landau(damping( - cern · 2017-09-29 ·...

42
Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 315, 2017 1 Landau Damping part 2 Vladimir Kornilov GSI Darmstadt, Germany

Upload: others

Post on 06-Apr-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017 1

Landau Damping part 2

Vladimir Kornilov GSI Darmstadt, Germany

Page 2: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017

energy transfer to resonant parKcles

2

Landau Damping

PERTURBATION

the wave

G

suppression

driving field

suppression

Main ingredients of Landau damping: ü wave−parKcle collisionless interacKon: Impedance driving field ü  energy transfer: the wave ↔ the (few) resonant parKcles

Incomplete (!) mechanism of Landau Damping in beams for the end of the first part

Page 3: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017 3

Existence of Landau damping

driving dipole impedance here

SKll, the beams are oVen stable without an acKve miKgaKon

In any accelerator, there are many Re(Z) sources

In any beam, there are many unsuppressed eigenmodes

There must be a fundamental damping mechanism in beams

Page 4: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017 4

Existence of Landau damping

The beams are stable and absorb some energy

AddiKonally to Re(Z), deliberate excitaKon is oVen applied (tune measurements, opKcs control, …)

Energy is directly transferred to the beam, mostly at the beam resonant frequencies

There must be a fundamental damping mechanism in beams

Tune measurements at PS, kick every 10 ms, M.Gasior, et al, CERN

Page 5: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017 5

Damping

Basic consideraKon of a collecKve mode stability

change the parameters and the source of the driving mechanism

use and enhance the intrinsic damping

mechanism

Instability Stabilized mode Driven (unsuppressed) mode Mode suppressed by its drive

Page 6: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017 6

Another Leading Actor: Decoherence

K.Y.Ng, Physics of Intensity Dependent Beam InstabiliKes, 2006 A.Hofmann, Proc. CAS 2003, CERN-­‐2006-­‐002 A.Chao, Phys. Coll. Beam Instab. in High Energy Acc. 1993 A.W. Chao, et al, SSC-­‐N-­‐360 (1987)

Page 7: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017 7

V.Kornilov, O.Boine-­‐F., PRSTAB 15, 114201 (2012)

Decoherence

CollecKve beam oscillaKons aVer a short (one turn or shorter) kick

•  Usually the beam displacement is comparable to the beam size

•  In reality, signals can be very complicated

•  A common diagnosKcs •  Decoherence is a process

affected by many effects and mechanisms

A bunched beam Ar18+ in SIS18. Transverse signal aVer a kick

Page 8: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017 8

Pulse Response

-1-0.8-0.6-0.4-0.2

0 0.2 0.4 0.6 0.8

1

0 5 10 15 20

x / x

0

ωt

⟨x⟩ 8 parKcles with different frequencies Betatron oscillaKons: frequency spread

The Pulse Response is the Fourier image of BTF

Page 9: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017 9

Phase-­‐Mixing (FilamentaKon)

x /

x x

x x

x /

x /

x /

1. 2.

3. 4.

Phase-­‐mixing of non-­‐correlated parKcles with a tune spread

•  Beam offset oscillaKons decay

•  Beam size increases (blow-­‐up)

Page 10: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017 10

Phase-­‐Mixing, CoasKng Beam

-1

-0.5

0

0.5

1

0 2 4 6 8 10

Beam

Offs

et ⟨x

⟩ / x

0

Turn Number

-1

-0.5

0

0.5

1

0 2 4 6 8 10

Beam

Offs

et ⟨x

⟩ / x

0

Turn Number

Gaussian DistribuKon Lorentz DistribuKon

Q0=10.3, ξ=1, δp=0.5×10−3 Q0=10.3, ξ=1, δp=0.5×10−3

This is the case without any collecKve interacKons: phase-­‐mixing of non-­‐correlated parKcles

Page 11: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017 11

ξ=0.5 ξ=1.4 Ns=100 Qs=0.01

Phase-­‐Mixing, Bunched Beam

-1

-0.5

0

0.5

1

0 50 100 150 200

bunc

h of

fset

/ σ

x0

time (turns)

Due to the parKcle synchrotron moKon, the iniKal posiKons return aVer a synchrotron period

In literature, named as “decoherence” and “recoherence”

In reality, the decoherence is very different (other effects)

dashed lines: amplitude solid lines: offset

Page 12: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017 12

Decoherence Landau Damping

Phase-­‐mixing

Space-­‐charge

Impedances

Other nonlineariKes

ChromaKcity

Octupoles

Image charges

Impedances

Decoherence

Effects Process Mechanisms

K.Y.Ng, Physics of Intensity Dependent Beam InstabiliKes, 2006 A.Hofmann, Proc. CAS 2003, CERN-­‐2006-­‐002 A.W. Chao, et al, SSC-­‐N-­‐360 (1987) V.Kornilov, O.Boine-­‐F., PRSTAB 15, 114201 (2012) I.Karpov, V.Kornilov, O.Boine-­‐F., PRAB 19, 124201 (2016)

Page 13: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017 13

Decoherence Landau Damping

Phase-­‐mixing

Space-­‐charge

Impedances

Other nonlineariKes

ChromaKcity

Octupoles

Image charges

Impedances

Decoherence

Effects Process Mechanisms

AVer a kick, we observe the decoherence, which is a mixture of effects.

We do not observe pure Landau Damping. (infinitesimal perturbaKons)

Page 14: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017

energy transfer to resonant parKcles

decoherence

14

Landau Damping of 1st Type

eigenmode PERTURBATION

the wave

⟨x⟩

suppression

G

beam offset

driving field

suppression

suppression

Main ingredients of Landau damping: ü wave−parKcle collisionless interacKon: Impedance driving field ü  energy transfer: the wave ↔ the (few) resonant parKcles

Page 15: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017 15

Landau Damping: the wave & the tune spread

Page 16: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017

0

0.2

0.4

0.6

0.8

1

-3 -2 -1 0 1 2 3ψ

p

∆Q / δQξ

16

Landau Damping

0

0.2

0.4

0.6

0.8

1

-3 -2 -1 0 1 2 3

ψp

10-3 ∆p / p0

resonant parKcles from both sides contribute to the energy transfer, thus f(ω)

Momentum spread translates into tune spread

Page 17: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017 17

Landau Damping

Loss of Landau damping due to coherent tune shiV

0.0 0.2 0.4 0.6 0.8 1.0 1.2Im(∆Q) / δQ

ξ

-4

-2

0

2

4

Re(∆

Q) /

δQ

ξ

STABLE

UNSTABLE

0

0.2

0.4

0.6

0.8

1

-3 -2 -1 0 1 2 3 4 5 6

Parti

cle

Dis

tribu

tion

∆Q / δQξ

there is sKll tune spread, but no resonant parKcles for this wave → no Landau damping

impedance tune shiV

Page 18: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017

-6

-4

-2

0

2

4

0 0.2 0.4 0.6 0.8 1

Re(∆

Q) /

δQξ

Im(∆Q) / δQξ

∆Qsc = 2 δQξ

no space charge

18

Landau Damping

impedance tune shiV

Loss of Landau damping due to space-­‐charge

-­‐

0

0.2

0.4

0.6

0.8

1

-6 -5 -4 -3 -2 -1 0 1 2

Parti

cle

Dis

tribu

tion

∆Q / δQξ

there is sKll tune spread, but no resonant parKcles for this wave → no Landau damping

Page 19: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017 19

Landau Damping

Loss of Landau damping due to space-­‐charge

Coherent dipole oscillaKons of four O8+ bunches in the SIS18 of GSI Darmstadt at the injecKon energy 11.4 MeV/u O.Boine-­‐F., T.Shukla, PRSTAB 8, 034201 (2005)

there is sKll tune spread, but no resonant parKcles for this wave → no Landau damping

Page 20: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017 20

Landau Damping

Some analyKcal models or simulaKons predict Landau anKdamping:

unstable oscillaKons for zero or negaKve impedance

No anKdamping for Gaussian-­‐like distribuKons!

D.Pestrikov, NIM A 562, 65 (2006) V.Kornilov, et al, PRSTAB 11, 014201 (2008) A.Burov, V.Lebedev, PRSTAB 12, 034201 (2009)

Remark 1

Page 21: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017 21

Landau Damping

a tune spread does not automaKcally means Landau Damping

Remark 2

0

0.2

0.4

0.6

0.8

1

-4 -3 -2 -1 0 1 2 3 4

Parti

cle

Dis

tribu

tion

∆Q / δQξ

k=1

Head-­‐tail modes in bunches: •  there is a tune spread

(due to chromaKcity ξ) •  the coherent frequency overlaps

with the incoherent spectrum sKll, there is NO Landau Damping!

Page 22: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017

energy transfer to resonant parKcles

decoherence

22

Landau Damping of 1st Type

eigenmode PERTURBATION

the wave

⟨x⟩

suppression

G

beam offset

driving field

suppression

suppression

Main ingredients of Landau damping: ü wave−parKcle collisionless interacKon: Impedance driving field ü  energy transfer: the wave ↔ the (few) resonant parKcles

Page 23: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017 23

Landau Damping in Beams of 2nd type

Page 24: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017

For example, an octupole magnet: First-­‐order frequency shiV of the anharmonic oscillaKons Amplitude-­‐dependent betatron tune shiVs

24

Landau Damping of 2nd type Different situaKon from ξ+δp:

Tune spread due to amplitude-­‐dependent tune shiVs

SchemaKc yoke profile of an octupole magnet

N

N

N

N

S

S

S

S

Page 25: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017 25

Decoherence

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100

∆x0 = 2 σx∆x0 = σx

ε / ε

0

turn number

0

0.5

1

1.5

2

0 20 40 60 80 100

∆x0 = 2 σx

∆x0 = σx

A ⟨x⟩

/ σ

x

turn number

A.W. Chao, et al, SSC-­‐N-­‐360 (1987) V.Kornilov, O.Boine-­‐F., PRSTAB 15, 114201 (2012) I.Karpov, V.Kornilov, O.Boine-­‐F., PRAB 19, 124201 (2016)

Phase-­‐Mixing is very different from the chromaKcity case

•  No recoherence •  Kick amplitude dependent •  AnalyKcal model for:

OscillaKon amplitude

Transverse emigance

Page 26: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017

Amplitude-­‐dependent betatron tune shiVs in a lapce: Every parKcle has a different amplitude (Jx, Jy) → tune spread → Landau damping?

26

Landau Damping of 2nd type

-100

-50

0

50

100

0 50 100 150 200

x iωt

∆ωi / Ω = 0.03∆ωi / Ω = 0.01ωi = Ω

Tune spread due to amplitude-­‐dependent tune shiVs

Ωcoh

The resonant parKcles driV away in tune from the resonance as they get excited

-0.04

-0.02

0

0.02

0.04

0.06

0 0.5 1 1.5 2 2.5 3 3.5 4

∆Q

x

ax / a0

Page 27: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017

-0.04

-0.02

0

0.02

0.04

0.06

0 0.5 1 1.5 2 2.5 3 3.5 4

∆Q

x

ax / a0

27

Landau Damping of 2nd type

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4

ψx

ax / a0

a(Ωcoh)

ParKcle excitaKon for amplitude-­‐dependent tune shiVs

a(Ωcoh)

We already guess: the distribuKon slope (df/da) might be involved

-100

-50

0

50

100

0 50 100 150 200

x i

ωt

∆ωi / Ω = 0.03∆ωi / Ω = 0.01ωi = Ω

Once the parKcle is driven away from the resonance, the energy is transferred back to the wave

Page 28: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017 28

Landau Damping of 2nd type

L.Laslet, V.Neil, A.Sessler, 1965 D.Möhl, H.Schönauer, 1974 J.Berg, F.Ruggiero, CERN SL-­‐96-­‐71 AP 1996

ΔQcoh : coherent no-­‐damping tune shiV imposed by an impedance ΔQex(Jx,Jy) : external (lapce) incoherent tune shiVs

The resulKng damping is a complicated 2D convoluKon of the distribuKon df(Jx,Jy)/dJx and tune shiVs ΔQext(Jx,Jy)

The dispersion relaKon

Page 29: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017 29

Landau Damping of 2nd type

energy transfer to resonant parKcles

decoherence eigenmode PERTURBATION

the wave

⟨x⟩

suppression

G

beam offset

driving field

suppression

suppression

Main ingredients of Landau damping: ü wave−parKcle collisionless interacKon: Impedance driving field ü  energy transfer: the wave ↔ the (few) resonant parKcles

Page 30: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017 30

Landau Damping of 2nd type

-0.2

-0.1

0

0.1

0.2

-0.2 -0.1 0 0.1 0.2

∆Q

y ( ×

10−

3 )

∆Qx ( × 10−3 )

0 0.005

0.01 0.015

0.02 0.025

0.03 0.035

0.04

-0.6 -0.4 -0.2 0 0.2 0.4 0.6Im

(∆Q

) ( ×

10−

3 )Re(∆Q) ( × 10−3 )

stable

unstable

Octupole Tune Footprint ResulKng Stability Diagram

An example of the applicaKon: Beam stability studies for FCC

V.Kornilov, FCC Week 2017, Berlin

Page 31: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017 31

Landau Damping of 2nd type

Dynamic Aperture

Landau Damping

A balance is necessary

Octupoles are the essenKal part of the beam stability in many machines

Drawback: octupoles, like other nonlineariKes, can reduce Dynamic Aperture and LifeKme.

Page 32: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017 32

X.Buffat, et al, PRSTAB 17, 111002 (2014)

Amplitude-­‐Dependent Detuning

Another source of amplitude-­‐dependent tune-­‐shiVs: Tune-­‐spread due to Beam-­‐Beam effects produces Landau Damping

Tune Footprints ResulKng Stability Diagrams

Page 33: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017 33

Landau Damping in Beams of 3rd type

Page 34: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017 34

Landau Damping of 3rd type

Ωcoh

ωinc Electric field of the self-­‐field space charge

Different situaKon: Wave−ParKcel interacKon is due to space-­‐charge

0

0.5

1

1.5

2

0 1 2 3 4 5 6

∆Q

sc / ∆

QKV

ax / σx

Space-­‐charge tune shiV

For the resonant parKcles Qinc≈Qcoh , wave↔parKcles energy transfer should be possible

tune spread

Page 35: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017 35

Landau Damping of 3rd type

L.Lasleg, V.Neil, A.Sessler, 1965 D.Möhl, H.Schönauer, 1974

f(Jx,Jy,p) ΔQcoh : no-­‐damping coherent tune shiV imposed ΔQex(Jx,Jy,p) : external (lapce) incoherent tune shiV ΔQsc(Jx,Jy) : space-­‐charge tune shiV

The dispersion relaKon

The resulKng damping is a complicated 2D convoluKon of the distribuKon df(Jx,Jy)/dJx and tune shiVs ΔQsc(Jx,Jy), ΔQext(Jx,Jy)

Page 36: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017 36

Landau Damping of 3rd type

V.Kornilov, O.Boine-­‐F, I.Hofmann, PRSTAB 11, 014201 (2008) E.Metral, F.Ruggiero, CERN-­‐AB-­‐2004-­‐025 (2004)

SoluKon examples

Page 37: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017 37

Landau Damping of 3rd type

L.Lasleg, V.Neil, A.Sessler, 1965 D.Möhl, H.Schönauer, 1974

V.Kornilov, O.Boine-­‐F, I.Hofmann, PRSTAB 11, 014201 (2008) A.Burov, V.Lebedev, PRSTAB 12, 034201 (2009)

ΔQex=0: no pole, no damping! Momentum conservaKon in a closed system

The dispersion relaKon

Even if Ωcoh is inside the spectrum, and there are resonant parKcles Qinc≈Qcoh ,

there is no Landau damping in coasKng beams only due to space-­‐charge

Page 38: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017 38

Landau Damping

a tune spread does not automaKcally means Landau Damping

Remark

Thus, we discussed two examples: 1.  Head-­‐tail modes and the chromaKcity tune-­‐spread 2.  Nonlinear space-­‐charge in coasKng beams •  there is a tune spread •  the coherent frequency overlaps

with the incoherent spectrum sKll, there is NO Landau Damping! 0

0.2

0.4

0.6

0.8

1

-4 -3 -2 -1 0 1 2 3 4

Parti

cle

Dis

tribu

tion

∆Q / δQξ

Page 39: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017 39

Landau Damping of 3rd type

energy transfer to resonant parKcles

decoherence eigenmode PERTURBATION

the wave

⟨x⟩

suppression

beam offset

over space charge

suppression

Main ingredients of Landau damping: ü wave−parKcle collisionless interacKon: E-­‐field of Space-­‐charge ü  energy transfer: the wave ↔ the (few) resonant parKcles

Page 40: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017 40

Landau Damping of 3rd type

Main ingredients of Landau damping: ü wave−parKcle collisionless interacKon:

the electric field of space-­‐charge ü  energy transfer: the wave ↔ the (few) resonant parKcles in addiKon, the decoherence, other ΔQex(Jx,Jy,p), the mix with G

THE WAVE faster

resonant parKcles

slower resonant parKcles

ENERGY

over electric field

If simplified, very similar to Landau damping in plasma:

Page 41: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017 41

Landau Damping of 3rd type

Landau damping in bunches •  There is damping due to only

space charge •  Space-­‐charge tune spread due

to longitudinal bunch profile

A.Burov, PRSTAB 12, 044202 (2009) V.Balbekov, PRSTAB 12, 124402 (2009) V.Kornilov, O.Boine-­‐F, PRSTAB 13, 114201 (2010)

Page 42: Landau(Damping( - CERN · 2017-09-29 · Vladimir(Kornilov,(The(CERN(Accelerator(School,(London,(UK,(Sept3=15,(2017(4Existence(of(Landau(damping(The(beams(are(stable(and(absorb(some(energy(AddiKonally(to(Re

Vladimir Kornilov, The CERN Accelerator School, London, UK, Sept 3-­‐15, 2017 42

Landau Damping in beams

•  Waves: collecKve oscillaKons in a medium of parKcles •  Wave ↔ parKcles collisionless interacKon •  Dispersion relaKon and Stability Diagram •  Decoherence is a result of Phase-­‐Mixing, Landau damping, etc •  CollecKve Frequency ↔ Tune Spread •  Tune spreads of different nature produce

different types of Landau damping •  A tune spread does not automaKcally means Landau Damping •  A special role of Space-­‐Charge as a provider of a tune spread

and the wave↔parKcles interacKon