nanoparticle synthesis in reverse micelles

38
Nanoparticle Synthesis in Reverse Micelles Nicola Pinna Max Planck Institute of Colloids and Interfaces e-mail: [email protected] - http://www.pinna.cx

Upload: ngohanh

Post on 12-Jan-2017

293 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Nanoparticle Synthesis in Reverse Micelles

Nanoparticle Synthesis in Reverse Micelles

Nicola Pinna

Max Planck Institute of Colloids and Interfaces

e-mail: [email protected] - http://www.pinna.cx

Page 2: Nanoparticle Synthesis in Reverse Micelles

Plan

1. Reverse Micelles

• Surfactants in Solutions

• Reverse Micelles

• Synthesis of Particles

2. Examples

• Semiconductors

• Metals

• Oxides

Page 3: Nanoparticle Synthesis in Reverse Micelles

Surfactants in Solution

• Anionic

• Cationic

• Zwitterionic

• Nonionic

N+

Br-

SO

-Na

+

O

OSodium dodecylsulfate (SDS)

Cetylpyridinium bromide

O

O

P

O

OO

OCH2CH2N(CH3)3+

O-

Dipalmitoylphosphatidylcholine (lecithin)

OO

OO

OH

Polyoxyethylene(4) lauryl ether (Brij 30)

Page 4: Nanoparticle Synthesis in Reverse Micelles

Surfactants in Solution

4 nm4 nm

UnimersNormal micelles

spherical

cylindrical

Bilayer lamellaReverse micelles

Inverted hexagonal phase

Page 5: Nanoparticle Synthesis in Reverse Micelles

Surfactants in Solution

0

2

4

6

8

10

12

14

0 1Surfactant concentration

CMC

s

0

2

4

6

8

10

12

14

0 1Surfactant concentration

CMC

s

CMC

• Below CMC only

unimers are present

• Above CMC there are

micelles in equilibrium

with unimers

Page 6: Nanoparticle Synthesis in Reverse Micelles

Surfactants in Solution

Packing parameter (shape factor)= V/al

V Volume of the tail

a Cross sectional surface of the polar head

l Length of the hydrophobic tail

Page 7: Nanoparticle Synthesis in Reverse Micelles

Reverse Micelles

Water in oil microemulsion

Surfactant = AOTO

SO3

OO

O

- Na+

8A 4A

Isooctane

AOT

20%40%60%80%

AOT

20%

40%

60%

80%20%

40%

60%

80%Is

oocta

ne

H O2

H O2

L2

B

L2 + L1

L1 + B

L2 + B

H O2

Isooctane

Page 8: Nanoparticle Synthesis in Reverse Micelles

Reverse Micelles

W

[AOT]

[H O]2

W=

H O2

H O2

Water amount → size of the micelles

+ +

Collisions between micelles → Exchange of the water content

→ Chemical Reactions: Coprecipitation, Reduction, Hydrolysis-Condensation

Page 9: Nanoparticle Synthesis in Reverse Micelles

Reverse Micelles

M. Zulauf, H.-F. Eicke, J. Phys. Chem. 83, 4, 1979

Page 10: Nanoparticle Synthesis in Reverse Micelles

First Synthesis

First review article about particles formations in microemulsions

• Atomic and molecular clusters in membrane mimetic chemistry Janos H. Fendler, Chem. Rev.; 1987; 87(5);877-899.

• Cadmium sulfide of small dimensions produced in inverted micellesP. Lianos, J. K. Thomas, Chem. Phys. Lett. 1986, 125, 299CdS nanoparticles from AOT/H2O/Heptane reverse micelles, coprecipitation between Cd(ClO4)2 and Na2S

• Photosinsitiezed charge separation and hydrogen production in reversed micelle entrapped platinized colloidalcadmium sulfideM. Meyer, C. Wallberg, K. Kurihara, J. H. Fendler, Chem. Comm. 1984, 90CdS nanoparticles from AOT/H2O/isooctane reverse micelles, coprecipitation between CdCl2 and H2S

• Synthesis of cadmium-sulfide insitu in reverse micelles and in hydrocarbon gelsC. Petit, M. P. Pileni, J. Phys. Chem. 1988, 92, 2282CdS nanoparticles from AOT/H2O/isooctane reverse micelles, coprecipitation between Cd(NO3)2 and Na2S

• The preparation of monodisperse colloidal metal particles from microemulsionsM. Boutonnet, J. Kizling, P. Stenius, G. Maire, Colloids Surf. 1982, 5, 209Pt, Pd, Rh, Ir 3-5 nm particles prepared by reduction of metal salts in reverse micelles: Hexadecyltrimethylam-monium Chloride (CTAB)/octanol/H2O

The general approach consist on mixing 2 micellar solutions containing the cations and the anions

→ Fast reaction, spherical particles

Page 11: Nanoparticle Synthesis in Reverse Micelles

First Synthesis

P. Lianos, J. K. Thomas, Chem. Phys. Lett. 1986, 125, 299 M. L. Steigerwald, et al. J. Am. Chem. Soc.; 1988; 110(10);

3046-3050

Page 12: Nanoparticle Synthesis in Reverse Micelles

Modern Examples

Synthesis and Characterization of non spherical nanoparticles made in reverse micelles

• Semiconductors - CdS nanoparticles and nanotriangles - Coprecipitation

• Oxides - V2O5 nanorods and nanowires - Hydrolysis-Condensation

• Metals - Silver nanoparticles and nanodisks - Reduction

Page 13: Nanoparticle Synthesis in Reverse Micelles

Coprecipitation

N. Pinna, K. Weiss, J. Urban, M. P. Pileni, Adv. Mat, 2001, 13,261

N. Pinna, K. Weiss, H. Sack-Kongehl, W. Vogel, J. Urban, M. P. Pileni, Langmuir 2001, 17, 7982

Page 14: Nanoparticle Synthesis in Reverse Micelles

TEM

Page 15: Nanoparticle Synthesis in Reverse Micelles

HRTEM

Page 16: Nanoparticle Synthesis in Reverse Micelles

Shape Determination

Page 17: Nanoparticle Synthesis in Reverse Micelles

Optical Properties

t=0

t=48h

t=0

t=48h

t=0

t=48h

t=0

t=48h

t=0

t=48h

t=0

t=48h

Page 18: Nanoparticle Synthesis in Reverse Micelles

Optical Properties

Page 19: Nanoparticle Synthesis in Reverse Micelles

Hydrolysis-Condensation

2VO(OR)3 + 3H2O → V2O5 + 6ROH R=CH(CH3)2

VO(OCH(CH ) )3 2 3

in isooctane

t=24h-100dt=0

H O2

+

N. Pinna, U. Wild, J. Urban, R. Schlogl. Adv. Mat. 15(4), 329, 2003

N. Pinna, M. Willinger, K. Weiss, J. Urban, R. Schlogl, Nano Lett, 3, 1131, 2003

M. Willinger, N. Pinna, D.S. Su, R. Schlogl, Phys. Rev. B, 69, 155114, 2004

Page 20: Nanoparticle Synthesis in Reverse Micelles

V2O5 Nanorods and Nanowires

500 nm

25 nm

50 nm

50 nm

Page 21: Nanoparticle Synthesis in Reverse Micelles

XPS

514516518520Binding Energy (eV)

0

2000

4000

6000

8000

1∗104

1.2∗104

Inte

nsity

(cps

)

V2p3/2

VOx

528530532534536Binding Energy (eV)

0

0.05

0.1

0.15

Inte

nsity

(cps

)

O1sAOTVOxVOx - AOT

512514516518520Binding Energy (eV)

0

0.05

0.1

0.15

0.2

Inte

nsity

(cps

)

V2p 3/2VOx

528530532534536Binding Energy (eV)

0

0.05

0.1

0.15

0.2

0.25

Inte

nsity

(cps

)

O1sAOTVOxVox-AOT

Page 22: Nanoparticle Synthesis in Reverse Micelles

XRD

IN(b) =∑N

n,m6=n fnfmsin(2πbrnm)

2πbrnmb = 1

d= 2sinϑ

λ

Page 23: Nanoparticle Synthesis in Reverse Micelles

Structures

α-V2O5 γ-V2O5

Page 24: Nanoparticle Synthesis in Reverse Micelles

Structures

α-V2O5 γ-V2O5

Atom1 Atom2 Distance (A)

V O1 1.5759V O2 1.7783V O3 2.0176V O3 1.8776

Atom1 Atom2 Distance (A)

V1 O1 1.7257V1 O3 1.5468V1 O4 1.8914V1 O4 1.9861V2 O1 1.8479V2 O2 1.5810V2 O5 1.8984V2 O5 1.9671

Page 25: Nanoparticle Synthesis in Reverse Micelles

FT-IR

- - - AOT · · · α-V2O5 Bulk — γ-V2O5 24h – – γ-V2O5 100d

Page 26: Nanoparticle Synthesis in Reverse Micelles

Band structure

α-V2O5 γ-V2O5

Γ X S Y Γ Z U R T Z

E F

Ene

rgy

(eV

)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

-1.0

-2.0

-3.0

-4.0

-5.0

-6.0 Γ X S Y Γ Z U R T Z

E F Ene

rgy

(eV

)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

-1.0

-2.0

-3.0

-4.0

-5.0

Page 27: Nanoparticle Synthesis in Reverse Micelles

DOS

Page 28: Nanoparticle Synthesis in Reverse Micelles

Electron Energy Loss Spectrometry

α-V2O5 γ-V2O5

Page 29: Nanoparticle Synthesis in Reverse Micelles

Electron Energy Loss Spectrometry

Page 30: Nanoparticle Synthesis in Reverse Micelles

Reduction

1 - 60% Ag(AOT) - 40% Na(AOT) O.1 M - W=2

2 - Na(AOT) O.1 M - N2H4 - [N2H4]/[AOT]=1.44

2 N2H4 + 4Ag+ → N2 + 4H+ + 4Ag0

A. Taleb, C. Petit, M. P. Pileni, Chem. Mater. 1997, 9, 950

Page 31: Nanoparticle Synthesis in Reverse Micelles

Silver Nanoparticles

N. Pinna, M. Maillard, A. Courty, V. Russier, and M. P. Pileni, Phys. Rev. B 2002, 66, 045415

Page 32: Nanoparticle Synthesis in Reverse Micelles

Optical Properties

Maxwell-Garnett

2D Generalisation

Dipolar Fields:∑

x = 12S0 ;

∑z = −S0 ; S0 =

∑′

j = 1(rij/d)3

εxeffεm

= 1−(λα/8)(S0/2)+2γ(2a/d)2α1−(λα/8)(S0/2) ;

εzeffεm

= 1+(λα/8)S01+(λα/8)S0−2γ(2a/d)2α

λ = (2a/d)3 ; α = εs(ω)−εm

εs(ω)+2εm; γ = fs/(2a/d)2

Page 33: Nanoparticle Synthesis in Reverse Micelles

Optical Properties

Page 34: Nanoparticle Synthesis in Reverse Micelles

Optical Properties

Page 35: Nanoparticle Synthesis in Reverse Micelles

Silver Nanodisks

1 - 60% Ag(AOT) - 40% Na(AOT) O.1 M - W=2

2 - Na(AOT) O.1 M - N2H4 - 4.1 < [N2H4]/[AOT] < 16.5

2 N2H4 + 4Ag+ → N2 + 4H+ + 4Ag0

M. Maillard, S. Giorgio, M.P. Pileni, Adv. Mater. 14, 1084, 2002

Page 36: Nanoparticle Synthesis in Reverse Micelles

Optical Properties

Page 37: Nanoparticle Synthesis in Reverse Micelles

Conclusion

• The reverse micelle technique permits the synthesis of many inorganic materials

• Size and shape control

• Homogeneous products

• Low polydispersity

• Small quantities and difficult to scale up

Page 38: Nanoparticle Synthesis in Reverse Micelles

Acknowledgements

• M. Willinger - First DFT calculations of γ-V2O5 Structure

• K. Weiss, H. Sack-Kongehl - Transmission electron microscopy

• U. Wild - XPS mesurements

• Dr. M. Maillard, Dr. V Russier - Optical properties of silver nanoparticles

• Prof. J. Urban, Prof. R. Schlogl, Prof. M. P. Pileni