electrical and optical properties of thin films [email protected]

48
Electrical and optical properties of thin films [email protected]

Upload: octavia-howard

Post on 18-Dec-2015

233 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Electrical and optical properties of thin films sami.franssila@tkk.fi

Electrical and optical properties of thin films

[email protected]

Page 2: Electrical and optical properties of thin films sami.franssila@tkk.fi

Outline

• Metallic films– Thickness dependent resistivity– Limit of Ohm’s law– Metallization for flexible electronics

• Semiconducting films (Silicon microtechnology 2009 slides !)

• Dielectric films, electrical properties

• Dielectric films, optical properties

Page 3: Electrical and optical properties of thin films sami.franssila@tkk.fi

Resistivity

ρ = ρresidual + ρtemp

Linear TCR above Debye temperature (typically 200-400K)

Murarka: Metallization

Page 4: Electrical and optical properties of thin films sami.franssila@tkk.fi

Resistivity: impurity effects

Murarka

Page 5: Electrical and optical properties of thin films sami.franssila@tkk.fi

Resistivity: alloying effects

Murarka

Page 6: Electrical and optical properties of thin films sami.franssila@tkk.fi

Alloying (1)

Page 7: Electrical and optical properties of thin films sami.franssila@tkk.fi

Alloying (2)

Zirconium at grain boundaries acts as an extra barrier, preventing formation of high resistivity Cu3Si

Page 8: Electrical and optical properties of thin films sami.franssila@tkk.fi

Annealing defects away

Annealing defects at elevated temperature lowers resistance (no reaction with underlying film/substrate)

Murarka: Metallization

Page 9: Electrical and optical properties of thin films sami.franssila@tkk.fi

Thin film reaction: Co+Si

Murarka

Page 10: Electrical and optical properties of thin films sami.franssila@tkk.fi

Resistivity: substrate & thickness

Page 11: Electrical and optical properties of thin films sami.franssila@tkk.fi

Thickness dependent resistivity

Page 12: Electrical and optical properties of thin films sami.franssila@tkk.fi

Thickness dependent resistivity

Page 13: Electrical and optical properties of thin films sami.franssila@tkk.fi

Resistivity as a function of film thickness

γ = film thickness/mean free path

Mean free paths typically tens of nanometers at RTMurarka

Page 14: Electrical and optical properties of thin films sami.franssila@tkk.fi

Resistivity in polycrystalline films

R = reflectivity at grain boundaries (0.17 for Al, 0.24 for copper)

lo = mean free path inside grain

d = spacing between reflecting planes

Grain boundaries trap impurities, and above

solubility limit, this leads to segregation Murarka

Page 15: Electrical and optical properties of thin films sami.franssila@tkk.fi

Resistivity depends on patterns!

G.B. Alers, J. Sukamto, S. Park, G. Harm and J. Reid, Novellus Systems, San Jose -- Semiconductor International, 5/1/2006

You cannot calculate thickness from resistance

R = ρL/Wt

because thin film resistivity ρ is linewidth and thickness dependent

(use e.g. X-rays to get an independent thickness value)

Page 16: Electrical and optical properties of thin films sami.franssila@tkk.fi

Grain size affected by:

                      

                                                                    

-underlying film (chemistry and texture)

-deposition process (sputtering vs. plating; & plating A vs. plating B)

-material purity

-thermal treatments

-geometry of structures on wafer

G.B. Alers, J. Sukamto, S. Park, G. Harm and J. Reid, Novellus Systems, San Jose -- Semiconductor International, 5/1/2006

Page 17: Electrical and optical properties of thin films sami.franssila@tkk.fi

Flexible metallization: Pt on PI

Page 18: Electrical and optical properties of thin films sami.franssila@tkk.fi

Stretchable metallization: Au/PDMS

Page 19: Electrical and optical properties of thin films sami.franssila@tkk.fi

Strain-resistivity

Page 20: Electrical and optical properties of thin films sami.franssila@tkk.fi

Stretchable metallization (2)

Page 21: Electrical and optical properties of thin films sami.franssila@tkk.fi
Page 22: Electrical and optical properties of thin films sami.franssila@tkk.fi

PDMS casting

Seed metal, lithography and electroplating

Seed metal, lithography and electroplating

Resist removal, PDMS casting

Resist removal and DRIE DRIE

Yin, H-L et. al.: A novel electromagnetic elastomer membrane actuator with a semi-embedded coil, Sensors and Actuators A 139 (2007), pp. 194–202.

Brute force metallization of an elastic polymer membrane:

Sputtering+electroplatingon polymer

Anchored metallization by metallization of silicon followed by polymer casting

Page 23: Electrical and optical properties of thin films sami.franssila@tkk.fi

Electromigration

Electromigration is metal movement due to electron momentum transfer. Electrons dislodge metal atoms from the lattice, and these atoms will consequently move and accumulate at the positive end of the conductor and leave voids at the negative end.

Page 24: Electrical and optical properties of thin films sami.franssila@tkk.fi

Stability of metallization

Ti andTi/TiN barriersTo prevent reaction between Si and Cu

Page 25: Electrical and optical properties of thin films sami.franssila@tkk.fi

Specific contact resistance, rc

Ti reduces any SiO2 at the interface to TiO rc down

TiN is high resistivity material higher rc

CuTi starts to form above 300oC

TiN is a better barrier and rc is reduced the higher the anneal temperature

Page 26: Electrical and optical properties of thin films sami.franssila@tkk.fi

Semiconductor films

• LPCVD polysilicon

• In-situ vs. Ex-situ• α-Si vs. true poly• α-Si (annealing, crystallization)

Page 27: Electrical and optical properties of thin films sami.franssila@tkk.fi

LPCVD Poly-Si

Page 28: Electrical and optical properties of thin films sami.franssila@tkk.fi

LPCVD-poly (2)

Page 29: Electrical and optical properties of thin films sami.franssila@tkk.fi

Dielectric films: electrical

• Dielectric constant

• Breakdown field

• Structure vs. Stability vs. Leakage

Page 30: Electrical and optical properties of thin films sami.franssila@tkk.fi

Low-k dielectrics

Page 31: Electrical and optical properties of thin films sami.franssila@tkk.fi

SiOC

Page 32: Electrical and optical properties of thin films sami.franssila@tkk.fi

SiOC

Page 33: Electrical and optical properties of thin films sami.franssila@tkk.fi

Pores

Page 34: Electrical and optical properties of thin films sami.franssila@tkk.fi

Subtractive porosity

Page 35: Electrical and optical properties of thin films sami.franssila@tkk.fi

High-k dielectrics

Amorphous initially,

polycrystalline as thickness increases

Page 36: Electrical and optical properties of thin films sami.franssila@tkk.fi

22

SiOkhighkhigh

SiO ttEOT

Page 37: Electrical and optical properties of thin films sami.franssila@tkk.fi

Leakage current

Page 38: Electrical and optical properties of thin films sami.franssila@tkk.fi

Optical thin films

The technique must allow good control and reproducibility of the complex refractive index

k (λ) < 10-4 for transparent films

Two materials with

Page 39: Electrical and optical properties of thin films sami.franssila@tkk.fi

Optical

• Amorphous

• Isotropic

• No birefrongence

• Losses below 10-4 required

• Waveguide losses < 1 dB/cm

Page 40: Electrical and optical properties of thin films sami.franssila@tkk.fi

Refractive index

Page 41: Electrical and optical properties of thin films sami.franssila@tkk.fi

General requirements

Transmission, absorption

Waveguiding requires large nhigh-nlow

ReflectionMechanical scratch resistanceEnvironmental

stability

Page 42: Electrical and optical properties of thin films sami.franssila@tkk.fi

General requirements (2)

• Depositon rate

• Uniformity, thickness <3%, even <1%

• Uniformity, refractive index <0.001

• Stresses

• Defect density

Page 43: Electrical and optical properties of thin films sami.franssila@tkk.fi

Smart windows

• Layers correspond to (1) polyester-based

• laminated double foil, (2) ITO transparent electrodes, (3)

• nanoporous tungsten oxide, (4) polymer serving as a conductor

• of ions, (5) nanoporous nickel oxide. The application of a

• voltage (denoted as V) changes the transparency

Page 44: Electrical and optical properties of thin films sami.franssila@tkk.fi

Diamond as optical material

pc-D (polycrystalline diamond)

High transparency 200 nm ... 20 µmHigh refractive index, n = 2.35

Crystal size, ~ µm, leads to scattering at visible wavelengths>600oC deposition rules out many optical substrates

DLC-films not transparent in visible but in IR yesnf ~ 1.6-2.2k ~ up to 0.8 (heavy absorption)

Page 45: Electrical and optical properties of thin films sami.franssila@tkk.fi

SiOxNy:H

Truely oxynitride, Si-O-N bonds, not SiO and SiN domains

Amorphous and homogenous till 900oC

Open pores lead to H2O adsorption and lower nClosed pores lead to density and nf reduction

Excellent material for graded index filters: n=1.48-2.0

Reproducibility of n is ~1%

Page 46: Electrical and optical properties of thin films sami.franssila@tkk.fi

Optical filters (1)

1) Multilayer (step index) design

2) Inhomogenous graded index design

3) Quasi-inhomogenous design (λ/4 layers)

Page 47: Electrical and optical properties of thin films sami.franssila@tkk.fi

Optical filters (2)

Page 48: Electrical and optical properties of thin films sami.franssila@tkk.fi

Optical filters (3)

Nitrous oxide flow rate

Refractive index profile On glass substrate

On polycarbonate substrate