mathematical modelling of tsunami waves - accueil - tel · reference : j.c. borrero, b. uslu, v....

60
Mathematical modelling of tsunami waves Denys Dutykh 1 1 Ecole Normale Sup ´ erieure de Cachan, Centre de Math ´ ematiques et de Leurs Applications PhD Thesis Defense Advisor: Prof. Fr´ ed´ eric Dias CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 1 / 52

Upload: others

Post on 22-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Mathematical modelling of tsunami waves

Denys Dutykh1

1Ecole Normale Superieure de Cachan,Centre de Mathematiques et de Leurs Applications

PhD Thesis DefenseAdvisor: Prof. Frederic Dias

CENTRE NATIONAL DE LA RECHERCHESCIENTIFIQUE

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 1 / 52

Page 2: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Contents

1 Tsunami generationLinear theoryDislocations dynamics

2 Visco-potential free surface flowsPhysical considerationsSystematic studyLong wave approximation

3 Water wave impacts and two phase flowsPhysical contextMathematical modelFinite volumes scheme

4 Perspectives

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 2 / 52

Page 3: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Contents

1 Tsunami generationLinear theoryDislocations dynamics

2 Visco-potential free surface flowsPhysical considerationsSystematic studyLong wave approximation

3 Water wave impacts and two phase flowsPhysical contextMathematical modelFinite volumes scheme

4 Perspectives

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 3 / 52

Page 4: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Several characteristic valuesfor a typical tsunami application in Indian Ocean

physical parameter typical value

wave amplitude, a 0.5 mwater depth, h0 4 kmwavelength, ℓ 100 km

We can construct three dimensionless combinations :

Nonlinearity : ε := ah0

≈ 10−4

Dispersion : µ2 :=( h0

)2 ≈ 10−4

Stokes-Ursell number : S := εµ2 ≈ 1

• Propagation stage is nondispersive ⇒ NSWE codes• Flow is almost linear

• ⇒ Equations can be linearised• ⇒ analytical solutions for simple geometries

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 4 / 52

Page 5: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Several characteristic valuesfor a typical tsunami application in Indian Ocean

physical parameter typical value

wave amplitude, a 0.5 mwater depth, h0 4 kmwavelength, ℓ 100 km

We can construct three dimensionless combinations :

Nonlinearity : ε := ah0

≈ 10−4

Dispersion : µ2 :=( h0

)2 ≈ 10−4

Stokes-Ursell number : S := εµ2 ≈ 1

• Propagation stage is nondispersive ⇒ NSWE codes• Flow is almost linear

• ⇒ Equations can be linearised• ⇒ analytical solutions for simple geometries

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 4 / 52

Page 6: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Comparison between linear and nonlinear modelsFirst minutes of tsunami propagation

Main objective :• To check the importance of nonlinear effects

• Frequency dispersion

• Complete water wave problem• BIEM accelerated by FMM

(C. Fochesato)

• Nonlinear shallow-waterequations

• VFFC scheme

• Linearized water wave problem• Analytical solution for separable

geometries

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 5 / 52

Page 7: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Comparison results - IWeakly Dispersive and weakly nonlinear waves

ε := a0h0

∼= 5 × 10−4, µ2 :=( h0

)2 ∼= 10−4, S := εµ2 = 5.

FIG.: − · − · − Linearized solution, — Fully nonlinear, −−− NSWE

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 6 / 52

Page 8: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Comparison results - IIDispersive and weakly nonlinear waves

ε := a0h0

∼= 0.0045, µ2 :=( h0

)2 ∼= 0.02, S := εµ2 = 0.225.

0 20 40 60 80 100 120 140 160

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

t, s

z, m

0 20 40 60 80 100 120 140 160−0.05

0

0.05

0.1

0.15

t, s

z, m

0 20 40 60 80 100 120 140 160

−0.05

0

0.05

t, s

z, m

0 20 40 60 80 100 120 140 160−0.04

−0.02

0

0.02

0.04

t, s

z, m

0 20 40 60 80 100 120 140 160−0.05

0

0.05

t, s

z, m

0 20 40 60 80 100 120 140 160−0.1

−0.05

0

0.05

0.1

t, s

z, m

Tide gauge 1 Tide gauge 2

Tide gauge 3 Tide gauge 4

Tide gauge 5

Tide gauge 6

FIG.: − · − · − Linearized solution, — Fully nonlinear, −−− NSWE

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 7 / 52

Page 9: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Traditional approachApproaches to generation

Put coseismic displacements directly on the free surface and letit propagate :

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 8 / 52

Page 10: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Traditional approachApproaches to generation

Put coseismic displacements directly on the free surface and letit propagate :

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 8 / 52

Page 11: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Analytical solution on flat bottomCauchy-Poisson system

• General solution by Fourier-Laplace transform :

η(~x, t) =1

(2π)2

∫∫

R2

eik·~x

cosh(|k|h)

12πi

µ+i∞∫

µ−i∞

s2ζ(k, s)s2 + ω2 estds dk

ω2 = g|k| tanh(|k|h)

• ζ(~x, t) : is the unknown dynamic sea-bed displacement• There is no available analytical solution for fault dynamics

Issue :Use static solution and make assumptions about the dynamics

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 9 / 52

Page 12: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Dynamic sea-bed deformationMain ingredients

Variables separation : ζ(~x, t) = D(~x)T(t)

• Celebrated Okada solution provides D(~x)• Assumptions about time evolution T(t) (dynamic

scenarios) :

Instantaneous Ti(t) = H(t)Exponential Te(t) = (1 − e−αt)H(t)

Trigonometric Tc(t) = H(t − t0) + 12 [1 − cos(πt

t0)]H(t0 − t)

Linear Tl(t) =(H(t − t0) + t

t0H(t0 − t)

)H(t)

• Application to linear waves :

η(~x, t) =1

(2π)2

∫∫

R2

D(k)eik·~x

cosh(|k|h)

12πi

µ+i∞∫

µ−i∞

s2T(s)s2 + ω2 estds dk

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 10 / 52

Page 13: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Application to tsunami generation problemsHow large is error in translating sea-bed deformation onto free surface ?

Passive : deformation translated on free surface

η(~x, t) =1

(2π)2

∫∫

R2

D(k)eik·~x cosωt dk

Active : instantaneous scenario

ηi(~x, t) =1

(2π)2

∫∫

R2

D(k)eik·~x

cosh(|k|h)cosωt dk

Drawbacks :

• initial velocity is neglected

• dynamic character of the rupture

• wave amplitude is always slightly exceeded

• water has effect of low-pass filter

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 11 / 52

Page 14: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Towards more realistic dynamic source modelModelling of fault dynamics

• Earth crust is a linear viscoelastic material (Kelvin-Voigtmodel)

• Isotropic homogeneous or heterogeneous medium• Fault modeled as a Volterra dislocation

• Displacement field is increased by the amount of theBurgers vector along any loop enclosing the dislocation

C

d~u = ~b

• Simplified situation with respect to fracture mechanics :location and displacement jump are known

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 12 / 52

Page 15: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Haskell’s model (1969)Rupture propagation and rise time

~b(~x, t) =

0 t − ζ/V < 0(~b0/T)(t − ζ/V) 0 ≤ t − ζ/V ≤ T

~b0 t − ζ/V > T

• T is the rise time, V therupture velocity

• ζ is a coordinate along thefault

• Front propagates unilaterallyalong the y−axis

x

y

z

O

W

−d−L2

L2

δ

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 13 / 52

Page 16: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Coupled computationSeismology/hydrodynamics coupling

Viscoelastodynamics• Space derivatives are discretized by FEM

• Implicit time stepping

Hydrodynamics• Governing equations are NSWE :

ηt + ∇ ·((h + η)~v

)= −∂th,

~vt +12∇|~v|2 + g∇η = 0.

• Solved by VFFC scheme

Coupling with FEM computation is done through thebathymetry h = h(x, y, t)

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 14 / 52

Page 17: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Comparison of two approachesRemarks about simulation

Active generation :• We simulate only first 10s of the Earthquake and couple it

with hydrodynamic solver

• For t > 10s we assume that bottom remains in its latestconfiguration

Passive generation :• Translate static dislocation solution onto free surface as

initial condition

Multiscale nature :Two different scales : elastic waves and water gravity waves

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 15 / 52

Page 18: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Results of numerical computationComparison between passive and active generation

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 16 / 52

Page 19: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Discrepancy with tide gauges recordsChilean 1960 event

Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis(2006). Modeling tsunamis for California ports and harbors.Proceedings of the thirtieth International Conference onCoastal Engineering, ASCE

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 17 / 52

Page 20: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Contents

1 Tsunami generationLinear theoryDislocations dynamics

2 Visco-potential free surface flowsPhysical considerationsSystematic studyLong wave approximation

3 Water wave impacts and two phase flowsPhysical contextMathematical modelFinite volumes scheme

4 Perspectives

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 18 / 52

Page 21: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Importance of viscous effectsExperimental evidences

1 Boussinesq (1895), Lamb (1932) formula

dαdt

= −2νk2α(t)

2 J. Bona, W. Pritchard & L. Scott, An Evaluation of a ModelEquation for Water Waves. Phil. Trans. R. Soc. Lond. A,1981, 302, 457-510

In 〈〈 Resume 〉〉 section :[...] it was found that the inclusion of a dissipative termwas much more important than the inclusion of thenonlinear term, although the inclusion of the nonlinearterm was undoubtedly beneficial in describing theobservations [...]

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 19 / 52

Page 22: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Mechanisms of dissipation

1 Wave breaking• The main effect of wave breaking is the dissipation of

energy. This can be modelled by adding dissipative terms incoastal regions where the wave becomes steeper

2 Turbulence• For tsunami wave Re ≥ 106, so the flow is turbulent• ⇒ energy extraction from waves in upper ocean

3 Boundary layers• Regions where the viscosity is the most important

1 free surface boundary layer2 bottom boundary layer

4 Molecular viscosity• The least important factor for long waves

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 20 / 52

Page 23: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Energy balance in a fluid flow

• We assume that flow is governed by incompressibleNavier-Stokes equations :

∇ ·~u = 0∂~u∂t

+~u · ∇~u = ~g − 1ρ∇p +

1ρ∇ · τ

• We multiply the second equation by ~u and integrate oncontrol volume Ω :

12

Ω

∂t

(ρ|~u|2

)dΩ +

12

∂Ω

ρ|~u|2~u ·~n dσ =

=

∂Ω

(−pI + τ

)~n ·~u dσ +

Ω

ρ~g ·~u dΩ − 12µ

Ω

τ : τ dΩ

︸ ︷︷ ︸T

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 21 / 52

Page 24: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Energy balance in a fluid flow

• We assume that flow is governed by incompressibleNavier-Stokes equations :

∇ ·~u = 0∂~u∂t

+~u · ∇~u = ~g − 1ρ∇p +

1ρ∇ · τ

• We multiply the second equation by ~u and integrate oncontrol volume Ω :

12

Ω

∂t

(ρ|~u|2

)dΩ +

12

∂Ω

ρ|~u|2~u ·~n dσ =

=

∂Ω

(−pI + τ

)~n ·~u dσ +

Ω

ρ~g ·~u dΩ − 12µ

Ω

τ : τ dΩ

︸ ︷︷ ︸T

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 21 / 52

Page 25: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Energy balance in a fluid flow

• We assume that flow is governed by incompressibleNavier-Stokes equations :

∇ ·~u = 0∂~u∂t

+~u · ∇~u = ~g − 1ρ∇p +

1ρ∇ · τ

• We multiply the second equation by ~u and integrate oncontrol volume Ω :

12

Ω

∂t

(ρ|~u|2

)dΩ +

12

∂Ω

ρ|~u|2~u ·~n dσ =

=

∂Ω

(−pI + τ

)~n ·~u dσ +

Ω

ρ~g ·~u dΩ − 12µ

Ω

τ : τ dΩ

︸ ︷︷ ︸T

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 21 / 52

Page 26: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Energy balance in a fluid flow

• We assume that flow is governed by incompressibleNavier-Stokes equations :

∇ ·~u = 0∂~u∂t

+~u · ∇~u = ~g − 1ρ∇p +

1ρ∇ · τ

• We multiply the second equation by ~u and integrate oncontrol volume Ω :

12

Ω

∂t

(ρ|~u|2

)dΩ +

12

∂Ω

ρ|~u|2~u ·~n dσ =

=

∂Ω

(−pI + τ

)~n ·~u dσ +

Ω

ρ~g ·~u dΩ − 12µ

Ω

τ : τ dΩ

︸ ︷︷ ︸T

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 21 / 52

Page 27: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Energy balance in a fluid flow

• We assume that flow is governed by incompressibleNavier-Stokes equations :

∇ ·~u = 0∂~u∂t

+~u · ∇~u = ~g − 1ρ∇p +

1ρ∇ · τ

• We multiply the second equation by ~u and integrate oncontrol volume Ω :

12

Ω

∂t

(ρ|~u|2

)dΩ +

12

∂Ω

ρ|~u|2~u ·~n dσ =

=

∂Ω

(−pI + τ

)~n ·~u dσ +

Ω

ρ~g ·~u dΩ − 12µ

Ω

τ : τ dΩ

︸ ︷︷ ︸T

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 21 / 52

Page 28: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Energy balance in a fluid flow

• We assume that flow is governed by incompressibleNavier-Stokes equations :

∇ ·~u = 0∂~u∂t

+~u · ∇~u = ~g − 1ρ∇p +

1ρ∇ · τ

• We multiply the second equation by ~u and integrate oncontrol volume Ω :

12

Ω

∂t

(ρ|~u|2

)dΩ +

12

∂Ω

ρ|~u|2~u ·~n dσ =

=

∂Ω

(−pI + τ

)~n ·~u dσ +

Ω

ρ~g ·~u dΩ − 12µ

Ω

τ : τ dΩ

︸ ︷︷ ︸T

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 21 / 52

Page 29: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Anatomy of dissipationEstimation of viscous dissipation rate

O ~x

z

Sf

Sb

Rf

Rb

Ri

FIG.: Flow regions

• Interior region :TRi ∼ 1

µ

(µ a

t0ℓ

)2 · ℓ3 ∼ µ

• Free surface boundary layer :TRf ∼ 1

µ

(µ a

t0ℓ

)2 · δℓ2 ∼ µ32

• Bottom boundary layer :TRb ∼ 1

µ

(µ a

t0δ

)2 · δℓ2 ∼ µ12

The previous scalings suggest us the following diagram :

O(µ

12)

︸ ︷︷ ︸Rb

→ O(µ)︸ ︷︷ ︸Ri

⋃Sf

→ O(µ

32)

︸ ︷︷ ︸Rf

→ O(µ2)︸ ︷︷ ︸Sf

→ ...

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 22 / 52

Page 30: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Visco-potential flowsHow to add dissipation in potential flows ?

1 Consider Navier-Stokes equations2 Write Helmholtz-Leray decomposition ~u = ∇φ+ ∇× ~ψ

3 Express vortical components ~ψ of velocity field in terms ofpotential φ and η using (pseudo) differential (fractional)operators

Kinematic condition :

ηt = φz + ψ2x − ψ1y ⇒ ηt = φz + 2ν∇2η

Dynamic condition :

φt + gη + 2νφzz + O(ν32 ) = 0

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 23 / 52

Page 31: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Boundary layer correctionBottom boundary condition

Ideas of derivation :1 Consider semi-infinite domain : z > −h2 Use pure Leray decomposition : ~v = ∇φ+~u, ∇ ·~u = 0

3 Introduce boundary layer coordinate : ζ = (z+h)δ

, whereδ =

√ν

4 Asymptotic expansion : φ = φ0 + δφ1 + . . .

Bottom condition :

∂φ

∂z

∣∣∣∣z=−h

= −√ν

π

t∫

0

φzz|z=−h√t − τ

dτ = −√νI[φzz]

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 24 / 52

Page 32: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Nonlocal visco-potential formulationResulting governing equations (cf. Liu & Orfila, JFM, 2004)

• Continuity equation

∆φ = 0, (x, y, z) ∈ Ω,

• Kinematic free surface condition

∂η

∂t+ ∇φ · ∇η =

∂φ

∂z+ 2ν∇2η, z = η(x, y, t),

• Dynamic free surface condition

∂φ

∂t+

12|∇φ|2 + gη = 2ν∇2φ, z = η(x, y, t).

• Kinematic bottom condition

∂φ

∂z+ ∇φ · ∇h = −

√ν

π

t∫

0

φzz√t − τ

dτ, z = −h(x, y),

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 25 / 52

Page 33: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Long wave approximation

1 Nonlocal Boussinesq equations :• Mass conservation :

ηt +∇·((h + η)~u)+Aθh3∇2(∇·~u) = 2ν∆η+

√ν

π

t∫

0

∇ ·~u√t − τ

• Horizontal momentum :

~ut +12∇|~u|2 + g∇η − Bθh2∇(∇ ·~ut) = 2ν∆~u

2 Nonlocal KdV equation :

ηt +

√gh

((h +

32η)ηx +

16

h3ηxxx −√ν

π

t∫

0

ηx√t − τ

dτ)

= 2νηxx

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 26 / 52

Page 34: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Solitary wave attenuationEffect of nonlocal term on the amplitude

Numerical solution to nonlocal Boussinesq equations

• Solitary wave initial condition

• Fourier-type spectral method• Comparison between :

1 Classical Boussinesq equations2 Local dissipative terms3 Local + nonlocal dissipation 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1.93

1.94

1.95

1.96

1.97

1.98

1.99

2

2.01

t

max

η(x

,t)

Maximum wave amplitude as function of time

Nonviscous model

Nonlocal equations

Local terms

FIG.: Soliton amplitude

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 27 / 52

Page 35: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Solitary wave attenuationEffect of nonlocal term on the amplitude

Numerical solution to nonlocal Boussinesq equations

• Solitary wave initial condition

• Fourier-type spectral method• Comparison between :

1 Classical Boussinesq equations2 Local dissipative terms3 Local + nonlocal dissipation 0 0.2 0.4 0.6 0.8 1 1.2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t = 2.000

x

η

No dissipationLocalNonlocal

FIG.: Zoom on soliton crest

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 27 / 52

Page 36: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Linear progressive waves attenuationGeneralization of Boussinesq/Lamb formula

• Consider nonlocal dissipative Airy equation

ηt +

√gh

(hηx +

16

h3ηxxx −√ν

π

t∫

0

ηx√t − τ

dτ)

= 2νηxx

• Special form of solutions

η(x, t) = A(t)eikξ, ξ = x −√

ght, A(t) ∈ C

Integro-differential equation :

d|A|2dt

+ 4νk2|A(t)|2 + ik

√gνπh

t∫

0

A(t)A(τ) −A(t)A(τ)√t − τ

dτ = 0

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 28 / 52

Page 37: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Contents

1 Tsunami generationLinear theoryDislocations dynamics

2 Visco-potential free surface flowsPhysical considerationsSystematic studyLong wave approximation

3 Water wave impacts and two phase flowsPhysical contextMathematical modelFinite volumes scheme

4 Perspectives

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 29 / 52

Page 38: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Physical phenomenaTwo applications which motivated this study

• Wave sloshing in LiquefiedNatural Gas (LNG) carriers

• Wave impacts on coastalstructures

FIG.: GWK, Hannover

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 30 / 52

Page 39: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Wave impacts on a wallRef : Bullock, Obhrai, Peregrine, Bredmose, 2007

Impacts classification :

• low-aeration : the wateradjacent to the wallcontains typically 5% of air

• high-aeration : higher levelof entrained air with clearevidence of entrapment

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 31 / 52

Page 40: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Main results of the experimental studyRef : Bullock, Obhrai, Peregrine, Bredmose, 2007

• Low-aeration impact• temporary and spatially localised pressure impulse

• High-aeration impact• less localised pressure spike with a longer rise time, fall

time and duration• peak values of the pressure are lower

Conclusion :〈〈 Even when the pressures during a high-aeration impact arelower, the fact that the impact is less spatially localised andlasts longer may well lead to a higher total impulse 〉〉

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 32 / 52

Page 41: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Influence of aerationIdeas for mathematical modelling

For low-aeration water waveimpact (αg ≈ 0.05) :

• Sound speed drops downto ≈ 54 m

s• Compressible effects are

very important• Mach number is not tiny

anymore

• CFL condition is not sosevere

• Explicit in time scheme

0 0.2 0.4 0.6 0.8 10

500

1000

1500Sound speed in the mixture

α

c sFIG.: Sound speed in the air/watermixture

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 33 / 52

Page 42: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Two-phase homogenous model - IGoverning equations

Mass conservation for each phase :

∂t(α±ρ±) + ∇ · (α±ρ±~u) = 0,

Momentum equation :

∂t(ρ~u) + ∇ ·(ρ~u ⊗~u + pI

)= ρ~g,

Energy conservation :

∂t(ρE

)+ ∇ ·

(ρH~u

)= ρ~g ·~u,

α+ + α− = 1, ρ := α+ρ+ + α−ρ−, H := E + pρ, E := e + 1

2 |~u|2.

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 34 / 52

Page 43: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Two-phase homogenous model - IIEquation of state

• Ideal gas law for light fluid :

p− = (γ − 1)ρ−e−,

e− = c−v T−,

• Tate’s law for heavy fluid :

p+ + π0 = (N − 1)ρ+e+,

e+ = c+v T+ +

π0

Nρ+,

where γ, c±v , π0, N are constantsAdditional assumption : Two phases are in thermodynamicequilibrium :

p := p+ = p−, T := T+ = T−

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 35 / 52

Page 44: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Motivation for the choice of this modelTrade-off between model complexity and accuracy of the results

Main reasons• This model is hyperbolic

• We have only four equations in 1D

• Equations do not contain nonconservative products

• Eigenvalues and eigenvectors can be computedanalytically

⇒ computation is not expensive

We believe that this model gives qualitatively correct results forthe flow and right impact pressure

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 36 / 52

Page 45: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

System of balance lawsGeneral ideas

Rewrite governing equations :

∂w∂t

+ ∇ · F(w) = S(~x, t,w),

Integrate them over control volume :

ddt

Kw dΩ +

∂KF(w) ·~nKL dσ =

KS(w) dΩ

Introduce cell averages :

wK(t) :=1

vol(K)

Kw(~x, t) dΩ

How to express (F ·~n)|∂K in terms ofwKK∈Ω ?

K

∂K

L*

nKL

O

FIG.: Control volume

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 37 / 52

Page 46: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Finite volumes schemeVolumes Finis a Flux Caracteristique (VFFC)

Use numerical flux of VFFC scheme to discretize advectionoperator :

Φ(wK ,wL;~nKL) =Fn(wK) + Fn(wL)

2− U(µ;~nKL)

Fn(wL) −Fn(wK)

2

where µ is a mean state

µ :=vol(K)wK + vol(L)wL

vol(K) + vol(L)

and U(µ;~nKL) is the sign matrix

U := sign(An) ≡ R sign(Λ)R−1, An :=∂(F ·~n)(w)

∂w

Remark : Since, the advection operator is relatively simple, Ucan be computed analytically.

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 38 / 52

Page 47: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Second order extensionMonotone Upstream-centered Schemes for Conservation Laws (MUSCL)

We find our solution in class of affine by cell functions :

wK(~x, t) := wK + (∇w)K · (~x −~x0)

Conservation requirement : 1vol(K)

∫K wK(~x, t) d~x ≡ wK

• Gradient reconstruction procedure• Least squares method• Green-Gauss procedure

• Slope limiter• Barth - Jespersen (1989)

• Time stepping methods• classical Runge-Kutta schemes• SSP-RK (3,4) with CFL = 2

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 39 / 52

Page 48: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Water column test case - IGeometry and description of the test case

α+ = 0.9α− = 0.1

α+ = 0.1α− = 0.9

0 0.3 0.65 0.7

0.05

1

1

0.9

~g

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 40 / 52

Page 49: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Water column test case - IIGravity acceleration g = 100m/s2,in heavy fluid α+ = 0.9, in light fluid α+ = 0.1

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 41 / 52

Page 50: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Maximal pressure on the right wallas a function of time t 7−→ max(x,y)∈1×[0,1] p(x, y, t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.70.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

t, time

p max

/p0

Maximal pressure on the right wall

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 42 / 52

Page 51: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Water column test case - IIILighter gas case

α+ = 0.9α− = 0.1

α+ = 0.05α− = 0.95

0 0.3 0.65 0.7

0.05

1

1

0.9

~g

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 43 / 52

Page 52: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Maximal pressure on the right wallas a function of time t 7−→ max(x,y)∈1×[0,1] p(x, y, t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.70.8

1

1.2

1.4

1.6

1.8

2

2.2

t, time

p max

/p0

Maximal pressure on the right wall

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 44 / 52

Page 53: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Water drop test case - IGeometry and description of the test case

α+ = 0.1α− = 0.9

α+ = 0.9α− = 0.1

0 0.5

0.7

1

1

~gR = 0.15

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 45 / 52

Page 54: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Water drop test case - IIGravity acceleration g = 100m/s2

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 46 / 52

Page 55: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Application to long wave propagationViscous shallow water equations

• Governing equations :

∂tη + ∇ · ((h + η)~u) = −∂th + ν∇2η,

∂t~u + ∇|~u|2 + g∇η = ν∇2~u.

• System of balance laws :

∂tw + ∇ · F(w) = ∇ · (D∇w) + S(w)

Finite volumes scheme described above can be easily appliedto these equations !

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 47 / 52

Page 56: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Water drop in a basin - INonviscous case : νt = 0

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 48 / 52

Page 57: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Water drop in a basin - IIViscous case : νt = 0.015

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 49 / 52

Page 58: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Contents

1 Tsunami generationLinear theoryDislocations dynamics

2 Visco-potential free surface flowsPhysical considerationsSystematic studyLong wave approximation

3 Water wave impacts and two phase flowsPhysical contextMathematical modelFinite volumes scheme

4 Perspectives

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 50 / 52

Page 59: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Directions for future research

• Tsunami generation• more realistic source models (rupture propagation, friction

on the fault)• understand the role of Rayleigh waves in tsunami formation

• Visco-potential flows• rigorous justification of new formulation• relation to Navier-Stokes equations

• Two-phase compressible flows• Quantitative comparison with 6-equations model• Extension to pure phases• Test cases with air/water interface

• Implicit solver because of CFL condition• Ma ≪ 1

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 51 / 52

Page 60: Mathematical modelling of tsunami waves - Accueil - TEL · Reference : J.C. Borrero, B. Uslu, V. Titov, C.E. Synolakis (2006). Modeling tsunamis for California ports and harbors

Thank you for your attention !

http://www.cmla.ens-cachan.fr/ ˜ dutykh

Denys Dutykh (ENS Cachan) Modelling of tsunami waves 3 December 2007 52 / 52