massive attack · 2011. 11. 3. · enantioselective synthesis of tertiary thiols by intramolecular...

18

Upload: others

Post on 24-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • The Beatles - 1964

    Massive Attack -

    Oasis - 1992

  • Biography 2001-present: University of Bristol 1997-2000: Professor, Sheffield 1988-1997: Various Reader Positions 1986-1988: Post-doc with Gilbert Stork 1983-1986: PhD at University of Cambridge 1983: Undergrad at Cambridge University

  • Enantioselective Construction of Quaternary Stereogenic Centers fromTertiary Boronic Esters: Methodology and Applications–Ravindra P. Sonawane, Vshal Jheengut, Constantinos Rabalakos, Robin Larouche-Gauthier,Helen K. Scott, and Varinder K. Aggarwal*

    Angew. Chem. Int. Ed. 2011, 50, Early View

    Ar R1

    BpinR2

    >99:1 e.r.

    M-Alk-LG

    Ar R1

    Alk-OHR2

    >99:1 e.r.

    Sounds cool, but how do you make chiral tertiary boronic esters?

  • Tertiary Boronic Esters Ar R1

    BpinR2

    Ar R1

    OCbH

    >99:1 e.r.

    Ar R1

    BpinR2

    >99:1 e.r.

    s-BuLi

    R2Bpin

    From secondary chiral carbamates of course!

    Noyori Asymmetric Transfer Hydrogenation

    Ar R1

    O

    Carbamate Formation

    H

    OCbArMe

    sBuLi Li

    OCbArMe

    RB(OR')2

    retention

    B(OR')2

    OCbArMe

    R

    Li

    OArMe

    O

    NiPr2

    R

    B(OR')2ArMe

    Δ

    H2O2NaOH R

    OHArMe

    Aggarwal et al Nature, 2008, 456, 778-782

    Ph Me

    Et OH

    91% (99:1)

    Ph Me

    OH

    95% (1:99)

    OHEt

    69% (99:1)

    Ph Me

    OHO

    94% (98:2)

  • Ph

    Bpin

    MeEt

    a) LiCH2Br THF, –78 oC

    b) H2O2, NaOH Ph MeEt

    OH

    83%

    Ph

    B

    MeEtOO

    Br

    HH

    Application of Matteson Homologation Conditions

    D. S. Matteson Tetrahedron, 1998, 54, 10555-10607

    MeEt

    OH

    83%, >99:1 e.r.

    MeEt

    OH

    Cl

    88%, >99:1 e.r.

    MeEt

    OH

    MeO

    62%, 99:1 e.r.

    Me

    OH

    82%, >99:1 e.r.

    Me

    OH

    37%, >99:1 e.r.

    MePh

    OH

    MeO

    41%, 98:2 e.r.

  • Extention to Vinylation of Boronic Esters

    Ph

    Bpin

    MeEt

    MgBr

    (n equiv)

    Ph

    B

    MeEtOO

    Ph

    B

    MeEt

    Ph

    B

    MeEt

    I

    I2

    PhMe Et

    BI

    PhMe Et

    NaOMe

    Me Et MeEt

    Me Et Me

    66%, >99:1 e.r.

    Cl

    79%, >99:1 e.r.

    MeO

    62%, >99:1 e.r. 79%, >99:1 e.r.

    Ph

    Bpin

    MeEtLi

    OEta)

    b) I2, NaOMePh Me

    Et

    OMe

    66%, >99:1 e.r.a) LiCHCl2

    b) H2O2, NaOH Ph MeEt

    OH

    68%, >99:1 e.r.

  • Applications

    MeO

    Me

    OCb

    a) s-BuLi

    b) Bpin

    c) MgBr2, MeOH

    Ar

    Me Bpin

    MgBra)b) I2; NaOMe Ar

    MeMeMgI, neat

    180 oCMe

    HO

    98:2 e.r.69%

    92%, 97:3 e.r.(+)-(S)-sporochnol

    91%

    Ph Me

    OCb Bpin

    a) s-BuLi

    b) MgBr2 Ph Allyl

    pinB Me

    >99:1 e.r. 92% >99:1 e.r.

    a) LCHCl2b) H2O2, NaOH Ph Allyl

    MeOH

    a) PhMgBr

    b) PCC Ph Allyl

    MeOPh

    70% from boronic ester>99:1 e.r.

    a) O3, Me2S

    Ph

    MeOPh

    O

    NN

    OMePh

    MePh

    ON N Ar

    NaBH(OAc)3

    63% over two steps

    serotonin antagonist

  • Biography 2001-present: University of Manchester 1992-1994: Post-doc with Prof Marc Julia 1989-1992: PhD at University of Cambridge 1968: Born: Kampala, Uganda

  • Enantioselective synthesis of tertiary thiols by intramolecular arylation ofLithiated thiocarbamates–Paul MacLellan and Jonathan Clayden*

    Chem. Comm. 2011, 47, 3395-3397

  • R1

    SH

    R2R3 General Conundrum

    R1

    O

    R2

    NucleophileCoordinating Chiral Ligand

    R1

    OH

    R2Nu

    O

    Me Me

    O O

    OMe

    O

    ZnEt2ZnMe2 EtMgBr

    NH HNO2S SO2

    OH HO

    N

    Me Ot-BuHN

    O OTrtMe

    NHnBu

    OMeO

    OH

    Enantiofacial selectivity in nucleophilic attack on a

    prochiral ketone

    R1

    S

    R2

    NucleophileCoordinating Chiral Ligand

    R1

    SH

    R2Nu

    "A synthesis of thioacetone in Freiburg in 1889 was abandoned after widespread public protest and the evacuation of whole sectors of the city" – J. Sulfur Chem. 2009, 30, 167

    R1

    S

    R2 R1

    SNu

    R2H

    Tet. Lett. 1976, 17, 4295-4296

    NuMgX

  • H

    OCbArMe

    sBuLi Li

    OArMe

    O

    NiPr2

    General Strategy

    If:

    Then: R1 S

    R2

    N

    OMe

    Ar

    aryl migration

    R1

    S

    R2

    N

    O

    Me

    H

    Ar

    R1

    SH

    R2

    Arbase

  • In Practice

    S N

    OMe

    R2

    R1 LDA, DMPU–78 oC S N

    H

    OMeR

    1

    R2

    NaOEtSH

    R1

    R2

    42-96%

    works with electron rich as well as

    deficient aromatics

    S N

    OMe

    Me

    Me

    98:2 e.r.

    LiTMP, THF–78 oC

    S NH

    OMe

    Me

    Me

    83%

    96:4 e.r.

    S NMe

    R2R1

    OLi

    NLi

    MeMe

    Me

    Me

  • Substrates and Scope

    SH

    MeOMe

    97%

    SH

    Me

    Cl

    97%

    SH

    Me

    51%

    SH

    Me

    89%

    Ar1

    R

    OH

    1. ClC=NMe2+Cl–2. MeCOSH3. LiAlH4

    4.

    N

    O

    NAr2

    MeNMe

    I–

    Ar1 S N

    OMe

    Ar2

    Me 1. LiTMP2.NaOEt

    Ar1 SH

    MeAr2

  • A general synthetic approach to the amnesic shellfish toxins: totalsynthesis of (–)-isodomoic acid B, (–)-isodomoic acid E and(–)-isodomoic acid F–Gilles Lemiere, Simon Sedehizadeh, Julie Toueg, Nadia Fleary-Roberts and Jonathan Clayden*

    Chem. Comm. 2011, Advanced Article

    NHt-BuO2C

    H

    H

    CO2t-Bu

    NH

    Me

    HO2CH

    H

    CO2H

    R

    R = E Isomers Z Isomers

    HO2C

    Me

    HO2C

    Me

    HO2C

    Me

    isodomoicacid B

    isodomoicacid A

    isodomoicacid E

    domoicacid

    isodomoicacid F

    isodomoicacid D

    H kainic acid

  • (SiMe3)2CuCNLi2,N

    O

    O

    Ph

    H

    H Ph

    Me3Si

    Single Diastereomer

    86%

    TMSCl NO

    O

    Boc

    H

    H

    Me3Siacid;Boc2O

    NO

    O

    Boc

    H

    H CO2t-Bu

    Me3Si1. RuCl3 (10 mol%) NaIO4

    2. t-BuOH, DCC

    Sharpless et al J. Org. Chem. 1981, 46, 3936

    NO

    Boc

    H

    H CO2t-Bu

    Me3Si

    Reduction

    Oxidation

    N

    O

    H

    CO2t-BuTMS

    BocO

    OO

    Ar

    O

    mCPBA N

    O

    O

    BocH

    H CO2t-Bu

    Me3Si

    O83%

    64%

    MeO

    N

    O

    Ph

    PhNLi

    Ph

    Me

    NO

    O

    Ph

    H

    H Ph67%

    99:1 e.r.(after single

    recryst.)

    Clayden et al. Chem. Comm. 2002, 38-39 Org. Lett. 2000, 2, 4229-4231

  • Towards the Core

    N

    O

    BocH

    H CO2t-Bu

    Me3Si

    Ot-BuO2C

    N BocH

    H CO2t-Bu

    1. TBAF

    2. Boc2O, t-BuOH

    70%

    O3

    t-BuO2C

    N BocH

    H CO2t-Bu

    O

    98%

    "the use of NaOMe...allowed us to avoid the epimerisation of the sensitive aldehyde which resulted when potassium carbonate in methanolwas used a base."

    t-BuO2C

    N BocH

    H CO2t-Bu

    N2

    PO

    MeOMeO

    O

    Me

    NaOMe89%

    t-BuO2C

    N BocH

    H CO2t-Bu

    MeBu3Sn

    1. Bu3SnCu(Bu)CNLi22. MeI

    HO2C

    NH

    H

    H CO2H

    Me

    HO2CNH

    H

    H CO2H

    Me

    HO2C

    NH

    H

    H CO2H

    Me

    HO2C

    Me

    HO2C

    Me

    HO2C Me

    1. PdCl2(MeCN)2 allylbromide2. TFA

    Pd; TFA

    Pd; TFA

    71%(–)-isodomoic acid B

    51%(–)-isodomoic acid E

    49%(–)-isodomoic acid F

    HO2C

    NH

    H

    H CO2H

    MeH

    TFA

    (–)-kainic acid