microfluidics: introduction [email protected]

29
Microfluidics: introduction [email protected]

Upload: hilary-andrews

Post on 29-Jan-2016

236 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Microfluidics: introduction sami.franssila@aalto.fi

Microfluidics: introduction

[email protected]

Page 2: Microfluidics: introduction sami.franssila@aalto.fi

Why miniaturize ?

• because it is possible?

• because it is improves performance ?

• because it opens up new possibilities ?

"Courtesy Sandia National Laboratories, SUMMiTTM Technologies,

www.mems.sandia.gov"

Page 3: Microfluidics: introduction sami.franssila@aalto.fi

Start of an era: Gas chromatograph on silicon wafer (1979):

-injector

-separation channel

-thermal conductivity detector

Gas fluidics minor activity compared to liquid fluidics (which started in 1990)

Page 4: Microfluidics: introduction sami.franssila@aalto.fi

Drug delivery

100 identical drug chambers

Drug release by electrical puncturing of a gold membrane

Page 5: Microfluidics: introduction sami.franssila@aalto.fi

APCI-MS, Atmospheric Pressure Chemical Ionization Mass Spectrometry

Page 6: Microfluidics: introduction sami.franssila@aalto.fi

Protein interaction chip

Radiolabeling synthesis reactor for PETS. Quake

256-mixer

Page 7: Microfluidics: introduction sami.franssila@aalto.fi

Is microfluidics different ?

Page 8: Microfluidics: introduction sami.franssila@aalto.fi

Channels by embossing

Bonding a cover slip

Page 9: Microfluidics: introduction sami.franssila@aalto.fi

Closed channels: bonding

One wafer holds channel; other is planar

Both wafers hold structures; need alignment

Misalignment !

Is channel cross section important ?

Page 10: Microfluidics: introduction sami.franssila@aalto.fi

Laminar vs. turbulent flow

Page 11: Microfluidics: introduction sami.franssila@aalto.fi

Reynolds number (Re)

• ratio of inertial to viscous forces

• Re = ρνD/η

• ρ = density of fluid (kg/m3)• ν = linear velocity (m/s)• D = dimension of the system, diameter (m)• η = viscosity of the fluid (Pa*s = kg/m*s)

• viscosity is the quantity that describes a fluid's resistance to flow

• small Re means large viscous forces

Page 12: Microfluidics: introduction sami.franssila@aalto.fi

Reynolds numberMicrochannel:

ρ = 1 kg/l (= 1000 kg/m3)

v = 1mm/s (=10-3 m/s)

D = 100 µm diameter (=10-4 m)

η = 0.001 kg/m*s

Re = 1000* 0.001 * 10-4/0.001 (all in SI units)

Re = 1

If Re < 2300, flow is laminar (microfluidics always)

Page 13: Microfluidics: introduction sami.franssila@aalto.fi

“Swimming” at high Reynolds: streamlined shape; yet turbulence

Re = ρνD/η

= 1000 * 10 *10/0.001= 100 000 000

Page 14: Microfluidics: introduction sami.franssila@aalto.fi

Swimming at low Reynolds: shape does not matter

Swimming movements of CR (Chlamydomonas Reinhardtii)

Cell size ca. 10 µm, flagella 12 µm

Flagella shown at different stages of the stroke (1-7 power stroke)

40-60 Hz frequency

100-200 µm/s speed (One stroke 2-4 µm, or 20-40% of CR size)

Page 15: Microfluidics: introduction sami.franssila@aalto.fi

Slow mixing in laminar flow

In laminar flow the streamlines do not mix.

Mixing is predominantly by diffusion.

v ~ 100 m/year

V ~ 1 µm/s

Re ~ 100

Page 16: Microfluidics: introduction sami.franssila@aalto.fi

Sperm selection

Page 17: Microfluidics: introduction sami.franssila@aalto.fi

Cell/bead sorter (1)sample flow in

hydrodynamic focusing

fluorescence detection

electrokinetic actuation

separated streams

Page 18: Microfluidics: introduction sami.franssila@aalto.fi

Cell/bead sorter (2)

Page 19: Microfluidics: introduction sami.franssila@aalto.fi

MicrofabricationNanofabrication

Page 20: Microfluidics: introduction sami.franssila@aalto.fi

Microfabricated sizes• Linewidth 10-100 µm typical • Channel depths 1-100 µm typical• Gaps 10 nm and up, by bonding or sacrificial etching

Page 21: Microfluidics: introduction sami.franssila@aalto.fi

Nanofluidics: molecular size equals channel size

Side view

Top view

Page 22: Microfluidics: introduction sami.franssila@aalto.fi

Diffusion

Object Size Diffusion constant Distance in 1000 s

small ion r=0.1 nm D=2*103 µm2/s 2000 µm

small protein r=5 nm D=40 µm2/s 280 µm

virus r=100 nm D=2 µm2/s 63 µm

bacterium r=1 µm D=0.2 µm2/s 20 µm

mammalian cell r=10 µm D=0.02 µm2/s 6.3 µm

hemoglobin: D = 7*10-7 cm2/s = 70 µm2/s

d = √2Dt distance travelled

Page 23: Microfluidics: introduction sami.franssila@aalto.fi

Macroscopic vs. atomisticDiffusion constants can be measured in macroscopic experiments

Theory developed by Einstein in 1905 established a connection between atomic size (RH= hydrodynamic radius) and diffusion constant

D = kT/ 6ηRH RH= kT/ 6η D

where η =viscosity; kT = thermal energy

r small protein = 1.38*10-23 *300/6*3.14*1*10-3*40*10-12

r small protein = 5.5*10-9 m

Page 24: Microfluidics: introduction sami.franssila@aalto.fi

Scaling: diffusion & detection

Cube volume 1 µL 1 nL 1 pL 1 fL

Cube edge 1 mm 100 µm 10 µm 1 µm

Diffusion time 500 s 5 s 0.05 s 0.5 ms

#molecules (1 µM) 6*1011 6*108 6*105 600

Page 25: Microfluidics: introduction sami.franssila@aalto.fi

Detection limits vs. volume

Sabeth Verpoorte, IMT Neuchatel

Page 26: Microfluidics: introduction sami.franssila@aalto.fi

Chemical microfluidics

-separation systems (CE, LC, GC,...)-detectors (microelectrodes, MS, photodiodes,...)-droplet generators (ESI)-ionization systems (corona, UV, ...)-synthesis reactors-gradient generators-crystallization chips-...

Page 27: Microfluidics: introduction sami.franssila@aalto.fi

Physical microfluidics

• cooling ICs and high power lasers• power-MEMS: combustion engines, fuel

atomizers, fuel cells• fluidic optical switching• fluid sensors (rate, viscosity, shear, ...)• MAVs = Micro Air Vehicles• microrockets• fluidic logic

Page 28: Microfluidics: introduction sami.franssila@aalto.fi

Electronic paper by electrowetting

Page 29: Microfluidics: introduction sami.franssila@aalto.fi

Microfluidic benefits

Many functions can be integrated in a single device

Small volumes lead to fast reactions

Sensitivity is enhanced because of high surface-to-volume ratios

Laminar flow easy to control