lecture9 transistors

19
EE141 1 EE141 EECS141  1  Lecture #9  Guest Lecturer:  Andrei V ladimirescu EE141 EECS141  2  Lecture #9  ! Midterm on Friday Febr 19 6:30-8pm in 2060 Valley LSB " Open book " Do not forget your important class material nor calculator " Covers from start of semester to optimization of complex logic – wires not included! ! Review session tomorrow Th 2/18 at 6:30pm " Room to be announced on web-site ! No lab this week ! Hw 4 due next week Friday

Upload: sriramnaidugorle

Post on 02-Jun-2018

230 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture9 Transistors

8/10/2019 Lecture9 Transistors

http://slidepdf.com/reader/full/lecture9-transistors 1/19

EE141

EE141 EECS141  1 Lecture #9 

Guest Lecturer:

 Andrei Vladimirescu

EE141 EECS141  2 Lecture #9 

Midterm on Friday Febr 19 6:30-8pm in 2060Valley LSB"  Open book

"  Do not forget your important class material norcalculator

"  Covers from start of semester to optimization ofcomplex logic – wires not included!

! Review session tomorrow Th 2/18 at 6:30pm"  Room to be announced on web-site

No lab this week

Hw 4 due next week Friday

Page 2: Lecture9 Transistors

8/10/2019 Lecture9 Transistors

http://slidepdf.com/reader/full/lecture9-transistors 2/19

EE141

EE141 EECS141  3 Lecture #9 

Last lecture

" Wiring + first glimpse at transitors

(threshold)

Today’s lecture

" Transistor models

! Reading (Ch 3)

EE141 EECS141  4 Lecture #9 

What do digital IC designers

need to know?

Page 3: Lecture9 Transistors

8/10/2019 Lecture9 Transistors

http://slidepdf.com/reader/full/lecture9-transistors 3/19

EE141

EE141 EECS141  5 Lecture #9 

"  With positive gate bias, electrons pulled toward the gate

" With large enough bias, enough electrons will be pulled to "invert"the surface (p!n type)

"  Voltage at which surface inverts: “magic” threshold voltage VT 

EE141 EECS141  6 Lecture #9 

! Threshold

Fermi potential

2!F  is approximately 0.6V for p-type substrates

! is the body factor

V T 0 is approximately 0.45V for our process

Depletion charge

Page 4: Lecture9 Transistors

8/10/2019 Lecture9 Transistors

http://slidepdf.com/reader/full/lecture9-transistors 4/19

EE141

EE141 EECS141  7 Lecture #9 

EE141 EECS141  8 Lecture #9 

Pinch-off 

0< V GS 

 - V T  < V 

DS

Page 5: Lecture9 Transistors

8/10/2019 Lecture9 Transistors

http://slidepdf.com/reader/full/lecture9-transistors 5/19

EE141

EE141 EECS141  9 Lecture #9 

For (V GS  –  VT) < V  DS , the effective drain voltageand current saturate:

Of course, real drain current isn’t totally

independent of VDS

"  For example, approx. for channel-length modulation:

EE141 EECS141  10 Lecture #9 

Cutoff:

V GS  -VT< 0  

Linear (Resistive):

V GS -V T  > V DS 

Saturation:

0 < V GS 

-V T  < V 

DS

Page 6: Lecture9 Transistors

8/10/2019 Lecture9 Transistors

http://slidepdf.com/reader/full/lecture9-transistors 6/19

EE141

EE141 EECS141  11 Lecture #9 

Quadratic

Relationship

0  0.5  1  1.5  2  2.5 0 

6 x 10 

-4 

VGS

= 2.5 V

VGS

= 2.0 V

VGS

= 1.5 V

VGS= 1.0 V

Resistive  Saturation 

VDS = VGS - VT 

VDS (V) 

   I   D   (   A   )

EE141 EECS141  12 Lecture #9 

Linear

Relationship

-4 

0  0.5  1  1.5  2  2.5 0 

0.5 

1.5 

2.5 x 10 

VGS= 2.5 V

VGS= 2.0 V

VGS= 1.5 V

VGS= 1.0 V

Early

Saturation

VDS (V) 

   I   D   (   A   )

Page 7: Lecture9 Transistors

8/10/2019 Lecture9 Transistors

http://slidepdf.com/reader/full/lecture9-transistors 7/19

EE141

EE141 EECS141  13 Lecture #9 

"  (V/µm) 

     # 

    n   (  m

 

   /  s   )

 # sat  = 10 5 

Constant mobility

(slope = µ) 

Constant velocity 

" c  

Velocity saturates due to carrier scatteringeffects

EE141 EECS141  14 Lecture #9 

I  D  

Long-channel device 

Short-channel device 

V  DS  V  DSAT   V  GS   - V  T  

V  GS = V  DD  

Page 8: Lecture9 Transistors

8/10/2019 Lecture9 Transistors

http://slidepdf.com/reader/full/lecture9-transistors 8/19

EE141

EE141 EECS141  15 Lecture #9 

0  0.5  1  1.5  2  2.5 0 

6 x 10 

-4 

V GS

 

(V) 

   I    D   (   A   )

0  0.5  1  1.5  2  2.5 0 

0.5 

1.5 

2.5 x 10 

-4 

V  GS

 (V) 

   I    D   (   A   )quadratic

quadratic

linear

Long Channel 

(L=2.5µm) 

Short Channel 

(L=0.25µm) 

EE141 EECS141  16 Lecture #9 

 Approximate velocity:

Continuity requires that:

Integrating to find the current again:

Page 9: Lecture9 Transistors

8/10/2019 Lecture9 Transistors

http://slidepdf.com/reader/full/lecture9-transistors 9/19

EE141

EE141 EECS141  17 Lecture #9 

-4 

0  0.5  1  1.5  2  2.5 0 

0.5 

1.5 

2.5 x 10 

VGS= 2.5 V 

VGS= 2.0 V 

VGS= 1.5 V 

VGS= 1.0 V

0  0.5  1  1.5  2  2.5 0 

6 x 10 

-4 

VGS= 2.5 V 

VGS= 2.0 V 

VGS= 1.5 V VGS= 1.0 V

Resistive  Saturation 

VDS = VGS - VT 

VDS (V)  VDS (V) 

   I   D   (   A   )

   I   D   (   A   )

Resistive

Velocity

Saturation

Long Channel 

(L=2.5µm) 

Short Channel 

(L=0.25µm) W/L=1.5

V DSAT V GS-VT

EE141 EECS141  18 Lecture #9 

!  Exact behavior of transistor in velocity sat. somewhat

challenging if want simple/easy to use models

!  So, many different models developed over the years

"  v-sat, alpha, unified, VT*, etc.

!  Simple model for manual analysis desirable"   Assume velocity perfectly linear until  #sat

 Assume VDSAT constant

Page 10: Lecture9 Transistors

8/10/2019 Lecture9 Transistors

http://slidepdf.com/reader/full/lecture9-transistors 10/19

EE141

EE141 EECS141  19 Lecture #9 19

"  (V/µm) 

     # 

    n   (  m

 

   /  s   )

 # sat  = 10 5 

Constant velocity 

 Assume velocity perfectly linear until hit  #sat 

" c  =  #sat/µ 

EE141 EECS141  20 Lecture #9 

V GS -V T  (V) 

!  Assume V  DSAT  = "c L when (V GS – V T ) > "c L

"cL 

     V     D     S     A     T

   (   V   )

"cL 

 Actual V DSAT  

Page 11: Lecture9 Transistors

8/10/2019 Lecture9 Transistors

http://slidepdf.com/reader/full/lecture9-transistors 11/19

EE141

EE141 EECS141  21 Lecture #9 

 I  D

for V GT 

 ! 0: I D = 0

with V DS,eff  = min (V GT , V DS, V D,VSAT ) 

for V GT 

 " 0: 

define V GT  = V GS – V T

EE141 EECS141  22 Lecture #9 

-4 

0  0.5  1  1.5  2  2.5 0 

0.5 

1.5 

2.5 x 10 

Velocity

Saturation

VDS (V) 

   I   D   (   A   )

V  DS  = V GT

V GT  = V  D,VSAT

Saturation

Linear

V  DS  = V  D,VSAT

Define V GT  = V GS  – V T , V  D,VSAT  = ! c·L

Page 12: Lecture9 Transistors

8/10/2019 Lecture9 Transistors

http://slidepdf.com/reader/full/lecture9-transistors 12/19

EE141

EE141 EECS141  23 Lecture #9 

0  0.5  1  1.5  2  2.5 0 

0.5 

1.5 

2.5 x 10 

-4 

V DS (V) 

   I   D   (   A   )

V  DS=V  D,VSAT

V  DS=V GT

EE141 EECS141  24 Lecture #9 

If device always operates in velocity sat.:

“VT*” model:

Good for first cut, simple analysis

Page 13: Lecture9 Transistors

8/10/2019 Lecture9 Transistors

http://slidepdf.com/reader/full/lecture9-transistors 13/19

EE141

EE141 EECS141  25 Lecture #9 25

Textbook: page 103

V

EE141 EECS141  26 Lecture #9 

-2.5  -2  -1.5  -1  -0.5  0 -1 

-0.8 

-0.6 

-0.4 

-0.2 

0 x 10 

-4 

V DS (V) 

   I   D   (   A   )

• 

 All variables negative

• 

I prefer to work withabsolute values – makes

life easier. 

VGS = -1.0V 

VGS = -1.5V 

VGS = -2.0V 

VGS = -2.5V 

Page 14: Lecture9 Transistors

8/10/2019 Lecture9 Transistors

http://slidepdf.com/reader/full/lecture9-transistors 14/19

EE141

EE141 EECS141  27 Lecture #9 

EE141 EECS141  28 Lecture #9 

= C GCS  + C GSO = C GCD + C GDO

= C GCB  = C diff

G  

 S    D 

 B 

= C diff

Page 15: Lecture9 Transistors

8/10/2019 Lecture9 Transistors

http://slidepdf.com/reader/full/lecture9-transistors 15/19

EE141

EE141 EECS141  29 Lecture #9 

! Capacitance (per area) from gate across

the oxide is W·L·Cox, where Cox=%ox/tox

EE141 EECS141  30 Lecture #9 

Distribution between terminals is complex

" Capacitance is really distributed

 – 

Useful models lump it to the terminals

" Several operating regions:

 – Way off, off, transistor linear, transistor saturated

Page 16: Lecture9 Transistors

8/10/2019 Lecture9 Transistors

http://slidepdf.com/reader/full/lecture9-transistors 16/19

EE141

EE141 EECS141  31 Lecture #9 

" When the transistor is off, no carriers in channelto form the other side of the capacitor. – Substrate acts as the other capacitor terminal

 – 

Capacitance becomes series combination of gateoxide and depletion capacitance

EE141 EECS141  32 Lecture #9 

" When |VGS| < |VT|, total CGCB much smaller than

W·L·Cox

 – 

Usually just approximate with CGCB = 0 in this region.

(If VGS is “very” negative (for NMOS), depletion

region shrinks and CGCB goes back to ~W·L·Cox)

Page 17: Lecture9 Transistors

8/10/2019 Lecture9 Transistors

http://slidepdf.com/reader/full/lecture9-transistors 17/19

EE141

EE141 EECS141  33 Lecture #9 

" Channel is formed and acts as the other terminal

 – CGCB drops to zero (shielded by channel)

" Model by splitting oxide cap equally between

source and drain

 – Changing either voltage changes the channel charge

EE141 EECS141  34 Lecture #9 34

Changing source voltage doesn’t change VGC 

uniformly – E.g. VGC at pinch off point still VTH

" Bottom line: CGCS ! 2/3·W·L·Cox

Page 18: Lecture9 Transistors

8/10/2019 Lecture9 Transistors

http://slidepdf.com/reader/full/lecture9-transistors 18/19

EE141

EE141 EECS141  35 Lecture #9 

" Drain voltage no longer affects channel charge

 – Set by source and VDS_sat

If change in charge is 0, CGCD = 0

EE141 EECS141  36 Lecture #9 

Cgate vs. VGS

(with VDS = 0) 

Cgate vs. operating region 

Page 19: Lecture9 Transistors

8/10/2019 Lecture9 Transistors

http://slidepdf.com/reader/full/lecture9-transistors 19/19

EE141

EE141 EECS141  37 Lecture #9 37

Off/Lin/Sat # CGSO = CGDO = CO"W 

EE141 EECS141  38 Lecture #9 

" COV

not just from metallurgic overlap – get fringing

fields too

" Typical value: ~0.2fF·W(in µm)/edge

n +  n + 

Cross section 

n +  n + 

Cross section 

Fringing fields