modelling of an entrained flow cal carbonator for co2

20
Modelling of an Entrained Flow CaL Carbonator for CO 2 Capture in Cement Kilns Maurizio Spinelli PhD Isabel Martinez PhD Edoardo De Lena prof. Matteo Romano prof. Stefano Campanari prof. Stefano Consonni 7 th High Temperature Solid Looping Cycles Network Meeting LuleΓ₯, Sweden, 4-5 th September 2017

Upload: others

Post on 14-Jan-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Modelling of an Entrained Flow CaL Carbonator for CO2

Modelling of an Entrained Flow CaL Carbonator for CO2 Capture in Cement Kilns

Maurizio Spinelli PhDIsabel Martinez PhDEdoardo De Lenaprof. Matteo Romanoprof. Stefano Campanariprof. Stefano Consonni

7th High Temperature Solid Looping Cycles Network MeetingLuleΓ₯, Sweden, 4-5th September 2017

Page 2: Modelling of an Entrained Flow CaL Carbonator for CO2

Entrained flow CaL reactors for CO2 capture in cement plants, 7th HTSLC, LuleΓ₯, 4/5-9-2017 2/20

Outline

Overview of CaL technology in cement plant:

Tail end

Integrated with EF carbonator

1D model of EF carbonator:

Results of first sensitivity analysis

Conclusion

Page 3: Modelling of an Entrained Flow CaL Carbonator for CO2

Entrained flow CaL reactors for CO2 capture in cement plants, 7th HTSLC, LuleΓ₯, 4/5-9-2017 3/20

Cement plant and related model

Clinker out

Raw meal* in

Gas out

Air in

Petcoke

65%

35%

CO2 80%

20%

Reference plant GS (POLIMI code)Cement plant is characterized by:

high fuel consumptions: ~ 3.2 MJLHV/kgck high CO2 emissions (~850gCO2/kgCK) from

fuel combustion and CaCO3 decomposition.

CaCO3 CaO+CO2

Calciner

* Mostly CaCO3 + additives like Fe2O3, Al2O3, SiO2, MgCO3

Page 4: Modelling of an Entrained Flow CaL Carbonator for CO2

Entrained flow CaL reactors for CO2 capture in cement plants, 7th HTSLC, LuleΓ₯, 4/5-9-2017 4/20

Tail-end CaL configuration

carbonatorcalciner

CaCO3 + correctives

decarbonated flue gasCO2 to

storage

heat for steam generation/raw meal preheating

heat for steam generation/raw meal preheating

High purity O2

fuel

filter

carbonator heat steam generation

CONVENTIONAL CEMENT KILN clinker

CO2-rich gas from the suspension preheater

limestone

CaO-rich CaL purge

ASU

CO2 compression and purification

unit

β€’ Carbonator removes CO2 from cement plant flue gas highly suitable for retrofitβ€’ CaO-rich purge from CaL calciner used as feed for the cement kilnβ€’ CFB CaL reactors: d50=100-250 ΞΌm

Particle size for clinker production d50=10-20 ΞΌm CaL purge milled in the raw mill at low temperature

1) Spinelli et al., β€œIntegration of Ca-Looping systems for CO2 capture in cement plants”GHGT13 conference paper, Energy Procedia 114 ( 2017 ) 6206 – 62142) De Lena et al., β€œProcess integration study of tail-end Ca-Looping process for CO2 capture in cement plants ” Submitted to International Journal of Greenhouse Gas Control

Page 5: Modelling of an Entrained Flow CaL Carbonator for CO2

Entrained flow CaL reactors for CO2 capture in cement plants, 7th HTSLC, LuleΓ₯, 4/5-9-2017 5/20

Integrated CaL configuration

carbonator

calciner

CO2-rich gas from the kiln

hot clinker

fuel

decarbonated flue gas

heat recovery for steam generation

High purity O2

fuel

filter

clinker coolercooled clinker

cooling air

cooler exhaust airsecondary

airrotary kiln

carbonator heat steam generation

Raw meal preheater 1

Raw meal 1

Raw meal 2

Raw meal preheater 2heat recovery for

steam generation

CaCO3-rich material

precalcined raw meal

ASU

CO2 to storage

CO2 compression and purification

unit

CaLβ€’ carbonator highly integrated within the preheating tower, on rotary kiln gasCaLβ€’ calciner coincides with the cement kiln pre-calcinerCalcined raw meal as COβ€’ 2 sorbent in the carbonatorSorbent has small particle size (dβ€’ 50=10-20 ΞΌm) entrained flow reactors

Spinelli et al., β€œIntegration of Ca-Looping systems for CO2 capture in cement plants”GHGT13, Energy Procedia 114 ( 2017 ) 6206 – 6214

Page 6: Modelling of an Entrained Flow CaL Carbonator for CO2

Entrained flow CaL reactors for CO2 capture in cement plants, 7th HTSLC, LuleΓ₯, 4/5-9-2017 6/20

Fresh raw meal

Raw meal preheater

CO2-poor flue gas

Fuel

O2

Carb

onat

or

CO2-rich gas to CPU

Fuel

Calc

iner

Recarbonated sorbent + fresh preheated raw

meal to calciner

Calcined raw meal to rotary kiln

Calcined raw meal to carbonator

Rotary kiln

CO2 recycle

Integrated CaL concept: entrained flow (EF) reactors

CO2 from kiln

CO2 to storage

CO2 from calciner

O2 from ASU

Page 7: Modelling of an Entrained Flow CaL Carbonator for CO2

Entrained flow CaL reactors for CO2 capture in cement plants, 7th HTSLC, LuleΓ₯, 4/5-9-2017 7/20

Reference cement plant

w/o CO2 capture

Tail-end CaLconfiguration

Integrated CaL

configuration

Direct CO2 emissions [kgCO2/tclk] 863.1 143.2 71.4Indirect CO2 emissions [kgCO2/tclk] 105.2 -123.5 128.7Equivalent CO2 emissions [kgCO2/tclk] 968.3 19.7 200.1Equivalent CO2 avoided [%] -- 98.0 79.3SPECCA [MJLHV/kgCO2] -- 3.26 2.32

Integrated / Tail End CaL concepts: results

Spinelli et al., β€œIntegration of Ca-Looping systems for CO2 capture in cement plants”GHGT13, Energy Procedia 114 ( 2017 ) 6206 – 6214

Page 8: Modelling of an Entrained Flow CaL Carbonator for CO2

Entrained flow CaL reactors for CO2 capture in cement plants, 7th HTSLC, LuleΓ₯, 4/5-9-2017 8/20

Entrained flowcarbonator model

Page 9: Modelling of an Entrained Flow CaL Carbonator for CO2

Entrained flow CaL reactors for CO2 capture in cement plants, 7th HTSLC, LuleΓ₯, 4/5-9-2017 9/20

CaLβ€’ kineticsGasβ€’ -solid drag velocitiesInterphaseβ€’ heat transferExternalβ€’ heat transferPressureβ€’ lossesFluidβ€’ -dynamic checkInternalβ€’ sorbent recycle

NASAβ€’ polynomials for gas /solid TDN propertiesSteadyβ€’ stateIncompressibleβ€’ flowHomogeneousβ€’ mixturesMassβ€’ transfer effect neglected (low Da numbers)

Main Assumptions

Entrained flow CaL carbonator modelingDilute reactor is the most suitable option for the cement plant CaL application, becauseof the experience with entrained flow technologies and the low particle size.A simple, finite-difference model (axial discretization) has been developed to solve mass,momentum and energy equations and evaluate the potential CO2 capture rate.

Page 10: Modelling of an Entrained Flow CaL Carbonator for CO2

Entrained flow CaL reactors for CO2 capture in cement plants, 7th HTSLC, LuleΓ₯, 4/5-9-2017 10/20

Mass

Carbonation kinetics

1 βˆ’ 𝐺𝐺𝐺𝐺𝐺𝐺:π‘‘π‘‘οΏ½Μ‡οΏ½π‘šπ‘”π‘”

𝑑𝑑𝑑𝑑= βˆ’

�̇�𝑀𝑠𝑠,π‘Žπ‘Ž

𝑒𝑒𝑠𝑠�

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

οΏ½ 𝑀𝑀𝐢𝐢𝐢𝐢2 2 βˆ’ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑:π‘‘π‘‘οΏ½Μ‡οΏ½π‘šπ‘ π‘ 

𝑑𝑑𝑑𝑑= βˆ’

π‘‘π‘‘οΏ½Μ‡οΏ½π‘šπ‘”π‘”

𝑑𝑑𝑑𝑑

Temperature influence Xmax influence𝐢𝐢𝐺𝐺𝐢𝐢 𝑠𝑠 + 𝐢𝐢𝐢𝐢 )2(𝑔𝑔

βˆ†β„Ž+𝐢𝐢𝐺𝐺𝐢𝐢𝐢𝐢 )3(𝑠𝑠

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =

π‘˜π‘˜π‘ π‘  οΏ½ 𝑆𝑆𝑁𝑁

1 βˆ’ πœ€πœ€π‘ƒπ‘ƒοΏ½ 1 βˆ’ 𝑑𝑑 οΏ½ 𝐢𝐢𝐢𝐢𝐢𝐢2 βˆ’ 𝐢𝐢𝐢𝐢𝐢𝐢2,𝑒𝑒𝑒𝑒 οΏ½ 1 βˆ’ Ξ¨ 𝑆𝑆𝑙𝑙 1 βˆ’ 𝑑𝑑

π‘˜π‘˜π‘ π‘  = π‘˜π‘˜π‘ π‘ ,0 οΏ½ expβˆ’20300𝑇𝑇𝑅𝑅 οΏ½ 𝑅𝑅𝑒𝑒

𝑆𝑆𝑁𝑁 = 𝑆𝑆0 οΏ½ π‘‘π‘‘π‘šπ‘šπ‘Žπ‘Žπ‘šπ‘š

π‘…π‘…πΊπΊπ‘™π‘™π‘‘π‘‘π‘†π‘†π‘šπ‘š 𝑃𝑃𝑆𝑆𝑃𝑃𝑃𝑃 π‘šπ‘šπ‘†π‘†π‘‘π‘‘π‘ƒπ‘ƒπ‘†π‘† π‘€π‘€π‘†π‘†π‘‘π‘‘β„Ž π‘‘π‘‘π‘šπ‘šπ‘Žπ‘Žπ‘šπ‘š π’Šπ’Šπ’Šπ’Šπ’Šπ’Šπ’Šπ’Šπ’Šπ’Šπ’Šπ’Šπ’Šπ’Š

EF carbonator modeling – EquationsDilute reactor is the most suitable option for the cement plant CaL application, becauseof the experience with entrained flow technologies and the low particle size.A simple, finite-difference model (axial discretization) has been developed to solve mass,momentum and energy equations and evaluate the potential CO2 capture rate.

G. Grasa et al., β€œApplication of the random pore model to the carbonation cyclic reaction”, AIChE J. 55 (2009)

Page 11: Modelling of an Entrained Flow CaL Carbonator for CO2

Entrained flow CaL reactors for CO2 capture in cement plants, 7th HTSLC, LuleΓ₯, 4/5-9-2017 11/20

Dilute reactor is the most suitable option for the cement plant CaL application, becauseof the experience with entrained flow technologies and the low particle size.A simple, finite-difference model (axial discretization) has been developed to solve mass,

momentum and energy equations and evaluate the potential CO2 capture rate.

Energy5 βˆ’ 𝐺𝐺𝐺𝐺𝐺𝐺:

𝑑𝑑 οΏ½Μ‡οΏ½π‘šπ‘”π‘” οΏ½ β„Žπ‘”π‘” + 0.5 οΏ½ οΏ½Μ‡οΏ½π‘šπ‘”π‘” οΏ½ 𝑒𝑒𝑔𝑔2 + 𝐼𝐼𝐺𝐺 οΏ½ οΏ½Μ‡οΏ½π‘šπ‘”π‘” οΏ½ 𝑔𝑔 οΏ½ 𝑑𝑑

𝑑𝑑𝑑𝑑= βˆ’οΏ½Μ‡οΏ½π‘€π‘”π‘”π‘ π‘  βˆ’ οΏ½Μ‡οΏ½π‘žπ‘”π‘”π‘”π‘” βˆ’ οΏ½Μ‡οΏ½π‘žπ‘”π‘”π‘ π‘  βˆ’ οΏ½Μ‡οΏ½π‘žπΆπΆπΆπΆ2,π‘π‘π‘Žπ‘Žπ‘π‘π‘π‘

6 βˆ’ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑:𝑑𝑑 οΏ½Μ‡οΏ½π‘šπ‘ π‘  οΏ½ β„Žπ‘ π‘  + 0.5 οΏ½ οΏ½Μ‡οΏ½π‘šπ‘ π‘  οΏ½ 𝑒𝑒𝑠𝑠

2 + 𝐼𝐼𝐺𝐺 οΏ½ οΏ½Μ‡οΏ½π‘šπ‘ π‘  οΏ½ 𝑔𝑔 οΏ½ 𝑑𝑑𝑑𝑑𝑑𝑑

= �̇�𝑀𝑔𝑔𝑠𝑠 βˆ’ οΏ½Μ‡οΏ½π‘žπ‘ π‘ π‘”π‘” + οΏ½Μ‡οΏ½π‘žπ‘”π‘”π‘ π‘  + οΏ½Μ‡οΏ½π‘žπ‘π‘,π‘π‘π‘Žπ‘Žπ‘π‘π‘π‘ + οΏ½Μ‡οΏ½π‘žπΆπΆπΆπΆ2,π‘π‘π‘Žπ‘Žπ‘π‘π‘π‘

3-Gas: 𝑑𝑑 οΏ½Μ‡οΏ½π‘šπ‘”π‘”οΏ½π‘’π‘’π‘”π‘”

π‘‘π‘‘π‘šπ‘š+ 𝐴𝐴 οΏ½ 𝑑𝑑𝑑𝑑

π‘‘π‘‘π‘šπ‘š= βˆ’πΌπΌπΊπΊ οΏ½ 𝐴𝐴𝑔𝑔 οΏ½ πœŒπœŒπ‘”π‘” οΏ½ 𝑔𝑔 βˆ’ 𝐹𝐹𝑓𝑓𝑔𝑔 βˆ’ 𝐹𝐹𝑔𝑔𝑠𝑠

4 βˆ’ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑: 𝑑𝑑 οΏ½Μ‡οΏ½π‘šπ‘ π‘ οΏ½π‘’π‘’π‘ π‘ π‘‘π‘‘π‘šπ‘š

= βˆ’πΌπΌπΊπΊ οΏ½ 𝐴𝐴𝑠𝑠 οΏ½ πœŒπœŒπ‘ π‘  οΏ½ 𝑔𝑔 βˆ’ 𝐹𝐹𝑓𝑓𝑠𝑠 + 𝐹𝐹𝑔𝑔𝑠𝑠

Momentum

Mass 1 βˆ’ 𝐺𝐺𝐺𝐺𝐺𝐺:π‘‘π‘‘οΏ½Μ‡οΏ½π‘šπ‘”π‘”

𝑑𝑑𝑑𝑑= βˆ’

�̇�𝑀𝑠𝑠,π‘Žπ‘Ž

𝑒𝑒𝑠𝑠�

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

οΏ½ 𝑀𝑀𝐢𝐢𝐢𝐢2 2 βˆ’ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑:π‘‘π‘‘οΏ½Μ‡οΏ½π‘šπ‘ π‘ 

𝑑𝑑𝑑𝑑= βˆ’

π‘‘π‘‘οΏ½Μ‡οΏ½π‘šπ‘”π‘”

𝑑𝑑𝑑𝑑

EF carbonator modeling – Equations

Page 12: Modelling of an Entrained Flow CaL Carbonator for CO2

Entrained flow CaL reactors for CO2 capture in cement plants, 7th HTSLC, LuleΓ₯, 4/5-9-2017 12/20

Complementary correlations

Dilute reactor is the most suitable option for the cement plant CaL application, becauseof the experience with entrained flow technologies and the low particle size.A simple, finite-difference model (axial discretization) has been developed to solve mass,momentum and energy equations and evaluate the potential CO2 capture rate.

Energy5 βˆ’ 𝐺𝐺𝐺𝐺𝐺𝐺:

𝑑𝑑 οΏ½Μ‡οΏ½π‘šπ‘”π‘” οΏ½ β„Žπ‘”π‘” + 0.5 οΏ½ οΏ½Μ‡οΏ½π‘šπ‘”π‘” οΏ½ 𝑒𝑒𝑔𝑔2 + 𝐼𝐼𝐺𝐺 οΏ½ οΏ½Μ‡οΏ½π‘šπ‘”π‘” οΏ½ 𝑔𝑔 οΏ½ 𝑑𝑑

𝑑𝑑𝑑𝑑= βˆ’οΏ½Μ‡οΏ½π‘€π‘”π‘”π‘ π‘  βˆ’ οΏ½Μ‡οΏ½π‘žπ‘”π‘”π‘”π‘” βˆ’ οΏ½Μ‡οΏ½π‘žπ‘”π‘”π‘ π‘  βˆ’ οΏ½Μ‡οΏ½π‘žπΆπΆπΆπΆ2,π‘π‘π‘Žπ‘Žπ‘π‘π‘π‘

6 βˆ’ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑:𝑑𝑑 οΏ½Μ‡οΏ½π‘šπ‘ π‘  οΏ½ β„Žπ‘ π‘  + 0.5 οΏ½ οΏ½Μ‡οΏ½π‘šπ‘ π‘  οΏ½ 𝑒𝑒𝑠𝑠

2 + 𝐼𝐼𝐺𝐺 οΏ½ οΏ½Μ‡οΏ½π‘šπ‘ π‘  οΏ½ 𝑔𝑔 οΏ½ 𝑑𝑑𝑑𝑑𝑑𝑑

= �̇�𝑀𝑔𝑔𝑠𝑠 βˆ’ οΏ½Μ‡οΏ½π‘žπ‘ π‘ π‘”π‘” + οΏ½Μ‡οΏ½π‘žπ‘”π‘”π‘ π‘  + οΏ½Μ‡οΏ½π‘žπ‘π‘,π‘π‘π‘Žπ‘Žπ‘π‘π‘π‘ + οΏ½Μ‡οΏ½π‘žπΆπΆπΆπΆ2,π‘π‘π‘Žπ‘Žπ‘π‘π‘π‘

4 βˆ’ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑: 𝑑𝑑 οΏ½Μ‡οΏ½π‘šπ‘ π‘ οΏ½π‘’π‘’π‘ π‘ π‘‘π‘‘π‘šπ‘š

= βˆ’πΌπΌπΊπΊ οΏ½ 𝐴𝐴𝑠𝑠 οΏ½ πœŒπœŒπ‘ π‘  οΏ½ 𝑔𝑔 βˆ’ 𝐹𝐹𝑓𝑓𝑠𝑠 + 𝐹𝐹𝑔𝑔𝑠𝑠

Momentum

Mass 1 βˆ’ 𝐺𝐺𝐺𝐺𝐺𝐺:π‘‘π‘‘οΏ½Μ‡οΏ½π‘šπ‘”π‘”

𝑑𝑑𝑑𝑑= βˆ’

�̇�𝑀𝑠𝑠,π‘Žπ‘Ž

𝑒𝑒𝑠𝑠�

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

οΏ½ 𝑀𝑀𝐢𝐢𝐢𝐢2 2 βˆ’ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑:π‘‘π‘‘οΏ½Μ‡οΏ½π‘šπ‘ π‘ 

𝑑𝑑𝑑𝑑= βˆ’

π‘‘π‘‘οΏ½Μ‡οΏ½π‘šπ‘”π‘”

𝑑𝑑𝑑𝑑

3-Gas: 𝑑𝑑 οΏ½Μ‡οΏ½π‘šπ‘”π‘”οΏ½π‘’π‘’π‘”π‘”

π‘‘π‘‘π‘šπ‘š+ 𝐴𝐴 οΏ½ 𝑑𝑑𝑑𝑑

π‘‘π‘‘π‘šπ‘š= βˆ’πΌπΌπΊπΊ οΏ½ 𝐴𝐴𝑔𝑔 οΏ½ πœŒπœŒπ‘”π‘” οΏ½ 𝑔𝑔 βˆ’ 𝐹𝐹𝑓𝑓𝑔𝑔 βˆ’ 𝐹𝐹𝑔𝑔𝑠𝑠

EF carbonator modeling – Equations

Page 13: Modelling of an Entrained Flow CaL Carbonator for CO2

Entrained flow CaL reactors for CO2 capture in cement plants, 7th HTSLC, LuleΓ₯, 4/5-9-2017 13/20

Methodology and scope

Simulation assumptions:Reactor length: β€’ 150 mSorbent nature: calcined raw meal ●(66.1% CaO, 4%CaCO3, 21% SIO2, 3.1% Al2O3, 1.1% Fe2O3, 3.6% MgO, 1.1%CaSO4)

Inlet solid/gas velocities: ● 0/15 m/sInlet solid/gas temperatures: ● 600/600Β°CIsothermal reactor walls.●

Sensitivity analysis on:Solid loading ● ( οΏ½οΏ½Μ‡οΏ½π’Šπ’Šπ’Š

οΏ½Μ‡οΏ½π’Šπ’ˆπ’ˆ = 1/3/6);Reactor wall temperature (T● W=260/320/500Β°C)Carbonators number (● 1/4)Sorbent maximum conversion (X● MAX=10/20/30%).

Definition of reactor boundary conditions and simplified design;1)Calculation of the CO2) 2 capture rate as a function of kinetic models;Identification of the most promising operating parameters.3)

Page 14: Modelling of an Entrained Flow CaL Carbonator for CO2

Entrained flow CaL reactors for CO2 capture in cement plants, 7th HTSLC, LuleΓ₯, 4/5-9-2017 14/20

Simulation results (i) – Effect of solid loading (οΏ½Μ‡οΏ½π’Šπ’Šπ’Š/οΏ½Μ‡οΏ½π’Šπ’ˆπ’ˆ)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 20 40 60 80 100 120 140

CO2

capt

ure

effic

ienc

y

Reactor length [m]

XMax=20%TW=320Β°CRaw meal as sorbent

π’Šπ’Š Μ‡_π’Šπ’Š/π’Šπ’Š Μ‡_π’ˆπ’ˆ= 3

π’Šπ’Š Μ‡_π’Šπ’Š/π’Šπ’Š Μ‡_π’ˆπ’ˆ= 1

οΏ½Μ‡οΏ½π’Šπ’Šπ’Š/οΏ½Μ‡οΏ½π’Šπ’ˆπ’ˆ= 6

Page 15: Modelling of an Entrained Flow CaL Carbonator for CO2

Entrained flow CaL reactors for CO2 capture in cement plants, 7th HTSLC, LuleΓ₯, 4/5-9-2017 15/20

L=150 m , v=15 m/s L=60 m , v=4 m/s

Alternative geometry: downdraft carbonator

DOWNDRAFTUPDRAFT

Page 16: Modelling of an Entrained Flow CaL Carbonator for CO2

Entrained flow CaL reactors for CO2 capture in cement plants, 7th HTSLC, LuleΓ₯, 4/5-9-2017 16/20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 20 40 60 80 100 120 140

CO2

capt

ure

effic

ienc

y

Reactor length [m]

XMax=20%, TW=320Β°C- - - - Conventional (vGas=15 m/s)____ Downdraft (vGas=4 m/s)

π’Šπ’Š Μ‡_π’Šπ’Š/π’Šπ’Š Μ‡_π’ˆπ’ˆ=1

Simulation results (ii) – Downdraft vs updraft

Page 17: Modelling of an Entrained Flow CaL Carbonator for CO2

Entrained flow CaL reactors for CO2 capture in cement plants, 7th HTSLC, LuleΓ₯, 4/5-9-2017 17/20

Simulation results (iii) : Natural raw meal as sorbent

Page 18: Modelling of an Entrained Flow CaL Carbonator for CO2

Entrained flow CaL reactors for CO2 capture in cement plants, 7th HTSLC, LuleΓ₯, 4/5-9-2017 18/20

Simulation results (iv) : Synthetic raw meal as sorbent

Page 19: Modelling of an Entrained Flow CaL Carbonator for CO2

Entrained flow CaL reactors for CO2 capture in cement plants, 7th HTSLC, LuleΓ₯, 4/5-9-2017 19/20

Conclusions

A relatively high solid loading (● ms/mg=6Γ·10) is required for obtaining high capture rates;

Sorbent capacity (● raw meal nature, calcination condition) has a significant impact on carbon capture rate;

Downdraft option allows for higher residence time and higher sorbent ●loadings improves capture rates;

Further research needs :

-properties of different raw meals and calcination conditions on CaO sorbent performance

-fluid dynamics of EF reactor at high solid/gas ratio -experimental validation of the concept under realistic conditions

Page 20: Modelling of an Entrained Flow CaL Carbonator for CO2

Entrained flow CaL reactors for CO2 capture in cement plants, 7th HTSLC, LuleΓ₯, 4/5-9-2017 20/20

Thank you for your attention!

Activities related to Cemcap project have received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 641185.https://www.sintef.no/projectweb/cemcap/

http://www.leap.polimi.it/leap/http://www.gecos.polimi.it/

ACKNOWLEDGMENTS