is the second half of Mathematical Physics 1, and covers the calculus of variations, tensor analysis, special

functions, complex functions, integral transformations, and so on.

Electronics, 3-3This course is designed to give students a fundamental knowledge of electronic properties in terms of direct current

circuits, alternating currents, AC-circuit analysis, diode circuits, and semiconductor devices.

Electronics Lab, 4-2This course is designed to help students gain experience in electronic properties in terms of diodes, transistor, rectifiers,

amplication, thyristors, and MOSFETS.

Quantum Mechanics I, 3-3This course is an introduction to non-relativistic quantum mechanics, and provides students with the following: a

historical review, quantum hypothesis, photoelectric effect, Compton scattering, the Bohr atom, postulates, the

eigenvalue and eigen function of operator, expectation value, commutator, the Schroedinger equation, the development

of quantum theory, and applications.

Statistical Physics I, 3-3The course is designed to help students understand macroscopic quantities such as pressure, specific heat, and

temperature starting from statistical viewpoints. The laws of thermodynamics and heat transfer, atomic interpretation in

terms of kinetic theory, ideal gases, the Carnot cycle, refrigerators, heat engines, statistical and thermal definition of

entropy, compressibility thermal expansion, Boltzmann statistics, Canonical Ensemble, etc., and the application to

physical problems are also topics that are covered.

Electricity and Magnetism II, 3 3This course is a continuation of electricity and magnetism 1, and includes the following topoics: magnetostatics,

magnetization, linear and nonlinear media, electrodynamics, Maxwell's equations, the applications of Maxwell's

equations to ac circuits, filters, transmission lines, waveguides, and antennae, electromagnetic radiation, Lienard

Wiechert potentials, and relativistic electrodynamics.

137

College of N

atural Sciences

Ph

ysics

Page 10: Natural Sciences - ssu.ac.kr with its emphasis on numbers, quantity, form, and relations, is a field of study which requires careful analysis and clear reasoning

Electromagnetism Lab, 4-2This course is designed to help students gain experience in modern electromagnetic properties in terms of electrical and

magnetic phenomena such as differential amplifiers, large signal amplifiers, hysteresis loop of soft and hard magnetic

materials, and the magnetizing of magnetic material.

Application Programming, 3-3Students will learn in this course C-programming language, Mathematica, or Mathlab. Programming skills will be used

to understand and solve physical problems, covering roots of equations, differentiations, integrations, etc.

Quantum Mechanics II, 3-3This course studies the further development of quantum theory and applications, angular momentum operators, energy

levels of hydrogen atoms, spin operators, time-independent perturbation theory, the Zeeman effect, helium atoms, the

time-dependent perturbation theory, and scattering theory.

Statistical Physics II, 3-3This course covers equi-partition theorem, micro canonical ensembles and grand canonical ensembles, quantum

statistics (Fermi Dirac distribution and Bose-Einstein distribution), black body radiation, Debye approximation, phase

transition, Clapeyron equation, Vander Waals equation, critical points, and so on.

Optics, 3-3This course studies physical optics that covers the basic properties of light like polarization, interference, and

diffraction.

Optics Lab, 4-2This course includes experiments based on the basic properties of light and applications such as refraction, interference,

polarization, and so on.

Computer Simulation, 3-3This course is for students who completed the Application Programming course or those who are familiar with

computer programming languages. Topics include the least square fitting, extrapolations, differential equations,

matrices, generating random numbers, and so on.

Solid State Physics, 3-3The aims of this course are to describe the structure of solids and to develop a variety of models with which to explain

some of their properties. Electrical, thermal, and magnetic topics covered are periodic lattices and crystal structure, x

ray diffraction of crystals, lattice vibration and thermal properties of crystals, the free electron model, and energy

bands.

Nuclear and Particle Physics, 3-3In this combined course of Nuclear and Particle Physics, the electromagnetic interactions among fundamental particles

such as electrons and protons and the weak interactions of beta decay are studied. The neutrino, frequently observed in weak

interactions, and the symmetries of nature broken by the weak interactions, in addition to spatial, time reflections, and matter

antimatter are topics that are studied in this course. The Weinberg-Salam model which unifies the electromagnetic and the

weak interactions is introduced. Yukawa's theory of the strong interaction and the family of quarks which are the building

blocks of nuclear particles are introduced. Grand Unification Theories (GUT) for understanding the four fundamental forces

of nature-gravity, electromagnetic, weak, and strong interactions-will be discussed.

138 Soongsil University Catalog

Page 11: Natural Sciences - ssu.ac.kr with its emphasis on numbers, quantity, form, and relations, is a field of study which requires careful analysis and clear reasoning

Advanced Lab, 4-2This class will focus on experiments introducing measurement and fabrication skills for advanced physics experiments.

Topics include the evaporation of thin film in vacuums, nitrogen lasers, the Faraday effect, and so on.

Current Topics in Physics, 3-3This course will include interesting special topics such as phase transitions, surface sciences, biophysics, fractals,

chaos, and so on.

Thesis Research in Physics I, 2-1In this course the student chooses a topic of interest and carries out the research guided by a faculty advisor.

Semiconductor Physics, 3-3This course requires prior understanding of concepts in solid state physics such as the electron band theory. Covered

topics include the effective mass of semiconductors, characteristics of silicon and germanium, the impurity effect, p-n

junction, rectifier circuits, solar cells, photovoltage detectors, Schottky barriers, diodes and transistors, quantum wells

and quantum dots, and current topics regarding semiconductors.

New Material Physics, 3-3Physical principles of the various types of advanced materials are taught in this course. The students are assumed to

have a basic understanding of solid state physics such as the electron band theory. Covered topics include

paramagnetism, ferromagnetism, Curie temperature, magnons, diamagnetism, Neel temperature, superconductivity, the

Meissner effect, thermodynamic and optical properties of superconductivities, the isotope effect, Ginzburg-Landau

theory, BCS theory, newly developed superconductors, ferroelectric materials, carbon nanotubes, and current topics in

advanced materials.

Relativity and Cosmology, 3-3This course is an introduction to the theory of relativity and cosmology, the special theory of relativity, tensor algebra,

tensor calculus, 4-vector in Minkowski spacetime and curved space, the Maxwell tensor, energy-momentum tensor,

curvature tensor, Einstein's equation for gravitation, black holes, perfect fluid, the cosmological principle, and the

expanding universe.

Thesis Research in Physics ⅡⅡ, 2-1 This course is a continuation of Thesis Research in Physics 1. Students are expected to prepare a poster summarizing

their thesis research and make a public presentation.

139

College of N

atural Sciences

Ph

ysics

Page 12: Natural Sciences - ssu.ac.kr with its emphasis on numbers, quantity, form, and relations, is a field of study which requires careful analysis and clear reasoning

Chemistry is the science of studying the transformation of atoms and molecules that are the elementary composition

and materials of the universe. It also concerns the structures, status, and reactions of atoms and molecules. The scope of

chemistry is so wide that it encloses both theoretical and experimental research and its applications. Chemistry can be

divided into physical chemistry, organic chemistry, inorganic chemistry, analytical chemistry, and biochemistry

according to the interests of each subject. The purpose of education in this department is to train students to acquire a

solid knowledge of and experience in chemistry and devote themselves to the application fields of the environment,

drug development, life sciences, materials, nano-techniques, superconductors, and so on.

Phone: 02-820-0430; [email protected]; office hours: Monday - Friday 9 a.m. - 12 p.m., 1 p.m - 5: 30 p.m.,Saturday 9 a.m. - 12 p.m

Chemistry

140 Soongsil University Catalog

Generalrequiredcourse

Generalrequiredcourse

Generalrequiredcourse

Generalelectivecourse

Generalelectivecourse

Majorrequiredcourse

Majorelectivecourse

Majorelectivecourse

Majorcompulsory

course

Majorrequiredcourse

Majorrequiredcourse

Generalrequiredcourse

Generalrequiredcourse

Generalrequiredcourse

Generalelectivecourse

Generalelectivecourse

Majorelectivecourse

Majorelectivecourse

Majorcompulsory

course

Majorelectivecourse

Majorelectivecourse

1

2

3

4

※ Notes:

1) General elective courses should be completed over 15 credits, whose areas should spread over more than five areas including the foreignlanguages area out of eight areas.

2) A candidate for a double major in Chemistry is required to obtain at least 36 credits of major courses, including 14 credits of required courses for

DoubleMajor,Minor

DoubleMajor

DoubleMajor

DoubleMajor

DoubleMajor

Doublemajor

Chapel

Reading & Writing

Freshman Communicative English II

Computer Practice II-PowerPoint Course

Servant Leadership

(Selection out of 8 Fields of General

Elective Courses)

Calculus II

Chemistry II and Lab

Physics II and Lab

Chapel

TOEIC 800

(Selection out of 8 Fields of General

Elective Courses)

Analytical Chemistry Laboratory

Organic Chemistry II

Organic Chemistry Laboratory II

Analytical Chemistry II

Physical Chemistry II

Chapel

Quantum Chemistry

Solid & Surface Chemistry

Physical Chemistry Laboratory II

Molecular Structure Analysis

Biochemistry II

Inorganic Chemistry II

Modern Physical Chemistry

Applied Inorganic Chemistry

Environmental Chemistry

Special Topics of Chemistry II

Graduation Thesis II

Chapel

The Bible for Modern People

Freshman Communicative English I

Computer Practice I-Excel Course

(Selection out of 8 Fields of General

Elective Courses)

Calculus I

Chemistry I and Lab

Physics I and Lab

Chapel

Practical Reading & Writing

(Selection out of 8 Fields of General

Elective Courses)

Physical Chemistry I

Organic Chemistry Laboratory I

Analytical Chemistry I

Organic Chemistry I

Chapel

Inorganic Chemistry Laboratory

Physical Chemistry Laboratory I

Organic Synthesis

Biochemistry I

Inorganic Chemistry I

Physical Chemistry III

Spectroscopy

Instrumental Analysis

Physical Organic Chemistry

Special Topics of Chemistry I

Graduation Thesis I

Year1st Semester 2nd Semester

Classification Course Titles Hours Points Level Notes Classification Course Titles Hours Points Level Notes

3 3

3 1

1 1

4-6

3 3

4 3

4 3

3 2

2-4

3 3 Intermediate

4 2 Intermediate

3 3 Intermediate Minor

3 3 Intermediate Minor

4 2 Intermediate

4 2 Intermediate

3 3 Intermediate

3 3 Intermediate

3 3 Intermediate

3 3 Intermediate

3 3 Advanced

3 3 Advanced

3 3 Advanced

3 3 Advanced

1 1 Intermediate

3 2

3 1

1 1

(32) 1

4-6

3 3

4 3

4 3

3 2

2-4

4 2 Intermediate

3 3 Intermediate

4 2 Intermediate

3 3 Intermediate

3 3 Intermediate

3 3 Intermediate

3 3 Advanced

4 2 Intermediate

3 3 Intermediate

3 3 Intermediate

3 3 Intermediate

3 3 Advanced

3 3 Advanced

3 3 Advanced

3 3 Advanced

1 1 Intermediate

Page 13: Natural Sciences - ssu.ac.kr with its emphasis on numbers, quantity, form, and relations, is a field of study which requires careful analysis and clear reasoning

Faculty Members and Areas of Research

Nam, Jeong-E, Professor, Organic Chemistry, (Ph.D., McGill Univ. 1978)

Paek, Kyung-Soo, Professor, Organic Chemistry, (Ph.D.,Univ. of California at L.A. 1988)

Shin, Kuan-Soo, Professor, Physical Chemistry, (Ph.D., Univ. of Texas at Austin, 1990)

Chun, Keun-Ho, Professor, Organic Chemistry, (Ph.D., Univ. of California at L.A. 1992)

Kang, Wee-Kyung, Associate Professor, Physical Chemistry, (Ph.D., KAIST, 1994)

Joo, Sang-Woo, Assistant Professor, Material, Sensor, (Ph.D., Chicago Univ. 1996)

Kim, Ja-Heon, Assistant Professor, Inorganic Chemistry, (Ph.D., Pohang Univ. of Science and Technology, 1996)

Calculus I, 3-3This is a first course in calculus. Topics include basic concepts and techniques of differentiation and integration for

elementary functions including transcendental functions, antidifferentation, fundamental theorems of calculus, the

Riemann integral, and the polar coordinate system.

Chemistry I and Lab, 4-3This course introduces basic principles in chemistry about the structures of atoms and molecules, chemical reactions

and reaction equations, gas laws, thermodynamics, quantum chemistry, and molecular orbital theory. The Chemistry

Lab has a program to help students experience basic chemistry theories through simple experiments.

Physics I and Lab, 4-3The basic laws of classical physics such as Newton's laws, the conservation of energy and momentum are taught in this

course. Various experiments will provide a way for the students to understand the profound concepts behind these

basic physical laws.

Calculus II, 3-3This is a second course in calculus including vector analysis. Topics include sequences, infinite series, power series,

inner products, cross products, vectors in Euclidean space, multiple integrals, and surface integrals.

Chemistry II and Lab, 4-3This course follows that of Chemistry I, and introduces the phases of matter, the chemical properties of solutions, acid

bases, oxidation-reduction, equilibriums, and electrochemistry. The Chemistry Lab has a program introducing the basic

experiments learned during lectures.

Physics II and Lab, 4-3Basic laws of electricity and magnetism are taught, such as Coulomb's law, Gauss's law, Ohm's law, Ampere's law,

Faraday's law, and Maxwell's equations. The lectures accompany experiments which promote empirical understanding

of the laws.

Physical Chemistry I, 3-3This course is an introduction to the thermodynamic 1st, 2nd, and 3rd laws on heat transformation to help students

understand the theoretical concepts of chemical change.

141

College of N

atural Sciences

Ch

emistry

a double major, as listed in the chart above. Students also must complete a minimum of nine credits of advanced major coursework. 3) A minor candidate must complete at least 21 credits of major courses, including nine credits of required courses for a minor, as listed in the chart

above. 4) Students majoring in Chemistry only must obtain at least 54 credits of major courses, including a minimum of 15 credits of advanced major

courses. (The credits of major compulsory courses are not included in the credits of major courses.)

Page 14: Natural Sciences - ssu.ac.kr with its emphasis on numbers, quantity, form, and relations, is a field of study which requires careful analysis and clear reasoning

Organic Chemistry Laboratory I, 4-2In this course the methods for separation, purification, and analysis of organic compounds will be introduced. Some

basic and simple organic reactions will also be carried out during this course. The knowledge and techniques will be

practiced for the identification of natural compounds and synthetic products.

Analytical Chemistry I, 3-3This course covers the basic principles of wet chemistry related to the quantitative and qualitative analysis of inorganic

compounds.

Organic Chemistry I, 3-3 This course deals with nomenclature, chemical bonding, isomerism, and the stereochemistry of organic compounds

which determine the chemical reactivities and physical properties of organic compounds. Organic reactions are

explained on the basis of their reaction mechanisms for better understanding by students.

Analytical Chemistry Laboratory, 4-2This is a one-term course in analytical chemistry laboratory techniques emphasizing the fundamental quantitative and

physical principles of analytical chemistry together with data analysis.

Organic Chemistry II, 3-3The knowledge and understanding provided in Organic Chemistry 1 is a prerequisite for this course. The reactions of

carbonyl compounds, the reactions and synthesis of acid derivatives, and carbon nucleophiles (enolates) will be studied.

The formation of large molecules through carbon-carbon bond formation, photochemistry (radicals), and pericyclic

reactions will also be included in this course.

Organic Chemistry Laboratory II, 4-2More complicated organic reactions and multi-step syntheses will be carried out in this course. The methods and

techniques acquired during the preceding course (Organic Chemistry Laboratory 1) will be applied.

Analytical Chemistry II, 3-3This course involves the second stage of learning the basic principles in wet chemistry related to the quantitative and

qualitative analysis of inorganic compounds.

Physical Chemistry II, 3-3This course is a continuation of Physical Chemistry 1, focusing on chemical equilibrium and chemical kinetics.

Students will examine the fundamental concepts and the applications of chemical equilibrium, equilibrium

electrochemistry, molecules in motion, the rates of chemical reactions, and the kinetics of complex reactions.

Inorganic Chemistry Laboratory, 4-2This course involves the study of the syntheses and characterizations of various inorganic compounds or materials.

Physical Chemistry Laboratory I, 4-2This laboratory course features experiments concerning the fundamental physical nature of chemical phenomena.

Typical experiments include heat of combustion, viscosity, ionic strength, surface tension, phase rule, conductivity,

refractivity, and chemical kinetics.

142 Soongsil University Catalog

Page 15: Natural Sciences - ssu.ac.kr with its emphasis on numbers, quantity, form, and relations, is a field of study which requires careful analysis and clear reasoning

Organic Synthesis, 3-3This course provides students with an introduction to fundamental concepts such as chemical bonding, redox states,

acid and base, the organic reaction mechanism, and stereochemistry. This will be followed by an intensive focus on

functional group synthesis, carbon-carbon bond formations, free radical reactions, and the retrosynthetic strategy for

organic synthesis.

Biochemistry I, 3-3As one part of life science, biochemistry has tried to understand bio-phenomena at the molecular level. In this course,

structures and chemical or bio properties of the major biomolecules (protein, nucleotide, carbohydrate, and lipid) are

introduced.

Inorganic Chemistry I, 3-3 This course promotes the understanding of the properties of inorganic materials, atomic and molecular structures, the

nature of chemical bonds, molecular orbital theory, and crystal and ligand field theory.

Physical Chemistry III, 3-3 This course is a continuation of Physical Chemistry 1 and 2, focusing on the microscopic properties and statistical

thermodynamics. Students will examine the basic principles of quantum theory, the atomic and molecular structures,

and spectra. The concepts and machinery of statistical thermodynamics will also be discussed.

Quantum Chemistry, 3-3This course will cover the historical background of quantum theory, Bohr's model of hydrogen atom, the interpretation

of atomic spectra, Schrödinger's equation, the uncertainty principle, a solution to the Schrödinger equation in a simple

system, hydrogen atomic orbitals, chemical bonds, and molecular orbitals.

Solid & Surface Chemistry, 3-3The forces of attraction between matter will be explained in this course. Surface and physicochemical property changes

at interfaces will be focused on in particular. The classification of solid matter based on modern technological

innovations and an understanding of the physicochemical properties and surface phenomena of solids will also be

discussed in this course.

Physical Chemistry Laboratory II, 4-2This is a laboratory course featuring advanced experiments concerning the fundamental physical nature of chemical

phenomena. This course is a continuation of Physical Chemistry Laboratory 1.

Molecular Structure Analysis, 3-3The fundamental concepts of spectroscopic analytical methods such as 1H NMR, 13C NMR, MASS, FT-IR, and UV

VIS spectroscopies will be introduced in this course as tools for molecular structure and conformation analyses.

Especially the techniques for the purification of organic compounds, the spectroscopic characteristics of functional

groups and stereochemistry, and the identification of carbon-carbon connectivity will be introduced. Finally, the

practice of the structural identification of unknown organic compound will be discussed.

Biochemistry II, 3-3This course follows Biochemistry I, and introduces the mechanisms and regulations of DNA replication, transcription,

and translation. Also metabolism, genetic engineering, and special topics in current research are also discussed.

143

College of N

atural Sciences

Ch

emistry

Page 16: Natural Sciences - ssu.ac.kr with its emphasis on numbers, quantity, form, and relations, is a field of study which requires careful analysis and clear reasoning

Inorganic Chemistry II, 3-3 This course follows Inorganic Chemistry 1, and covers topics on the structures, properties, and reactions of transition

metal complexes and various metal and non-metal compounds.

Spectroscopy, 3-3The motions of electron and nuclei will be described in this course on the basis of classical mechanics and quantum

chemistry. In particular, molecular motions and physicochemical properties resulting from structural analysis will be

studied. The principles and apparatus of various spectroscopic instruments such as NMR, UV, Raman, and microwave

will be introduced.

Instrumental Analysis, 3-3This course will study the principles and applications of chromatography, electrochemical analysis, and spectroscopic

methods to chemical problems concerning structures and reactions.

Physical Organic Chemistry, 3-3Covalent bonds, hybridization, bond energy, resonance phenomena, stereochemistry, and organic compounds will be

examined in this course in relation to their reactivities, reaction mechanisms, and prospective products. Reaction

intermediates and transition states will also be discussed.

Special Topics of Chemistry I, 3-3Rapidly changing and developing modern chemistry will be studied. Topics not available in the text will be introduced

and state-of-art techniques will be introduced during the lectures.

Graduation Thesis I, 1-1Students in this course are supposed to choose their thesis subjects. For the determination of the contents and target of

the thesis work, they are required to search pertinent research articles and to understand the research trends. Especially,

students are expected to learn the basic theories and experimental methods for the completion of their thesis.

Modern Physical Chemistry, 3-3This lecture is designed to give seniors a unified treatment of physical chemistry on an advanced level. Topics include

molecular spectroscopy, computational chemistry, statistical mechanics, nano materials, and environmental chemistry.

Applied Inorganic Chemistry, 3-3 This course focuses on the important compounds that are being studied by current research works. The related fields

that will be studied are the electronic spectra of coordination compounds, organometallic chemistry, catalysis, solid

state chemistry, and bioinorganic chemistry.

Environmental Chemistry, 3-3Pollutions in the atmosphere, water, and earth as well as pollution originating from organic compounds (pesticides,

detergents, and plastics), metals, and radioactive compounds will be examined in this course. Pollution history,

chemistry, and the recognition of their effects on human health and well being in the short and long term will be

studied. The use of chemicals will be evaluated in their achievements in improving the quality of life as well as

contaminating the environment. Contaminants, the appropriate usage of chemicals, and methods for the removal of

residual contaminants will also be studied.

144 Soongsil University Catalog

Page 17: Natural Sciences - ssu.ac.kr with its emphasis on numbers, quantity, form, and relations, is a field of study which requires careful analysis and clear reasoning

145

College of N

atural Sciences

Ch

emistry

Special Topics of Chemistry II, 3-3Insufficient materials covered in the previous texts from all areas of chemistry including physical, organic, inorganic,

analytical, life science, and polymer chemistry will be selected in this course. Advanced chemistry topics will also be

introduced during the lectures.

Graduation Thesis II, 1-1This course is a continuation of Graduation Thesis 1. Students will do their own research under the direction of

supervising professors. The thesis is to be finished and evaluated by a committee, the members of which are the

professors in the Chemistry Department.

Page 18: Natural Sciences - ssu.ac.kr with its emphasis on numbers, quantity, form, and relations, is a field of study which requires careful analysis and clear reasoning

146 Soongsil University Catalog

Statistics is the comprehensive solution of collecting, summarizing and analyzing information to increase the

competitive advantage of making better decisions. And the actuarial science deals with the mathematical and statistical

aspects of insurance as a special application of statistics.

Phone: 02-820-0440; [email protected]; office hours: Monday - Friday 9 a.m. - 12 p.m., 1 p.m. - 6 p.m., Saturday 9a.m. - 12 p.m.

Statistics and Actuarial Science

Generalrequiredcourse

Generalrequiredcourse

Generalrequiredcourse

3 3

3 1

1 1

3 3

3 3

4 3

3 2

3 3 Intermediate Double

3 3 Intermediate

3 3 Intermediate

3 3 Intermediate

3 3

3 3 Intermediate

3 3 Intermediate

3 3 Advanced

3 3 Advanced

3 3 Intermediate

3 3 Advanced

3 3 Advanced

3 3 Intermediate

3 3 Advanced

1 1 Advanced

Chapel

The Bible for Modern People

Freshman Communicative English I

Computer Practice I-Excel Course

(Selection out of 8 Fields of General

Elective Courses)

Statistics

Calculus1

Computer Programming and Practices

Chapel

Practical Reading & Writing

(Selection out of 8 Fields of General

Elective Courses)

Mathematical Statistics 1

Regression Analysis 1

Numerical Analysis

Financial Mathematics

Chapel

Statistical Inference

Experimental Design

Sampling Computing 2

Statistical Computing 2

Life Actuarial Mathematics 2

Principles of Insurance 2

Analysis of Categorical Data

Time Series Analysis

Quality Control

Non-life Actuarial Mathematics 2

Seminar in Actuarial Science 2

3 2

(32) 1

3 1

1 1

3 3

3 3

3 3

3 2

3 3 Intermediate

3 3 Intermediate

3 3 Intermediate

3 3 Intermediate

3 3 Intermediate

3 3 Intermediate

3 3 Advanced

3 3 Intermediate

3 3 Intermediate

1 1 Intermediate

3 3 Advanced

3 3 Advanced

3 3 Advanced

3 3 Advanced

Chapel

Reading & Writing

Servant Leadership

Freshman Communicative English II

Computer Practice II-PowerPoint Course

(Selection out of 8 Fields of General

Elective Courses)

Statistical Methods

Calculus 2

Mathematics for Statistics

Chapel

TOEIC 800

(Selection out of 8 Fields of General

Elective Courses)

Mathematical Statistics 2

Regression Analysis 2

Statistical Computing 1

Principle of Insurance 1

Life Actuarial Mathematics 1

Chapel

Multivariate Analysis

Simulation

Operations Research

Non-life Actuarial Mathematics 1

Seminar in Actuarial Science 1

Stochastic Processes

Decision Analysis

Data Mining

Special Topics in Actuarial Science

Generalelectivecourse

Generalelectivecourse

Majorelectivecourse

Majorelectivecourse

Majorcompulsory

course

Majorrequiredcourse

Majorrequiredcourse

Generalrequiredcourse

Generalrequiredcourse

Generalrequiredcourse

Generalelectivecourse

Generalelectivecourse

Majorelectivecourse

Majorelectivecourse

Majorcompulsory

course

Majorelectivecourse

Majorelectivecourse

1

2

3

4

※Notes:

1) General division elective courses should be completed over 15 credits, whose areas should spread over more than five areas including the foreignlanguages area out of eight areas.

2) A candidate for a double major in Statistics & Actuarial Science is required to obtain at least 36 credits of major courses (all major compulsorycourses must be taken), including nine credits of required courses for a double major, as listed in the chart above.

3) A minor candidate must complete at least 21 credits of major courses, including nine credits of required courses for a minor, as listed in the chartabove.

DoubleMinor

DoubleMinor

Year1st Semester 2nd Semester

Classification Course Titles Hours Points Level Notes Classification Course Titles Hours Points Level Notes

Page 19: Natural Sciences - ssu.ac.kr with its emphasis on numbers, quantity, form, and relations, is a field of study which requires careful analysis and clear reasoning

147

College of N

atural Sciences

Statistics an

d A

ctuarial S

cience

Faculty Members and Areas of Research

Lee, Yoon-Oh, Professor, Experimental Design, (Ph.D., SNU, 1984)

Lee, Jung-Jin, Professor, Time Series Analysis, Multivariate Analysis, Operations Research, (Ph.D., Case Western Reserve Univ., 1986)

Kang, Gunseog, Professor, Statistical Computing, Nonlinear Model, (Ph.D., Univ. of Wisconsin/Madison, 1988)

Kim, Ji-Hyun, Professor, Survival Analysis, (Ph.D., Florida State Univ., 1990)

Kim, Sung-Chul, Professor, Decision Analysis, Bayesian Analysis, (Ph.D., Univ. of California, Berkeley, 1988)

Lee, Chang-Soo, Professor, Actuarial Science, Time Series Analysis, (Ph.D., Univ. of Iowa 1991)

Lee Hangsuck, Assistant Professor, Actuarial Science, Financial Engineering, (Ph.D., Univ. of Iowa, 2002)

Statistics, 3-3This course is a foundation course and introduces descriptive statistics, probability, inference and testing, regression,

experimental designs and categorical data analysis.

Calculus I, 3-3This course is the first part of the mathematical foundation for the program. Topics include limits and derivatives of

functions, integrals and methods of integration, polar coordinates, and various functional forms.

Computer Programming and Practices, 4-3In this course students will study programming languages such as C and VBA for computer programming. Practice is

emphasized to solve problems.

Statistical Methods, 3-3This is the follow-up course of Statistics. Various methods of statistics are applied and more applications such as non

parametric methods, quality control, and decision analysis are introduced.

Calculus II, 3-3This course is the second part of the mathematical foundation for the program. Topics include sequences and series,

power series, vectors, analytic geometry, and multiple integration.

Mathematics for Statistics, 3-3Topics regarding linear algebra such as vector space, matrices, matrix inverse, characteristic equations, the system of

linear equations and matrix algebra will be studied in this course. The other mathematical foundation for statistics will

also be covered in this course.

Mathematical Statistics I, 3-3The purpose of this course is to give students theoretical backgrounds that underlie much of statistical methodologies.

This is the first part of a three-course series. Topics include combinatorial analysis, conditional probability,

independence, random variable, expectation, variance, covariance, special discrete and continuous distributions, and

joint, marginal, and conditional distributions.

Regression Analysis I, 3-3In this course regression analysis is covered as a flexible statistical problem-solving methodology. The focus is on

observational data. Topics include simple linear regression, matrix review, multiple linear regression, variable

selection, prediction, multicollinearity, and model diagnostics. Emphasis is also on the use of computers.

Page 20: Natural Sciences - ssu.ac.kr with its emphasis on numbers, quantity, form, and relations, is a field of study which requires careful analysis and clear reasoning

Numerical Analysis, 3-3In this course, computational algorithms for solving various mathematical and statistical problems are covered. Topicsinclude interpolation by polynomial, determinants, the solution of nonlinear/linear equations, approximation,differentiation and integration, and the solution of differential equations.

Financial Mathematics, 3-3In this course theories and methodologies in actuarial mathematics are covered. Topics included are interest theory,survival distribution models, experienced life tables, the calculation of premiums, pension mathematics, theconstruction of rating structures, experience rating, loss reserving, reinsurance mathematics, and risk theory.

Mathematical Statistics II, 3-3As the second course of mathematical statistics, this course covers the distributions of the functions of randomvariables, sampling distributions and the central limit theorem, as well as likelihood functions and sufficiency.Estimation theory including unbiasedness, complete sufficient statistics, Lehmann-Scheffe and Rao Blackwelltheorems and various types of estimators are also introduced.

Regression Analysis II, 3-3This course is a follow-up of Regression Analysis 1. Emphasis is on the extension of multiple regression, variableselection, the design of experiments, the use of regression packages, and the response surface method.

Statistical Computing I, 3-3In this course selected topics in statistical computing including basic numerical aspects, iterative statistical methods,principles of graphical analysis, simulation and Monte Carlo methods, the generation of random variables, stochasticmodeling, importance sampling, numerical and Monte Carlo integration are covered. Also discussed are numericallinear algebra (linear solvers, matrix factorizations, and eigenvalue problems) and computing methods for regressionanalysis and optimization problems.

Principles of Insurance I, 3-3In this course the following topics are covered: evaluation of life, health, retirement, property, and liability exposures toloss and the analysis of the methods for managing these risks. Risk management and insurance techniques for dealingwith potential losses to individuals and organizations, along with the operations of insurance companies are other topicsthat are covered.

Life Actuarial Mathematics I, 3-3This course is an introduction to life insurance mathematics based on a probabilistic approach. Major topics include lifeinsurance, annuities, benefit premiums, and reserves. This is a course for all students pursuing an actuarial career. Abasic knowledge of the theory of interest is assumed.

Statistical Inference, 3-3As the last course of mathematical statistics, this course covers testing statistical hypotheses, Bayesian approaches topoint estimation, and important applications, including the analysis of variance and regression. In this course the theoryof hypothesis testing is studied, which includes tests significance levels, power, the Neyman-Pearson lemma, uniformlymost powerful unbiased tests, likelihood ratio tests, and the associated large sample theory, goodness of fit tests, andtests in contingency tables.

Experimental Design, 3-3In this course, experimental design as a method for finding the optimal conditions of an experiment is investigated.

Topics include completely randomized, randomized block, factorial, nested, Latin squares, split-plot, and incomplete

block designs. Fractional factorial design and response surface procedure are also introduced.

148 Soongsil University Catalog

Page 21: Natural Sciences - ssu.ac.kr with its emphasis on numbers, quantity, form, and relations, is a field of study which requires careful analysis and clear reasoning

149

College of N

atural Sciences

Statistics an

d A

ctuarial S

cience

Sampling Theory, 3-3Design principles pertaining to the planning and execution of a sample survey are discussed in this course. Other topics

discussed: sampling error and nonsampling error, simple random, stratified random, systematic, and one-and two-stage

cluster sampling designs. Emphasis in this course will be placed on statistical considerations in the analysis of sample

survey data. A class project on the design and execution of an actual sample survey will be carried out.

Statistical Computing II, 3-3Statistical analysis methods are practiced in this course with a statistical package such as R. Whiling learning data

analysis techniques. Emphasis will be placed on the graphical representation of statistical information and

programming using the computer language of the statistical package. Also simulation problems are covered in depth.

Life Actuarial Mathematics II, 3-3This course is a continuation of Life Actuarial Mathematics I. Development is based on a probabilistic approach to life

insurance models. Major topics in this course include benefit premiums, reserves, insurance models including expenses,

and multi-life / multiple-decrement models. This is a course for all students pursuing an actuarial career.

Principles of Insurance II, 3-3In this course topics in Insurance law are covered. Special emphasis is given to preparation for the actuarial examination.

Multivariate Analysis, 3-3The extension of univariate statistical techniques to multivariate analysis is discussed in this course. Multivariate

normal distribution, Hotelling's T-square distribution, Wishart distribution and its application to test the hypothesis in

mean vectors and covariance matrix will be introduced in this course. Principal component analysis, factor analysis,

discriminant analysis, and cluster analysis are also discussed.

Simulation, 3-3Computer simulation techniques to solve complicated real world problems are introduced in this course. Monte Carlo

simulation and system simulation techniques are studied by using simulation packages.

Operations Research, 3-3This course deals with the mathematical aspects of management and focuses on mathematical modeling and the

analyses of management science. The first part of the course is Linear Programming. Modeling, Simplex algorithms,

duality and the sensitivity of LP are also studied. The second part involves selected topics of mathematical

programming and the probabilistic modeling of management problems. Topics include nonlinear programming,

dynamic programming, game theory, inventory management, Markov chains, and Monte Carlo methods.

Non-Life Actuarial Mathematics I, 3-3In this course the following topics are covered: models for loss severity, parametric models, the effect of policy

modifications, and tail behavior. Also covered: models for loss frequency (a, b, 0) models, (a, b, 1) models, mixed Poisson

models, and compound Poisson models, aggregate claims models, risk theory, and statistical inference for loss models.

Seminar in Actuarial Science I, 1-1This course is designed to aid students pursuing an actuarial career. Current actuarial issues will be presented and

discussed. In addition, this course is useful in their preparation for domestic or international actuarial exams.

Analysis of Categorical Data, 3-3Analysis of categorical data which are often used in social science and medical science are discussed in this course.

Topics include the analysis of cross tables, logistic regression, the log linear model, and the generalized linear model.

Page 22: Natural Sciences - ssu.ac.kr with its emphasis on numbers, quantity, form, and relations, is a field of study which requires careful analysis and clear reasoning

Time Series Analysis, 3-3Topics in stationary time series models and non-stationary time series models will be discussed in this course. The

identification of a model by autocorrelation analysis, the estimation of AR, MA, ARMA, and ARIMA models and the

checking validation of models are also discussed.

Quality Control, 3-3Statistical techniques to improve the quality of products are discussed in this course. Topics include statistical process

control, control charts for variables and attributes, CUSUM and EWMA, multivariate quality control, process

capability, specifications and tolerances, gage capability studies, and acceptance sampling by attributes and variables.

Non-Life Actuarial Mathematics II, 3-3In this course part of following topics will be covered: basics of property/casualty insurance, ratemaking in

property/casualty insurance, loss reserving, risk classification, individual risk rating, credibility theory, reinsurance, and

expense issues.

Seminar in Actuarial Science II, 1-1This course is designed to aid students pursuing an actuarial career. Current actuarial issues will be presented and

discussed. In addition, this course is useful in their preparation for domestic or international actuarial exams.

Stochastic Processes, 3-3Topics in Bernoulli process, Poisson process, random walk, Markov chain, and queuing theory will be introduced in

this class.

Decision Analysis, 3-3Various types of decision making processes will be studied in this course. Decision tables, decision trees, influence

diagrams, and utility functions are also discussed. Bayesian decision theory and analytic hierarchy processes are also

introduced.

Data Mining, 3-3Data mining is the science of extracting useful information from large data sets or databases. Using E-Miner of SAS or

Clementine of SPSS, various techniques of data mining are practiced in this course with real data sets. Methods

covered are logistic regression, classification and regression trees, the association rule, cluster analysis, neural

networks, and genetic algorithms. Methods for data exploration and modification, and model assessment methods are

also discussed.

Special Topics in Actuarial Science, 3-3This course covers special topics in actuarial science. Special topics may cover pension mathematics or graduation

theory, Asset/Liability management, reinsurance, and underwriting risks.

※※ Courses for Interdisciplinary Program

Mathematical Foundation for Finance This course presents some basics of calculus, matrix algebra, probability, numerical analysis, and optimization

techniques in the context of financial world applications. Basic computing with Mathematic or Excel/VBA is

integrated into the development, and students use such tools to work on their projects. There are no computing

prerequisites for this course. Students learn computing as the course goes on.

150 Soongsil University Catalog

Page 23: Natural Sciences - ssu.ac.kr with its emphasis on numbers, quantity, form, and relations, is a field of study which requires careful analysis and clear reasoning

Introduction to Cheminformatics

Biostatistics I

Structural Biology

Biochemistry II

Molecular Biology

Undergraduate Thesis I

Programming in Bioinformatics

Pharmacology

Database Design

Molecular Genetics

Computational Molecular Biology and Lab

Cell Biology

Biostatistics II

Biophysics

Undergraduate Thesis II

Cheminformatics and Lab

Functional Genomics

Special Topics in Bioinformatics

Majorelectivecourse

Majorelectivecourse

Majorelectivecourse

Majorelectivecourse

4

3 3 Intermediate

3 3 Intermediate

3 3 Intermediate

3 3 Intermediate

3 3 Intermediate

4 2 Advanced

3 3 Advanced

3 3 Advanced

3 3 Advanced

3 3 Advanced

4 3 Advanced Minor

3 3 Intermediate

3 3 Intermediate

3 3 Intermediate

4 2 Advanced

4 3 Advanced

3 3 Advanced

3 3 Advanced

151

College of N

atural Sciences

Bio

info

rmatics an

d L

ife Scien

ce

Bioinformatics is a field of science which began to handle the vast amount of information from genomics, proteomics,

and related biological sciences. It is a typical interdisciplinary science of biotechnology and information technology,

requiring the knowledge of bioscience, computational science, and statistics.

In the Department of Bioinformatics and Life Science, the students will learn the principles and experimental

techniques of bioscience, analytical techniques, and the utilization of biological information using computation and

statistics, the construction of databases, and new drug designs. The educational goal is to foster talented men and

women who will contribute to national prosperity and human welfare through the acquired knowledge.

Phone: 02-820-0450; [email protected]; office hours: Monday - Friday 9 a.m. - 12 p.m., 1 p.m. - 5:30 p.m.,Saturday 9 a.m. - 12 p.m.

Bioinformatics and Life Science

Year1st Semester 2nd Semester

Classification Course Titles Hours Points Level Notes Classification Course Titles Hours Points Level Notes

Generalrequiredcourse

Generalrequiredcourse

Generalrequiredcourse

Chapel

The Bible for Modern People

Freshman Communicative English I

Computer Practice I-Excel Course

(Selection out of 8 Fields of General

Elective Courses)

Calculus I

General Biology I and Lab

Chemistry and Lab

Chapel

Practical Reading & Writing

(Selection out of 8 Fields of General

Elective Courses)

Microbiology and Lab

Introduction to Bioinformatics

Organic Chemistry and Lab

Computer Programming and Lab I

Chapel

Molecular Biology Lab

Chapel

Reading & Writing

Freshman Communicative English II

Computer Practice II-PowerPoint Course

Servant Leadership

(Selection out of 8 Fields of General

Elective Courses)

Calculus II

General Biology II and Lab

Physics and Lab

Chapel

TOEIC 800

(Selection out of 8 Fields of General

Elective Courses)

Biochemistry Lab

Biochemistry I

Physical Chemistry and Lab

Computer Programming and Lab II

Discrete Mathematics

Chapel

Instrumental Analysis Lab

Generalelectivecourse

Generalelectivecourse

Majorcompulsory

course

Majorrequiredcourse

Majorrequiredcourse

Majorrequiredcourse

Majorrequiredcourse

Generalrequiredcourse

Generalrequiredcourse

Generalrequiredcourse

Generalelectivecourse

Generalelectivecourse

Majorcompulsory

course

Majorelectivecourse

Majorelectivecourse

1

2

3

3 3

3 1

1 1

3 3

4 3

4 3

3 2

4 3 Intermediate Minor

3 3 Intermediate

4 3 Intermediate

4 3 Intermediate

4 2 Intermediate

DoubleMinor

3 2

3 1

1 1

(32) 1

3 3

4 3

4 3

3 2

4 2 Intermediate

3 3 Intermediate

4 3 Intermediate

4 3 Intermediate

4 2 Intermediate

※ Notes:

1) General elective courses should be completed over 15 credits, whose areas should spread over more than five areas including the foreign languages area out of eight areas.2) A candidate for a double major in Bioinformatics & Life Science is required to obtain at least 36 credits of major courses (all major compulsory courses must be taken).3) A minor candidate must complete at least 21 credits of major courses, including nine credits of required courses for a minor, as listed in the chart above.

Page 24: Natural Sciences - ssu.ac.kr with its emphasis on numbers, quantity, form, and relations, is a field of study which requires careful analysis and clear reasoning

Faculty Members and Areas of Research

Lim, Dongbin, Professor, Molecular Genetics, (Ph.D., New York Univ., 1989)

Shin, Hang-Cheol, Associate Professor, Protein Biochemistry, (Ph.D., Univ. of Sydney, 1991)

Lee, Julian, Assistant Professor, Biophysics, Bioinformatics, (Ph.D., Brown Univ., 1994)

Cho, Kwang-Hwi, Assistant Professor, Cheminformatics, (Ph.D., Cornell Univ., 2001)

Kim, Sangsoo, Assistant Professor, Genome Informatics, (Ph.D., Iowa State Univ., 1986)

Bahn, Yong-Sun, Full-time lecturer, Cell Biology, (PhD., Ohio State Univ., 2003)

Calculus I, 3-3 This is the first course in calculus. Topics include basic concepts and techniques of differentiation and integration for

elementary functions including transcendental functions, antidifferentation, fundamental theorems of calculus, the

Riemann integral, and the polar coordinate system.

General Biology I and Lab, 4-3Basic principles of biology are introduced in this course. The topics include the chemical basis of life, cellular

components, the structure and function of cells, metabolism and energy transformation, genetic materials, gene

expression, cell division, development, and its regulation, and the utilization of genes. Related experiments are

practiced in the lab.

Chemistry and Lab, 4-3Basic principles of chemistry are introduced in this course. Topics covered are gas, the electronic structure of

molecules, bonds, and reaction in liquids.

Calculus II, 3-3This is the second course in calculus including vector analysis. Topics include sequences, infinite series, power series,

inner products, cross products, vectors in Euclidean space, multiple integrals, and surface integrals.

General Biology II and Lab, 4-3General Biology II and Lab is a course focusing on the structure, function, and physiology of animals with an emphasis

on the human body. The overall body plan of the animal kingdom will be presented in the beginning and each organ

system will be reviewed. Primary instructional methods are lectured with slides, discussion, and the laboratory

including the anatomy of a mouse.

Physics and Lab, 4-3Basic laws of classical physics are introduced in this course, and their applications are explained. Concepts in modern physics are

also briefly introduced. The students are instructed to deepen their insights into the fundamental concepts through lab experiments.

Microbiology and Lab, 4-3Microbial structure and function, the classification and ecology of microorganisms, microbial genetics and its

application in industry will be studied in this course. The laboratory will include the isolation and pure culture of

microorganisms from the environment, the isolation of bacteriophage, and some molecular techniques to manipulate

DNA in vitro.

Introduction to Bioinformatics, 3-3This course is a brief introduction to the scope, methodologies, tools, and application of bioinformatics. It covers

genomic, proteomic, cheminformatic, and metabolomic information.

152 Soongsil University Catalog

Page 25: Natural Sciences - ssu.ac.kr with its emphasis on numbers, quantity, form, and relations, is a field of study which requires careful analysis and clear reasoning

153

College of N

atural Sciences

Bio

info

rmatics an

d L

ife Scien

ce

Organic Chemistry and Lab, 4-3 This course deals with nomenclature, chemical bonding, isomerism, and the stereochemistry of organic compounds

which determine the chemical reactivities and physical properties of organic compounds. Organic reactions are

explained on the basis of their reaction mechanisms for better understanding for students. Experimental methods for

separation, purification, and analysis of organic compounds are practiced in the lab. Some basic and simple organic

reactions will also be carried out during this course.

Computer Programming and Lab I, 4-3The students in this course are exposed to a programming language at an elementary level, with the application to

bioinformatics in mind. They are also instructed to improve their skills by hands on lab practice.

Biochemistry Lab, 4-2The basic experimental techniques in biochemistry, such as isolation and purification of cellular components and

biomolecules, purification and the characterization of enzymes, etc., are introduced and practiced in the lab.

Biochemistry I, 3-3The cells, biological macromolecules, and molecular logic of life are introduced in this course. The topics covered are

the structure and function of carbohydrates, lipids, proteins, nucleic acids, enzyme reactions, biological membranes,

and transport.

Physical Chemistry and Lab, 4-3In this course general topics of physical chemistry are introduced including thermodynamics, rate law, and some parts

of statistical mechanics. In the lab, molecular modeling software is introduced to teach computational drug discovery.

Computer Programming and Lab II, 4-3The purpose of this course is to provide students with a middle-level programming language skill, which can be applied

to bioinformatics research. The students are instructed to improve their skills by hands on lab practice.

Discrete Mathematics, 3-3Basic concepts in discrete mathematics are introduced, with a focus on applications to bioinformatics problems. The

topics covered include mathematics logic, set relations, functions, algebraic systems, lattice, and Boolean algebra.

Molecular Biology Lab, 4-2Students are expected to learn various recombinant DNA techniques through this laboratory course. They will be given

a metagenomic library constructed in a fosmid vector, and will be asked to isolate, subclone, characterize, and sequence

a specific gene. The obtained DNA sequence will be analyzed with various bioinformatic tools and the final results will

be presented in a paper and orally.

Introduction to Cheminformatics, 3-3Computational methods for molecular modeling are introduced in this course. The topics covered are empirical force

fields, ab initio MO calculations, molecular representation, and computer simulation.

Biostatistics I, 3-3Basics concepts and theories in statistics are introduced in this course, and various applications to bioinformatics,

biology, and medical science are explained.

Page 26: Natural Sciences - ssu.ac.kr with its emphasis on numbers, quantity, form, and relations, is a field of study which requires careful analysis and clear reasoning

Structural Biology, 3-3The structure of biological macromolecules and their functional relationship are covered in this course. The main topics

covered are the structural understanding of protein functions, nucleic acid functions, protein-protein interaction, protein

nucleic acid interaction, and the reaction mechanism of enzymes.

Biochemistry II, 3-3The energetics of life and the flow of genetic information are introduced in this course. The topics covered are the

metabolism and biosynthesis of carbohydrates, lipids, amino acids and nucleic acids, and the hormonal regulation of

these processes. Also covered are the structure of genes, the flow and regulation of genetic information, and

recombinant DNA technology.

Molecular Biology, 3-3This course is designed to understand biological phenomena at the molecular level. The course will review the structure

and function of nucleic acids including the transcription of genes, mRNA splicing, and mRNA translation. The

regulation of gene expression at various levels will also be emphasized.

Instrumental Analysis Lab, 4-2In this course the basics of instruments are introduced and analytical methods using UV-VIS spectroscopy, infrared

spectroscopy, x-ray diffraction, NMR spectroscopy, LC, CD-ORD, and GC / MS, are practiced.

Computational Molecular Biology and Lab, 4-3Computational methods for biology are introduced in this course. Topics covered are database handling, sequence

alignment, and machine learning such as HMM and ANN. Some programming skills are required to do the homework.

Cell Biology, 3-3This course is a detailed study of the structure and function of the cell. The major concern of the course is the

eukaryotic cell, but some unique aspects of prokaryotes will be discussed. Protein traffic inside the cell, signal

transduction, and the development and differentiation of the embryo will be reviewed in detail.

Biostatistics II, 3-3Advanced topics in biostatistics, such as multiple linear regression, analysis of variance (ANOVA), and Bayesian

inference, are introduced in this course. The application of statistical methodology to various problems such as clinical

experiments on new drugs or treatments, gene analysis, is explained.

Biophysics, 3-3The physical properties and analytical methods concerning biomolecules and physiological phenomena are introduced

in this course. The main topics covered are thermodynamics, chemical equilibrium, transport, sedimentation,

spectroscopy, x-ray diffraction, and so on.

Undergraduate Thesis I, 4-2 In this course the student decides the topic for an undergraduate thesis by consulting his or her advisor and carrying out

the research.

Programming in Bioinformatics, 3-3In this course various algorithms to be applied in bioinformatics are introduced, such as pattern recognition, local

minimization and global optimization, and clustering. The students are trained to improve their skills by extensive

programming experiences.

154 Soongsil University Catalog

Page 27: Natural Sciences - ssu.ac.kr with its emphasis on numbers, quantity, form, and relations, is a field of study which requires careful analysis and clear reasoning

155

College of N

atural Sciences

Bio

info

rmatics an

d L

ife Scien

ce

Pharmacology, 3-3The physico-chemical properties of pharmaceuticals and their physiological actions are introduced in this course. Also

included are numerous illustrations and diagrams to help students acquire a better understanding of the

physicochemical properties, biological functions, molecular structures, and ADME/T (Absorption, Distribution,

Metabolism, Elimination, and Toxicity) of many important drugs.

Database Design, 3-3In this course the basics of database structure are studied. Also, how to design, construct, and use biological databases

is the goal of the course. Some practical tutorials are included with a special emphasis on biological relevance.

Molecular Genetics, 3-3The basic principles governing continuity and variation of life are introduced in this course. The main topics include

classical genetics, the physical and chemical basis of heredity, the structure and function of genes, mutation and its

genetic function, and the molecular basis of recombination.

Undergraduate Thesis II, 4-2 In this course the student decides the topic for a undergraduate thesis by consulting his or her advisor and carrying out

the research.

Cheminformatics and Lab, 4-3Cheminformatics is becoming more important in the commercial application of numerous "-omics." Students will learn

in this course the most essential concepts and tools for cheminformatics such as chemical databases, data format,

design, creation, management, retrieval, analysis, visualization, and the use of chemical information. Basic or advanced

computer programming skills are recommended.

Functional Genomics, 3-3This course is an introduction to various biological and biochemical methods for the cataloging of a global view of

genomic data. Also included is the comparison of inter-species differences and individual variations leading to

differences in biological activity. The course covers the following topics: an introduction to genomics and DNA

sequencing, cDNA library construction, transcriptomics and gene expression analysis, proteomics and its analysis,

comparative genomics and evolutionary analysis, and bioinformatics analysis.

Special Topics in Bioinformatics, 3-3Tremendous advancement in the bioinformatics area has been observed in recent years. In this course, students survey

and report recent developments in bioinformatic algorithms and applications. Active discussion and debate are

important components which will enhance the students' understanding.

Page 28: Natural Sciences - ssu.ac.kr with its emphasis on numbers, quantity, form, and relations, is a field of study which requires careful analysis and clear reasoning

156 Soongsil University Catalog