multiple intigration ppt

30
Electrical-A Presented by…… Guidance by….. Vaishali G. mohadikar Vinita G. Patel Enrollnment No: 130940109040 130940109044 130940109050 130940109043 130940109044 130940109045 130940109046 130940109052

Upload: manish-mor

Post on 23-Jun-2015

203 views

Category:

Education


2 download

TRANSCRIPT

Page 1: Multiple intigration ppt

Electrical-A

Presented by……

Guidance by…..Vaishali G. mohadikarVinita G. Patel

Enrollnment No:

130940109040130940109044130940109050130940109043130940109044130940109045130940109046130940109052

Page 2: Multiple intigration ppt

Multiple integrals

Page 3: Multiple intigration ppt

Multiple Integrals

Double Integrals Triple Integrals

Cylindrical Coordinate

s

SphericalCoordinates

Page 4: Multiple intigration ppt

Double Integrals

Page 5: Multiple intigration ppt

Double integrals

Definition: The expression:

is called a double integral and provided the four limits on the integral are all constant the order in which the integrations are performed does not matter.

If the limits on one of the integrals involve the other variable then the order in which the integrations are performed is crucial.

2 2

1 1

( , ) .y x

y y x xf x y dx dy

Page 6: Multiple intigration ppt

m

1i

n

1jij

*ij

*ij0|P|

R

R

) ΔΔy,f(xlimy)dAf(x,

y)dAf(x, is R rectangle the over f of integral double The

Page 7: Multiple intigration ppt

Then, by Fubini’s Theorem,

( , ) ( , )

( , )

D R

b d

a c

f x y dA F x y dA

F x y dy dx

Page 8: Multiple intigration ppt

We assume that all the following integrals exist.

PROPERTIES OF DOUBLE INTEGRALS

, ,

, ,

D

D D

f x y g x y dA

f x y dA g x y dA

( ) ( ) ( )b c b

a a cf x dx f x dx f x dx

Page 9: Multiple intigration ppt

The next property of integrals says that, if we integrate the constant function f(x, y) = 1 over a region D, we get the area of D:

1D

dA A DIf D = D1 D2, where D1 and D2 don’t overlap except perhaps on their boundaries, then

1 2

, , ,D D D

f x y dA f x y dA f x y dA

Page 10: Multiple intigration ppt

22

1-1

2

3

1-

1)x

2

1-xx

2

3x

4

1-x

2

1(

dx4x-x2

33x

2

32x-xx

)dx)(2x-)x((12

3)2x-xx(1

3y)dydx(x3y)dA(x

:Ans

}x1y2x 1,x-1|y){(x,D Where

3y)dA(x Evaluate 1.

:Example

5342

1

1-

44233

1

1-

222222

D

1

1-

x1

2x

22

D

2

2

Page 11: Multiple intigration ppt

62xy parabola theand 1-xy line the

by boundedregion theis D xydA where Evaluate 2.

2

D

36xydxdyxydA

4}y2- 1,yx2

6-y|y){(x,

}62xy? 5,x-3|y){(x,D

:Sol

D

4

2-

1y

2

6-y

2

2

Page 12: Multiple intigration ppt

b,ra|){(r,RConsider

Double Integrals in Polar Coordinates

Polar rectangle

Page 13: Multiple intigration ppt

D

)(h

)(h

21

R

b

a

2

1

)rdrdrsin ,f(rcosy)dAf(x,

thenDon continuous is f If region.

polor a be )}(hr)(h ,|){(r,DLet 2.

)rdrdrsin ,f(rcosy)dAf(x,

thenR,on continuous is f If 2-0 and rectangle

polar a be } b,ra|){(r,RLet 1.

Properties

Page 14: Multiple intigration ppt

2

15

)d7cos(15sin

)rdrd3rcos)(4(rsin3x)dA(4y

}0 2,r1|){(r,

4}yx1 0,y|y){(x,R

:Sol

4}yx1 0,y|y){(x,R e wher

3x)dA(4y Evaluate 1.

:Example

0

2

R0

2

1

22

22

22

R

2

Page 15: Multiple intigration ppt

Changing The Order of integration

Sometimes the iterated integrals with givan limits bocomes more compliated.As we know that w.r.t. y, or may be integrated in the reverse order.If it is given first to integrate w.r.t. x,then to change it consider a vertical strip line and determine the limits.If it is given first to integrate w.r.t. y,then to change it consider a horizontal strip line and determine the limits.

Page 16: Multiple intigration ppt

3

4

1243

7

32

33

7

33)2(

3

I

10

x-2yx:are limits the

line. strip horizontal a ake

2,1,2,0:

1,0,,0:

n.integratio oforder thechangingby y )()(: Evaluate 3.

1

0

443

1

0

3

32

1

0

33

3

2

21

0

3

2

1

0

222

2

1

1

0 0

2

1

2

0

2222

)2(

)2(2

)2(

xxx

xxx

xxx

xy

x

yx

RIRI

yxyx

dx

dxxdxy

)dydx(

x

T

yyyxx

yyyxx

dxd

x

x

-x

x

n

n

y y

Page 17: Multiple intigration ppt

Triple Integrals

Page 18: Multiple intigration ppt

Triple integrals

The expression:

is called a triple integral and provided the six limits on the integral are all constant the order in which the integrations are performed does not matter.

If the limits on the integrals involve some of the variables then the order in which the integrations are performed is crucial.

2 2 2

1 1 1

( , , ) . .z y x

z z y y x xf x y z dx dy dz

Page 19: Multiple intigration ppt

Determination of volumes by multiple integrals

The element of volume is:

Giving the volume V as:

That is:

. .V x y z

2 2 2

1 1 1

. .x x y y z z

x x y y z z

V x y z

2 2 2

1 1 1

. .x y z

x x y y z z

V dx dy dz

Page 20: Multiple intigration ppt

dydxz)dzy,f(x,z)dvy,f(x, then

y)}(x,φzy)(x,φ (x),gy(x)gb,xa|z)y,{(x,E If 2.

dAz)dzy,f(x,z)dvy,f(x, then

y)}(x,φzy)(x,φ D,y)(x,|z)y,{(x,E If 1.

properties

E

b

a

g

g

φ

φ

2121

E D

φ

φ

21

1(x)

1(x)

y)2(x,

y)1(x,

y)2(x,

y)1(x,

Page 21: Multiple intigration ppt

Example: Find the volume of the solid bounded by the planes z = 0, x = 1, x = 2, y = −1, y = 1 and the surface z = x2 + y2.

2 22 1 2 1

2 2

1 1 0 1 1

12 232 2

1 11

22

3 3

16

3

x y

x y z x y

x x

V dx dy dz dx x y dy

yx y dx x dx

Page 22: Multiple intigration ppt

:Sol

2z2y xand 0z 0, x2y, x

planes by the boundedon tetrahedr theof volume theFind 3.

3

1

2y)dydx-x-(22ydA-x-2V

}2

x-2y

2

x 1,x0|y){(x,D

D

1

0

2

x-2

2

x

Page 23: Multiple intigration ppt

2

)rdrdr-(1

)dAy-x-(1V

}20 1,r0|){(r,D:Sol

y-x-1z paraboloid theand

0z plane by the bounded solid theof volume theFind 2.

2

0

1

0

2

D

22

22

Page 24: Multiple intigration ppt

formula for triple integration in cylindrical coordinates.

E

h

h

rru

rrurdzdrdzrrfdVzyxf

)(

)(

)sin,cos(

)sin,cos(

2

1

2

1

),sin,cos(),,(

To convert from cylindrical to rectangular coordinates, we use the equations

1 x=r cosθ y=r sinθ z=z

whereas to convert from rectangular to cylindrical coordinates, we use

2. r2=x2+y2 tan θ= z=zx

y

Page 25: Multiple intigration ppt
Page 26: Multiple intigration ppt

D

22222.10 surfaces by the bounded solid theis D wheredV, Evaluate:Example ,z,zzyxyx

Here we use cylindrical co-ordinates(r,θ,z)∴ the limits are:

64

1

3

12

43

)1(

rdzdrdθrI

20

1r0

1zr i.e.

1

1

0

4320

2

0

1

0

2

0

1

0

1

r

22

xr

r

yx

drdr

z

Page 27: Multiple intigration ppt

Formula for triple integration in spherical coordinates

E

dVzyxf ),,(

d

c

b

addpdppsomppf

sin)cos,sin,cossin( 2

where E is a spherical wedge given by

},,),,{( dcbpapE

Page 28: Multiple intigration ppt

0p 0

Page 29: Multiple intigration ppt

D

222222.1 sphere theof volumeover the dV Evaluate:Example x zyxzy

Here we use spherical co-ordinates (r,θ,z) ∴ The limits are:

5

4

5

122

5cos

sinI

20

0

10

1

0

5

020

2

0 0

1

0

22

r

rr ddrd

r

Page 30: Multiple intigration ppt

THANK YOU