mekflud modul 2 & 5

Upload: jhonny-wanky

Post on 02-Jun-2018

228 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Mekflud Modul 2 & 5

    1/27

    Modul H-02 Hydrostatic Pressure

    Determining a hydrostatic force magnitude on the vertical p Determining the correlation between water level and mass

  • 8/10/2019 Mekflud Modul 2 & 5

    2/27

    Data ObservationFILLING TANK

    DRAININ

    Mass (m)

    (gram)

    Height of Water (y)

    (mm)

    Mass (m)

    (gram)

    50 45 50

    70 56 70

    90 68 90

    110 69 110

    130

    76 130

    150

    82 150

    170 87 170

    190 93 190

    210

    98 210

    230 103 230

    250 109 250

    270 114 270

    290 118 290

    310 122 310

    330

    127 330

    350 133 350

    370 137 370

    a = 10 cm

    b = 7.5 cm

    d = 10 cm

    L = 27.5 cm

    m.g

    b

    yd

    ar

    r

    L

  • 8/10/2019 Mekflud Modul 2 & 5

    3/27

    Partially Submerged ExperimentFILLING TANK DRAINING TANK Average

    y (x) m/y2(y) x2 y2 xyMass Height

    of water

    (cm)

    Mass

    (g)

    Height

    of water

    (cm)

    M H

    (g)

    50 4,6 50 4,6 50 4,6 4,6 2,36294896 21,16 5,583527789 10,86956522

    70 5,6 70 5,6 70 5,6 5,6 2,232142857 31,36 4,982461735 12,5

    90 6,3 90 6,3 90 6,3 6,3 2,267573696 39,69 5,141890467 14,28571429

    110 6,9 110 6,8 110 6,85 6,85 2,344291118 46,9225 5,495700847 16,05839416

    130 7,6 130 7,6 130 7,6 7,6 2,250692521 57,76 5,065616823 17,10526316

    150 8,2 150 8,2 150 8,2 8,2 2,230814991 67,24 4,976535524 18,29268293

    170

    8,7 170 8,7 170 8,7 8,7 2,246003435 75,69 5,04453143 19,54022989

    190 9,3 190 9,3 190 9,3 9,3 2,196785756 86,49 4,825867656 20,43010753

    210 9,8 210 9,8 210 9,8 9,8 2,186588921 96,04 4,781171111 21,42857143

    66,95 20,31784226 522,3525 45,89730338 150,5105286

    Table 1. Regression Linear, relationship between /

    =

    =

    =

    =9 150,5105286

    9 522,3525= 0.0259

    =522,3525 20,31784226

    9 522,3525= 2.450750717

    y= -0.02597x + 2.450

  • 8/10/2019 Mekflud Modul 2 & 5

    4/27

    . /

    y = -0.026x + 2.4508

    R = 0.5657

    y = -0.045x + 2.727

    R = 1

    0

    0.5

    1

    1.5

    2

    2.5

    3

    0 5 10 15

    m/y2(y)

    Height of water (cm)

    Graph of y and m/y2

    Partially Submerged Experiment

    m/y2

    Theory

    =

    6 =

    1

    6

    =

    2=

    = 2.727

    Relative Mistake

    =

    = 10.13%

    =

    = 42,28 %

  • 8/10/2019 Mekflud Modul 2 & 5

    5/27

    Calculating F-Hydrostatic

    Mass Height of Water (m) F-Hydrostatic

    50

    0,046 1,037898

    70

    0,056 1,538208

    90 0,063 1,9467945

    110

    0,0685 2,301548625

    130 0,076 2,833128

    150

    0,082 3,298122

    170

    0,087 3,7125945

    190 0,093 4,2423345

    210

    0,098 4,710762

    F-Hydrostatic: 0,5gby2

    0,510009,810,1y2

    Table of Hydrostatic Pressure for partially submerged

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0 1 2 3

    Heightofwater(m)

    Hydrostatic Force (

    Hydrostatic Force

    Partially Submerged

    Graph of Hydrostatic Force (Partially S

  • 8/10/2019 Mekflud Modul 2 & 5

    6/27

    Fully Submerged ExperimentFILLING TANK DRAINING TANK Average

    x2

    y2

    xy

    Mass

    Height

    of water(cm)

    Mass(g)

    Height

    of

    water(cm) M (y) H (x)(g)

    230 10,3 230 10,3 230 10,3 106,09 52900 2369

    250 10,9 250 10,8 250 10,85 117,7225 62500 2712,5

    270 11,4 270 11,3 270 11,35 128,8225 72900 3064,5

    290 11,8 290 11,8 290 11,8 139,24 84100 3422

    310 12,2 310 12,3 310 12,25 150,0625 96100 3797,5

    330 12,7 330 12,8 330 12,75 162,5625 108900 4207,5

    350 13,3 350 13,3 350 13,3 176,89 122500 4655

    370 13,7 370 13,7 370 13,7 187,69 136900 5069

    2400 96,3 1169,08 736800 29297

    =

    =

    =

    =8 29297 96,3 2

    8 1169,08 927

    =1169,08 2400

    8 1169,08= 191.44

    = .

    Table 1. Regression Linear, relationship between

  • 8/10/2019 Mekflud Modul 2 & 5

    7/27

    y = 40.655x - 189.38

    R = 0.9994

    y = 40.909x - 181.82

    R = 1

    0

    50

    100

    150

    200

    250

    300

    350

    400

    450

    500

    0 5 10 15 20

    Mass(g)

    Height of water (cm)

    Graph of h and m

    Fully Submerged Experiment

    M (y)

    Theory

    .

    =

    2

    =

    1

    = 40.909

    = 3

    6

    = 1 7.5 1

    = 181.8181

    Relative Mistake

    =

    = 5,293%

    =

    = 0,81227%

  • 8/10/2019 Mekflud Modul 2 & 5

    8/27

    Calculating F-HydrostaticF-Hydrostatic:

    1000 9,81 0,1 0,1 ( ,

    )

    Mass Height of Water (m) F. Hydrostatic

    230

    0,1035,1993

    250

    0,10855,73885

    270 0,1135 6,22935

    290

    0,1186,6708

    310

    0,12257,11225

    330

    0,12757,60275

    350

    0,1338,1423

    370 0,1378,5347

    Table of Hydrostatic Pressure for fully submerged

    0

    0.020.04

    0.06

    0.08

    0.1

    0.12

    0.14

    0.16

    4 5 6 7

    Heightofwater(m)

    Hydrostatic Force

    Hydrostatic Force

    Fully Submerged

  • 8/10/2019 Mekflud Modul 2 & 5

    9/27

    Analysis Partially submerged is measured at the water level below 100 mm and lo

    starting from 50 grams to 210 grams. For fully submerged it is measured

    mm and loadings starting from 210 grams all the way to 370 grams. The vand b are determined for both sections and then compared to the theorTo find a and b, we used least square

    For partially submerged experiment, ( = 0.025973326 and = 2.45We then used the equations =

    and =

    +

    to f

    theoretical values.

    Relative mistake for a = 42.28% and b = 10.13%. The coefficient of correlobtained is R2= 0.565, which means that the x and y are not closel

    For fully submerged experiment, ( = 41.24129196 and = 191.44Relative mistake for a = 5.29% and b = 8.12%. The coefficient of correlatiois R2= 0.999, which means that the x and y are very closely related.

    We also obtain the value of hydrostatic force at each of the water level bformula = 0,5 for partially submerged and = for fully submerged.

  • 8/10/2019 Mekflud Modul 2 & 5

    10/27

    Conclusion

    The magnitude of hydrostatic force is perpendicular to the surface of tapparatus. As more volume of the object is submerged, the more hydforce will act on it.

    As the weight of the load increases, the height of the water also increbecause more water is needed to balance the scales arm.

    The values of a and b obtained from experiment and theory show a linrelationship between the relationship of mass and water level.

    The weights that are added to the apparatus are able to be balanced water to the tank because there is hydrostatic force acting on the vertof the apparatus.

    The sum of moments and hydrostatic force acting on the surfaces thatvertical is zero because the directions point straight to the hinge. The because it is not perpendicular

  • 8/10/2019 Mekflud Modul 2 & 5

    11/27

    Modul H-05 Flow Rate Measuremen

    Demonstrating various type of basic flow rate measurementprinciples

  • 8/10/2019 Mekflud Modul 2 & 5

    12/27

    Data ObservationNo Manometer Reading (cm) Volume

    (mL)

    Time

    (s)

    Orifice Pipe Venturimeter Pitot Pipe

    3 4 5 6 7 8

    5 19,7 19,4 19,4 18,8 18 18,5 215 3,05

    7,5 13,2 12,3 12 10,8 9,5 10,5 350 3,30

    10 12,5 10,5 9,8 7,7 4,5 6,3 430 3,00

    12,5 16,7 13,5 13,8 9,5 6 8,9 570 3,28

    15

    19,3 14,7 15,2 8,7 4 8,5 750 3,08

    17,5 22,3 15,9 16,2 7,5 2,5 8,5 800 3,00

    20 26,8 18,5 19,5 8 2 9,8 940 3,12

    22,5

    34,5 24 26 11,5 4 14 1050 3,03

    d1 d2 A1

    (m) (m) (m2)

    Orifice

    Pipe

    0,029 0,02 0,00066

    Venturi

    meter

    0,029 0,017 0,00066

    Pitot - 0,019 -

  • 8/10/2019 Mekflud Modul 2 & 5

    13/27

    Determining Flow Rate Coefficien(Cd)

    Orifice Pipe = .

    h3

    h4

    |h3-

    h4|

    Qorifice(X) Volum

    e

    Time

    (m)

    (m) (m3/s) (m3) (s)

    0,197

    0,194 0,003 0,000076179

    8

    0,0002

    2

    3,05 0

    0,132 0,123 0,009 0,000131947 0,0003

    5

    3,3 0

    0,125 0,105 0,02 0,000196695 0,0004

    3

    3 0

    0,167

    0,135 0,032 0,000248802 0,0005

    7

    3,28 0

    0,193

    0,147 0,046 0,000298303 0,0007

    5

    3,08 0

    0,223 0,159 0,064 0,000351859 0,0008 3 0

    0,268 0,185 0,083 0,000400699 0,0009

    4

    3,12 0

    0,345 0,24 0,105 0,000450685 0,0010

    5

    3,03 0

  • 8/10/2019 Mekflud Modul 2 & 5

    14/27

    y = 0.8664x

    0

    0.00005

    0.0001

    0.00015

    0.0002

    0.00025

    0.0003

    0.00035

    0.0004

    0 0.0001 0.0002 0.0003 0.0004 0.0005

    Qreal(m3/s)

    QOrifice (m3/s)

    Graph of QOrifice and Qreal

    Graph of Linear Regression of Or

    y = m . x Qreal= Cd . QORegression line obtained, y = 0,86

    Value of Flow rate coefficient (Cd

    Manual method

    =

    b = Cd = 0,8466784960

    So, value of Cdorifice= 0

  • 8/10/2019 Mekflud Modul 2 & 5

    15/27

    Venturi meter = .

    h5

    h6

    |h5-h6|

    Qventuri(X) Volume Time Qreal (Y)

    (m) (m) (m3/s) (m3) (s) (V/t)

    (m3/s)

    0,194 0,188 0,006 0,0000778379 0,000215 3,05 0,0000704

    0,12

    0,108 0,012 0,00011008 0,00035 3,3 0,0001060

    0,098 0,077 0,021 0,00014562 0,00043 3 0,0001433

    0,138 0,095 0,043 0,00020838 0,00057 3,28 0,000173

    0,152

    0,087 0,065 0,0002562 0,00075 3,08 0,0002435

    0,162 0,075 0,087 0,0002964 0,0008 3 0,0002666

    0,195 0,08 0,115 0,00034077 0,00094 3,12 0,0003012

    0,26 0,115 0,145 0,00038265 0,00105 3,03 0,0003465

  • 8/10/2019 Mekflud Modul 2 & 5

    16/27

    y = 0.9617x

    0

    0.00005

    0.0001

    0.00015

    0.0002

    0.00025

    0.0003

    0.00035

    0.0004

    0 0.0001 0.0002 0.0003 0.0004

    Qreal(m3/s)

    QVenturi (m3/s)

    Graph of QVenturi and Qreal

    Graph of Linear Regression o

    y = m . x Qreal= Cd

    Regression line obtained, y =

    Value of Flow rate coefficient

    Manual method

    =

    b = Cd = 0.9383930

    So, value of Cdventur

  • 8/10/2019 Mekflud Modul 2 & 5

    17/27

    Pitot Pipe

    = .

    h7 h8 |h7-h8| Qpitot(X) Volume Time Qreal (

    (m) (m) (m3/s) (m3) (s) (V/t

    (m3/

    0,18 0,185 0,005 0,0000887589 0,000215 3,05 0,000070

    0,095

    0,105

    0,01

    0,00012552

    0,00035

    3,3

    0,00010

    0,045 0,063 0,018 0,00016841 0,00043 3 0,00014

    0,06 0,089 0,029 0,00021376 0,00057 3,28 0,00017

    0,04 0,085 0,045 0,00026628 0,00075 3,08 0,00024

    0,025 0,085 0,06 0,00030747 0,0008 3 0,00026

    0,02 0,098 0,078 0,00035057 0,00094 3,12 0,00030

    0,04 0,14 0,1 0,00039694 0,00105 3,03 0,00034

  • 8/10/2019 Mekflud Modul 2 & 5

    18/27

    y = 0.8654x

    0

    0.000050.0001

    0.00015

    0.0002

    0.00025

    0.0003

    0.00035

    0.0004

    0 0.0001 0.0002 0.0003 0.0004 0.0005

    Qreal(m3/s)

    QPitot (m3/s)

    Graph of QPitot and Qreal Graph of Linear Regression of Pity = m . x Qreal= Cd . QORegression line obtained, y = 0.86

    Value of Flow rate coefficient (Cd

    Manual method

    =

    b= Cd = 0.89246526639

    So, value of Cdpitot= 0.8

  • 8/10/2019 Mekflud Modul 2 & 5

    19/27

    Determining Head Loss Coefficie

    Orifice Pipe =

    , =

    2

    =

    2

    Variable Area

    h3

    h4

    h=|h3-h4|

    Qorifice (Y) V (Q/A2) (m/s) h =V2/2g

    (m) (m) (Y) (X)

    (m3/s)

    5 0,197 0,194 0,003

    0.00006707242

    0,2243818

    0.002321

    7,5

    0,132 0,123 0,009

    0.00011617283

    0,3376019

    0.006964

    10 0,125 0,105 0,02

    0.00017318024

    0,4562420

    0.015476

    12,5 0,167 0,135 0,032

    0.00021905760

    0,5531576

    0.024761

    15 0,193 0,147 0,046

    0.00026264083

    0,7751019

    0.035594

    17,5

    0,223 0,159 0,064

    0.00030979423

    0,8488254

    0.049522

    20 0,268 0,185 0,083

    0.00035279496

    0,9590081

    0.064224

    22,5 0,345 0,24 0,105

    0.00039680577

    1,1030526

    0.081247

  • 8/10/2019 Mekflud Modul 2 & 5

    20/27

    y = 1.2924x

    0.000

    0.020

    0.040

    0.060

    0.080

    0.100

    0.120

    0.00000 0.02000 0.04000 0.06000 0.08000 0.10000

    hprkatikum(

    m)

    h' theory (m)

    Graph of h' and h (Orifice)

    Graph of head loss coefficient

    y = m . x h = k.h |Regression line obtainedy = 1,

    Value of head loss coefficient

    Manual method

    =

    m = k = 1.2

    So, value o

  • 8/10/2019 Mekflud Modul 2 & 5

    21/27

    Venturi meter =

    , =

    2=

    2

    Variable Area

    h5

    h6

    h=|h5-h6|

    Qventuri (Y) V (Q/A2) (m/s) h =V2/2g

    (m) (m) (Y) (X)

    (m3/s)

    5 0,194 0,188 0,006

    0.000073164500,310563926

    0.00529

    7,5 0,12 0,108 0,012

    0.000103470220,467270244

    0.0105810

    0,098 0,077 0,0210.00013687824

    0,6314785440.01852

    12,5

    0,138 0,095 0,0430.00019586597

    0,7656181160.03792

    15 0,152 0,087 0,0650.00024081384

    1,0728081770.05732

    17,5 0,162 0,075 0,087

    0.000278602101,174848004

    0.07672

    20 0,195 0,08 0,1150.00032031235

    1,3273504270.10141

    22,5 0,26 0,115 0,145

    0.00035967376

    1,526720416

    0.12787

  • 8/10/2019 Mekflud Modul 2 & 5

    22/27

    y = 1.1339x

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0.14

    0.16

    0.00000 0.05000 0.10000 0.15000

    hprkatikum(

    m)

    h' theory (m)

    Graph of h' and h (Venturi meter)Graph of head loss coefficient of Ve

    y = m . x h = k.h |h4-h3

    Regression line obtained y = 1,13398

    Value of head loss coefficient (kventu

    Manual method

    =

    m = k = 1.133899256

    So, value of kventuri= 1.133

  • 8/10/2019 Mekflud Modul 2 & 5

    23/27

    Pitot Pipe =

    , =

    2=

    2

    Variable Area h7 h8 h=|h7-h8| Qpitot (Y) V (Q/A2) (m/s) h =V2/2g

    (m) (m) (Y) (X)

    (m3/s)

    5 0,18 0,185 0,005

    0.00008883955

    0,248622015

    0.005000

    7,5 0,095 0,105 0,01

    0.00012563810

    0,37407329

    0.010000

    10 0,045 0,063 0,018

    0.00016856120

    0,505530279

    0.018000

    12,5 0,06 0,089 0,029

    0.00021395397

    0,612915741

    0.029000

    15 0,04 0,085 0,045

    0.00026651865

    0,858836807

    0.045000

    17,5 0,025 0,085 0,06

    0.00030774923

    0,940524812

    0.060000

    20

    0,02 0,098 0,078

    0.00035088811

    1,062610658

    0.078000

    22,5

    0,04 0,14 0,1

    0.00039730255

    1,222216344

    0.100000

  • 8/10/2019 Mekflud Modul 2 & 5

    24/27

    y = x

    0.000

    0.020

    0.040

    0.060

    0.080

    0.100

    0.120

    0.000 0.020 0.040 0.060 0.080 0.100 0.120

    hpraktikum(

    m)

    h'theory (m)

    Graph of h' and h (Pitot Pipe)

    Graph of head loss coeffi

    y = m . x h = k.h

    = m

    Regression line obtained

    Value of head loss coeffic

    Manual method

    =

    m = k = 1

    So, value of kpit

  • 8/10/2019 Mekflud Modul 2 & 5

    25/27

    Table Results

    Flow Rate Coefficient

    Graph Method Manual Method

    Orifice pipe 0,8664 0.846678496044

    Venturimeter

    0,9617 0.938393092725

    Pitot pipe

    0,8654 0.892465266392

    Head Loss Coeff

    Graph Method

    Orifice pipe 1,2924

    Venturimeter 1,1339

    Pitot pipe 1

  • 8/10/2019 Mekflud Modul 2 & 5

    26/27

    Analysis flow rate coefficient formula for orifice pipe and venturimeter :

    = . 2 1 2

    1

    determine the regression line (y = mx + a). Q is the value of y,

    2 1 2

    1

    is the value of x, the flow rate coefficient (Cdvalue of m.

    for the pitot pipe, the equation is: = . 2 1 2

    because the diopening and end of pitot pipe is the same, so there is no difference in the areof x is 2 1 2

    , the y is obtained from the values of Q. The manua

    determined by using least square To determine the head loss coefficient (k), =

    =

    and h = k.h =

    V which is the volume of the outflow that is measured for 3 seconds. The valuobtained by Q/A. The gravitational acceleration is 9,8 m/s2. The graphical metto find the linear regression (y = mx +a). The value of the x is h, the value of and the value of m is k. For the manual method, the value of k is determined bleast square

  • 8/10/2019 Mekflud Modul 2 & 5

    27/27

    Conslusion

    The value of flow rate coefficient (Cd) and head loss coefficient (k) can be de

    experimentally and calculated by using the graphical and manual method. From Bernoullis equation, one can obtained the formulas to find the value o

    coefficient: = . 2 1 2

    1

    for orifice and ventu

    = . 2 1 2

    for pitot pipe.

    Flow rate can be determined by using the formula: Q =V (mL)

    t (s)

    The coefficient of head loss for orifice pipe is 1,2924. For venturimeter the v1,1339. And the value for pitot pipe is 1, all according to the graphs

    The coefficient of flow rate for orifice pipe is 0,8664. For venturimeter the va0,9617. And the value for pitot pipe is 0,8654.

    Orifice pipe has the least value flow rate coefficient than venturimeter and palso has the largest value of head lost compared to venturimeter and pitot p