lecture 05 hydration - empa

40
1 Lecture 05 Hydration a) Reaction of cement clinker b) Hydration modelling with GEMS Barbara Lothenbach Frank Winnefeld Bin Ma Zhenguo Shi Software development/fitting tools/kinetic: Dmitrii Kulik Dan Miron

Upload: others

Post on 23-Nov-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 05 Hydration - Empa

1

Lecture 05 Hydration

a) Reaction of cement clinker b) Hydration modelling with GEMS

Barbara LothenbachFrank WinnefeldBin MaZhenguo Shi Software development/fitting

tools/kinetic:Dmitrii KulikDan Miron

Page 2: Lecture 05 Hydration - Empa

2

clinker

Hydration

clinker

EttringitePortlanditeC-S-H

Page 3: Lecture 05 Hydration - Empa

3

All parameters (Ki, Ni) from Parrot and Killoh (1984)

Modeling: Dissolution

3

1

1

111

)1ln(1

3

3/1

3/22

1

1

1

Ntt

t

tt

Nttt

KR

KR

NKR

Empirical Approach: Parrot and Killoh (1984)

g/10

0 g

0

10

20

30

40

50

60

70

0 0.1 1 10 100 1000time (days)

//

alite: C3S

ferrite:C4AF

belite: C2S

aluminate:C3A

Cement specific input: surface area, w/c, composition

Page 4: Lecture 05 Hydration - Empa

4

alite belite alum. ferriteK1 1.5 0.5 1.0 0.37N1 0.7 1.0 0.85 0.7K2 0.05 0.006 0.04 0.015K3 1.1 0.2 1.0 0.4N3 3.3 5.0 3.2 3.7 H 1.33 1.33 1.33 1.33

Modeling: Dissolution

3

1

1

111

)1ln(1

3

3/1

3/22

1

1

1

Ntt

t

tt

Nttt

KR

KR

NKR

Empirical Approach: Parrot and Killoh (1984)

t = t-1 + tRt-1(1+3.333(Hw/c - αt))4

degree of hydration

for αt > Hw/c.

nucleation

diffusion

shell

Cement specific input: surface area, w/c

Page 5: Lecture 05 Hydration - Empa

5

Modeling: Dissolution

0 0.01 0.1 1 10 100 10000

10

20

30

40

50

60

70W

eigh

t %

Hydration time (days)

Alite

Parrot&Killoh

PC PC4XRDXRD

„nucleation“

„shell“

XRD data fromGwenn Le Saout

00.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rate

(1/d

ay)

Page 6: Lecture 05 Hydration - Empa

6

alite belite alum. ferriteK1 1.5 0.5 1.0 0.37N1 0.7 1.0 0.85 0.7K2 0.05 0.02 0.04 0.015K3 1.1 0.7 1.0 0.4N3 3.3 5.0 3.2 3.7 H 2.0 1.55 1.8 1.65

Empirical Approach: Parrot and Killoh adapted

Modeling: Dissolution

3

1

1

111

)1ln(1

3

3/1

3/22

1

1

1

Ntt

t

tt

Nttt

KR

KR

NKR

t = t-1 + tRt-1(1+3.333(Hw/c - αt))4

degree of hydration

for αt > Hw/c.

nucleation

diffusion

shell

Cement specific input: surface area, w/c

Lothenbach et al. (2008) 38, 848-860

Page 7: Lecture 05 Hydration - Empa

7

Modeling: Dissolution

0 0.01 0.1 1 10 100 10000

10

20

30

40

50

60

70W

eigh

t %

Hydration time (days)

Alite P&K adapted

PC PC4XRDXRD

Lothenbach ea. 2008, CCR 38

Page 8: Lecture 05 Hydration - Empa

8

Modeling: Dissolution

0 0.01 0.1 1 10 100 10000

2

4

6

8

10

12

Aluminate

Ferrite

Wei

ght

%

Belite

Hydration time (days)

Modelling

PC PC4XRDXRD

Lothenbach ea. 2008, CCR 38

Page 9: Lecture 05 Hydration - Empa

9

K2SO4Na2SO4

Hemihydrate CaO

Thermodyn. calculations

C3S C2S C3A C4AF

Multi-component input

I Slowly soluble clinkers

II Soluble solids

GypsumAnhydrite

Calcite

K2ONa2OMgO

III Water

H2O

Ettringite

Portlandite

C-S-H

AFm

Hydrotalcites, ...

Ca2+

CaOH+ Speciation in solutionCaSO4

0

Thermodynamic modeling GEMS-PSI

Page 10: Lecture 05 Hydration - Empa

10

0.01 0.1 1 10 100 10000

5

10

15

20

25

Wei

ght

%

Hydration time (days)

Portlandite

Output data, Portlandite

XRD, TGAThermodynamic modelling

PC PC4

Good agreement between XRD, TGA and modelling

Lothenbach ea. 2008, CCR 38

Page 11: Lecture 05 Hydration - Empa

11

Output data, AFt, AFm phases

0.01 0.1 1 10 100 100002468

101214

Wei

ght

%

Hydration time (days)

Ettringite

Monocarbonate

XRD, TGAThermodynamic modelling

Monocarbonate

- Overestimation of monocarbonate (<= hemicarbonate, Al in C-S-H)- Correct amount of ettringite in the PC sample

Lothenbach ea. 2008, CCR 38

Page 12: Lecture 05 Hydration - Empa

12

0

10

20

30

40

50

60

70

0.1 1 10 100 100time (days)

g/10

0 g

5 °C20 °C50 °C

//

//

0

alite

Modeling: Temperature

RTE

T

a

eAR

Arrhenius equation

Ea: literature

Lothenbach et al. (2008) CCR 38, 1-18

alite dissolution

Page 13: Lecture 05 Hydration - Empa

13

1000

Ca- and Si-hydrates: 5 °C

0

10

20

30

40

50

60

0. 1 1 10 100 10000time [days]

[g/100 g solid]

pore solution C-S-H (ss)

0

alite

belite Ca(OH)2

Page 14: Lecture 05 Hydration - Empa

14

1000

Ca- and Si-hydrates: 50 °C

0

10

20

30

40

50

60

0. 1 1 10 100 10000time [days]

[g/100 g solid]

pore solution C-S-H (ss)

0

alite

belite Ca(OH)2

Page 15: Lecture 05 Hydration - Empa

15

C3A

1000

Al-, SO4-, CO3: 5 °C

0

2

4

6

8

10

12

0. 1 1 10 100 10000time [days]

[g/100 g solid]

brucite

monocarbonate3CaO.Al2O3

.CaCO3.11H2O

0

hydrotalcite

CaCO3

ettringite 3CaO.Al2O3

.3CaSO4.32H2O

gypsum

Page 16: Lecture 05 Hydration - Empa

16

C3A

1000

Al-, SO4-, CO3: 50 °C

0

2

4

6

8

10

12

0. 1 1 10 100 10000time [days]

[g/100 g solid]

brucite monocarbonate

0

hydrotalcite

CaCO3

ettringite

gypsum

monosulphate 3CaO.Al2O3

. CaSO4.12H2O

Page 17: Lecture 05 Hydration - Empa

17

Conclusion Empirical approach of P&K (adapted)

Describes observed dissolution (> 1 day) in OPC well Simple to use Influencing parameters: surface area, w/c, temperature Purely empirical, other models can be used Other influences: pH, composition of pore solution, … not included

Other models can be used Any (empirical) equation which

describes the reaction of solidas a function of time

De Weerdt ea (2011) CCR 41:Reaction degree of fly ash

Page 18: Lecture 05 Hydration - Empa

18

Modeling: Dissolution

)11(4

3,

)11(4

3/1

3/22

,

)11(41

1

1,

03

0

01

45.055.01

45.055.0

111

38545.055.0)1ln(1

TTRE

NtTt

TTRE

t

tTt

TTRE

NttTt

a

a

a

erhKR

erhKR

eareasurfacerhNKR

Cement specific input: surface area [m2/kg], w/c, composition

Influence of temperatureArrhenius equationEa values: Lothenbach et al., 2008

Relative surface area factorused for „nucleation and growth“ only(relative to Dalziel & Gutteridge, 1986)

Influence of the relative humidityas proposed in Parrot and Killoh, 1984

Hydration in closed systems: rh =1

Page 19: Lecture 05 Hydration - Empa

19

Modeling: Dissolution

)11(4

3,

)11(4

3/1

3/22

,

)11(41

1

1,

03

0

01

45.055.01

45.055.0

111

38545.055.0)1ln(1

TTRE

NtTt

TTRE

t

tTt

TTRE

NttTt

a

a

a

erhKR

erhKR

eareasurfacerhNKR

t = t-1 + tRt-1(1+3.333(Hw/c - αt))4

degree of hydration of each clinker phase

later, for αt-1(total) > Hw/c; Hw/c = critical degree of hydration

Cement specific input: surface area [m2/kg], w/c, composition

t = t-1 + tRt-1initial

Hydration is reduced with time

at low w/c

Page 20: Lecture 05 Hydration - Empa

20

Parrot and Killoh model as Excel file

Page 21: Lecture 05 Hydration - Empa

21

Page 22: Lecture 05 Hydration - Empa

22

Hydration modelling EXCEL + GEMS1. Open project Parrot

All input in g (100 g cement)

Page 23: Lecture 05 Hydration - Empa

23

Cement specific input

Reaction from ExcelTime(days)

ReactedC3S

Page 24: Lecture 05 Hydration - Empa

24

Architecture of GEMS file

Input always in g/100g The amount of clinker reacted copied from

EXCEL file Inputs needed in GEMS:

surface area [m2/kg] w/c C3S, C2S, C3A, C4AF (pure phases) Calcite, free lime, gypsum, anhydrite, hemihydrate,

periclase, Na2SO4 and K2SO4 (-> soluble alkalis) Na2O, K2O, MgO and SO3 in clinker (as g/g clinker)

optional

Page 25: Lecture 05 Hydration - Empa

25

Architecture of GEMS file

Process: controls below input Ea (activation energy) Conversion of different input parameter

Correction factors for minor elements in clinker Amount of input water

Calculations of the dissolution of minor elements

Do not change!

Page 26: Lecture 05 Hydration - Empa

26

Architecture of GEMS file

Process: sampling: definition of output X-axis: log (time) Mass in g/100 g of hydrated cement

All data corrected from g/100 g unhydrated cement to g/100 g hydrated cement (corresponds to conditions of XRD, TGA measurements); can easily be changed, but you will have toconvert XRD/TGA data

Amount of clinkers (with impurities) Amount of hydrates (! Check single system file for the

presence of additional solids and include them in the list) Amount of pore solution (including dissolved species)

Check single system file for additional solids

Page 27: Lecture 05 Hydration - Empa

27

= C3S not reacted at time tmodC[24][5] correction for presence ofminor elements in clinker; = 0.99 here

phM[{Portlandite}] -> mass of portlandite in g per 100 g unhyrated cement! Spelling has to correspond exactly tosingle component!

/(1+modC[1][5]-phM[{aq_gen}]/100)=1+0.4-mass H2O unreacted/100= mass hydrated cement (after removal of pore water)

For comparison with XRD/TGA

Page 28: Lecture 05 Hydration - Empa

28

X-axisTime(10x days)

y-axise.g. unreactedclinker

(in g/100 g of unhydratedcementas defined in page sampling)

y-axis labels

Unit of x-axis

Page 29: Lecture 05 Hydration - Empa

29

Page 30: Lecture 05 Hydration - Empa

30

Architecture of GEMS file

Process: Config: single system files

Names of the „kid files“produced:The results of each calculationcan be checked

Name of the „parent file“in „Single-System Equilibria“

Page 31: Lecture 05 Hydration - Empa

31

Architecture of GEMS file

Process: Results: output X-axis: log (time)

Y-axis Mass in g/100 g of hydrated cement

Experimental data, same format as calculated data Number of data points can be adapted by „Record:Remake“

Data used to prepare graph, can be exported toExcel or other softwares by copy/paste

Page 32: Lecture 05 Hydration - Empa

32

Remake

Number of experimental points

Number of datacategories

Comparison with experimental data

Page 33: Lecture 05 Hydration - Empa

33

Experimental X-axisTime (in log)

Experimental y-axis(in g/100 g of unhydrated cement)

Axis labels

Possibility to plot experimental dataSee process Mass_corr

Page 34: Lecture 05 Hydration - Empa

34

Same inputModified outputRefers to hydratedcement

/(1+modC[1][5]-phM[{aq_gen}]/100)=1+0.4-mass H2O unreacted/100= mass hydrated cement (after removal of pore water)

For comparison with XRD/TGA

Comparison with experimental data

Page 35: Lecture 05 Hydration - Empa

35

Different outputs possible Y-axis Mass in g/100 g of original cement

phM[{Portlandite}] => correct measurements to 100 dry weight

Y-axis Mass in g/100 g of hydrated cement phM[{Portlandite}]/(1+modC[1][5]-phM[{aq_gen}]/100)correction of the output /(1+0.4-mass H2O unreacted/100)

=> / mass hydrated cement (after removal of pore water)

water

clinker 2

clinker 1

water

clinker 2clinker 1

hydrate100 gdrycement

40 gwater

10 g

130 g =100 %

water loss TGA

bound water 30 to 650 ˚C

„ real evolution“

Total solid ≤ 140 g

XRDTGA

Unhydrated cement

Hydratedcementuncorrected

Hydrated cement corrected

Page 36: Lecture 05 Hydration - Empa

36

Amorph = C-S-H + Ht + Mc+…

Page 37: Lecture 05 Hydration - Empa

37

Sampling of aqueous concentrations Controls (= input) identical Page sampling and results adapted

Page 38: Lecture 05 Hydration - Empa

38

Page 39: Lecture 05 Hydration - Empa

39

Common excercise

Calculate volumes of the hydrating cement

Hint: Duplicate process «mass» Exchange phM by phVol (use «word» to do that) Equivalent expression:

/mmDC[{C3S}]*vol[{C3S}]„mmDC[{}]“ Mass of component„vol[{}]“ Volume of component

Page 40: Lecture 05 Hydration - Empa

40

Volume in cm3/100 g unreacted cement