multiple ppt

30
Electrical-A Presented by…… Guidance by….. Vaishali G. mohadikar Vinita G. Patel Enrollnment No: 130940109040 130940109044 130940109050 130940109043 130940109044 130940109045 130940109046 130940109052

Upload: manish-mor

Post on 04-Jul-2015

214 views

Category:

Education


4 download

DESCRIPTION

in this ppt

TRANSCRIPT

Page 1: Multiple ppt

Electrical-A

Presented by……

Guidance by…..Vaishali G. mohadikarVinita G. Patel

Enrollnment No:

130940109040

130940109044

130940109050

130940109043

130940109044

130940109045

130940109046

130940109052

Page 2: Multiple ppt
Page 3: Multiple ppt

Multiple Integrals

Double Integrals Triple Integrals

Cylindrical

Coordinates

Spherical

Coordinates

Page 4: Multiple ppt
Page 5: Multiple ppt

Double integrals

Definition:

The expression:

is called a double integral and provided the four limits

on the integral are all constant the order in which the

integrations are performed does not matter.

If the limits on one of the integrals involve the other

variable then the order in which the integrations are

performed is crucial.

2 2

1 1

( , ) .y x

y y x xf x y dx dy

Page 6: Multiple ppt

m

1i

n

1j

i j

*

i j

*

i j0|P|

R

R

)ΔΔy,f(xlimy)dAf(x,

y)dAf(x, is R rectangle the over f of integral double The

Page 7: Multiple ppt

Then, by Fubini’s Theorem,

( , ) ( , )

( , )

D R

b d

a c

f x y dA F x y dA

F x y dy dx

Page 8: Multiple ppt

We assume that all the following integrals exist.

, ,

, ,

D

D D

f x y g x y dA

f x y dA g x y dA

( ) ( ) ( )b c b

a a cf x dx f x dx f x dx

Page 9: Multiple ppt

The next property of integrals says that, if we integrate the constant function f(x, y) = 1 over a region D, we get the area of D:

1D

dA A D

If D = D1 D2, where D1 and D2 don’t overlap except perhaps on their boundaries, then

1 2

, , ,D D D

f x y dA f x y dA f x y dA

Page 10: Multiple ppt

22

1-1

2

3

1-

1)x

2

1-xx

2

3x

4

1-x

2

1(

dx4x-x2

33x

2

32x-xx

)dx)(2x-)x((12

3)2x-xx(1

3y)dydx(x3y)dA(x

:Ans

}x1y2x 1,x-1|y){(x,D Where

3y)dA(x Evaluate 1.

:Example

5342

1

1-

44233

1

1-

222222

D

1

1-

x1

2x

22

D

2

2

Page 11: Multiple ppt

62xy parabola theand 1-xy line the

by boundedregion theis D xydA where Evaluate 2.

2

D

36xydxdyxydA

4}y2- 1,yx2

6-y|y){(x,

}62xy? 5,x-3|y){(x,D

:Sol

D

4

2-

1y

2

6-y

2

2

Page 12: Multiple ppt

b,ra|){(r,RConsider

Polar rectangle

Page 13: Multiple ppt

D

)(h

)(h

21

R

b

a

2

1

)rdrdrsin ,f(rcosy)dAf(x,

thenDon continuous is f If region.

polor a be )}(hr)(h ,|){(r,DLet 2.

)rdrdrsin ,f(rcosy)dAf(x,

thenR,on continuous is f If 2-0 and rectangle

polar a be } b,ra|){(r,RLet 1.

Properties

Page 14: Multiple ppt

2

15

)d7cos(15sin

)rdrd3rcos)(4(rsin3x)dA(4y

}0 2,r1|){(r,

4}yx1 0,y|y){(x,R

:Sol

4}yx1 0,y|y){(x,R e wher

3x)dA(4y Evaluate 1.

:Example

0

2

R0

2

1

22

22

22

R

2

Page 15: Multiple ppt

Changing The Order of integration

Sometimes the iterated integrals with givan limits bocomes more

compliated.As we know that w.r.t. y, or may be integrated in the

reverse order.

If it is given first to integrate w.r.t. x,then to change it consider a

vertical strip line and determine the limits.

If it is given first to integrate w.r.t. y,then to change it consider a

horizontal strip line and determine the limits.

Page 16: Multiple ppt

3

4

1243

7

32

33

7

33)2(

3

I

10

x-2yx:are limits the

line. strip horizontal a ake

2,1,2,0:

1,0,,0:

n.integratio oforder thechangingby y )()(: Evaluate 3.

1

0

443

1

0

3

32

1

0

3

3

3

2

2

1

0

3

2

1

0

222

2

1

1

0 0

2

1

2

0

2222

)2(

)2(2

)2(

xxx

xxx

xx

xx

yx

yx

RIRI

yxyx

dx

dxxdxy

)dydx(

x

T

yyyxx

yyyxx

dxd

x

x

-x

x

n

n

y y

Page 17: Multiple ppt
Page 18: Multiple ppt

Triple integrals

The expression:

is called a triple integral and provided the six limits on

the integral are all constant the order in which the

integrations are performed does not matter.

If the limits on the integrals involve some of the

variables then the order in which the integrations are

performed is crucial.

2 2 2

1 1 1

( , , ) . .z y x

z z y y x xf x y z dx dy dz

Page 19: Multiple ppt

Determination of volumes by multiple integrals

The element of volume is:

Giving the volume V as:

That is:

. .V x y z

2 2 2

1 1 1

. .x x y y z z

x x y y z z

V x y z

2 2 2

1 1 1

. .

x y z

x x y y z z

V dx dy dz

Page 20: Multiple ppt

dydxz)dzy,f(x,z)dvy,f(x, then

y)}(x,φzy)(x,φ (x),gy(x)gb,xa|z)y,{(x,E If 2.

dAz)dzy,f(x,z)dvy,f(x, then

y)}(x,φzy)(x,φ D,y)(x,|z)y,{(x,E If 1.

properties

E

b

a

g

g

φ

φ

2121

E D

φ

φ

21

1(x)

1(x)

y)2(x,

y)1(x,

y)2(x,

y)1(x,

Page 21: Multiple ppt

Example: Find the volume of the solid bounded by the

planes z = 0, x = 1, x = 2, y = −1, y = 1 and the surface z

= x2

+ y2.

2 22 1 2 1

2 2

1 1 0 1 1

12 232 2

1 11

22

3 3

16

3

x y

x y z x y

x x

V dx dy dz dx x y dy

yx y dx x dx

Page 22: Multiple ppt

:Sol

2z2y xand 0z 0, x2y, x

planes by the boundedon tetrahedr theof volume theFind 3.

3

1

2y)dydx-x-(22ydA-x-2V

}2

x-2y

2

x 1,x0|y){(x,D

D

1

0

2

x-2

2

x

Page 23: Multiple ppt

2

)rdrdr-(1

)dAy-x-(1V

}20 1,r0|){(r,D:Sol

y-x-1z paraboloid theand

0z plane by the bounded solid theof volume theFind 2.

2

0

1

0

2

D

22

22

Page 24: Multiple ppt

formula for triple integration in cylindrical coordinates.

E

h

h

rru

rrurdzdrdzrrfdVzyxf

)(

)(

)sin,cos(

)sin,cos(

2

1

2

1

),sin,cos(),,(

To convert from cylindrical to rectangular

coordinates, we use the equations

1 x=r cosθ y=r sinθ z=z

whereas to convert from rectangular to

cylindrical coordinates, we use

2. r2=x

2+y

2tan θ= z=z

x

y

Page 25: Multiple ppt
Page 26: Multiple ppt

D

22222.10 surfaces by the bounded solid theis D wheredV, Evaluate:Example ,z,zzyxyx

Here we use cylindrical co-ordinates(r,θ,z)∴ the limits are:

64

1

3

12

43

)1(

rdzdrdθrI

20

1r0

1zr i.e.

1

1

0

43

2

0

2

0

1

0

2

0

1

0

1

r

22

xr

r

yx

drdr

z

Page 27: Multiple ppt

Formula for triple integration in spherical coordinates

E

dVzyxf ),,(

d

c

b

addpdppsomppf sin)cos,sin,cossin( 2

where E is a spherical wedge given by

},,),,{( dcbpapE

Page 28: Multiple ppt

0p 0

Page 29: Multiple ppt

D

222222.1 sphere theof volumeover the dV Evaluate:Example x zyxzy

Here we use spherical co-ordinates (r,θ,z)∴ The limits are:

5

4

5

122

5cos

sinI

20

0

10

1

0

5

0

2

0

2

0 0

1

0

22

r

rr ddrd

r

Page 30: Multiple ppt