kombinatorika - student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/vg7 -...

105
K OMBINATORIKA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Prostějov 2010

Upload: others

Post on 24-Dec-2019

53 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA

Gymnázium Jiřího Wolkera v Prostějově

Výukové materiály z matematiky pro vyšší gymnázia

Autoři projektu Student na prahu 21. století - využití ICT ve

vyučování matematiky na gymnáziu

Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

Prostějov 2010

Page 2: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

2 KOMBINATORIKA

Úvod

Vytvořený výukový materiál pokrývá předmět matematika, která je vyučována v osnovách a tematických plánech na gymnáziích nižšího a vyššího stupně. Mohou ho však využít všechny

střední a základní školy, kde je vyučován předmět matematika, a které mají dostatečné technické vybavení a zázemí.

Cílová skupina:

Podle chápání a schopností studentů je stanovena úroveň náročnosti vzdělávacího plánu a výukových materiálů. Zvláště výhodné jsou tyto materiály pro studenty s individuálním studijním plánem, kteří se nemohou pravidelně zúčastňovat výuky. Tito studenti mohou s pomocí našich výukových materiálů částečně kompenzovat svou neúčast ve vyučovaném předmětu matematika, formou e-learningového studia.

Page 3: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 3

Obsah

Základní kombinatorická pravidla ......................................................................................... 5

Pravidlo součtu ..................................................................................................................... 5

Pravidlo součtu Varianta A ................................................................................................ 6

Pravidlo součtu Varianta B ................................................................................................ 9

Pravidlo součtu Varianta C .............................................................................................. 11

Pravidlo součinu ................................................................................................................. 13

Pravidlo součinu Varianta A ............................................................................................ 14

Pravidlo součinu Varianta B ............................................................................................ 16

Pravidlo součinu Varianta C ............................................................................................ 18

Souhrnné příklady k procvičení ........................................................................................ 20

Faktoriál .................................................................................................................................. 21

Faktoriál Varianta A ......................................................................................................... 22

Faktoriál Varianta B ......................................................................................................... 24

Faktoriál Varianta C ......................................................................................................... 27

Souhrnné příklady k procvičení ........................................................................................ 29

Kombinační číslo .................................................................................................................... 30

Vlastnosti kombinačních čísel ........................................................................................... 30

Vlastnosti kombinačních čísel Varianta A ....................................................................... 31

Vlastnosti kombinačních čísel Varianta B ....................................................................... 34

Vlastnosti kombinačních čísel Varianta C ....................................................................... 37

Souhrnné příklady k procvičení ........................................................................................ 40

Binomická věta ....................................................................................................................... 41

Binomická věta Varianta A .............................................................................................. 42

Binomická věta Varianta B .............................................................................................. 45

Binomická věta Varianta C .............................................................................................. 47

Souhrnné příklady k procvičení: ...................................................................................... 50

Variace ..................................................................................................................................... 52

Variace Varianta A ........................................................................................................... 53

Variace Varianta B ........................................................................................................... 55

Variace Varianta C ........................................................................................................... 58

Permutace ............................................................................................................................... 60

Permutace Varianta A ...................................................................................................... 61

Permutace Varianta B ....................................................................................................... 64

Permutace Varianta C ....................................................................................................... 66

Page 4: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

4 KOMBINATORIKA

Souhrnné příklady k procvičení ........................................................................................ 68

Kombinace .............................................................................................................................. 70

Kombinace Varianta A ..................................................................................................... 71

Kombinace Varianta B ..................................................................................................... 73

Kombinace Varianta C ..................................................................................................... 75

Souhrnné příklady k procvičení ........................................................................................ 78

Variace s opakováním ............................................................................................................ 80

Variace s opakováním Varianta A.................................................................................... 81

Variace s opakováním Varianta B .................................................................................... 83

Variace s opakováním Varianta C .................................................................................... 86

Permutace s opakováním ....................................................................................................... 89

Permutace s opakováním Varianta A ............................................................................... 90

Permutace s opakováním Varianta B ............................................................................... 92

Permutace s opakováním Varianta C ............................................................................... 94

Kombinace s opakováním ...................................................................................................... 96

Kombinace s opakováním Varianta A.............................................................................. 97

Kombinace s opakováním Varianta B .............................................................................. 99

Kombinace s opakováním Varianta C ............................................................................ 102

Souhrnné příklady k procvičení ...................................................................................... 104

Literatura: ................................................................................................................... 105

Page 5: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 5

Základní kombinatorická pravidla

Pravidlo součtu

Jsou-li nAAA ,,, 21 konečné mnoţiny s n ,,, 21 prvky a jsou-li kaţdé dvě disjunktní,

pak mnoţina nAAA 21 má n 21 prvků.

Příklad: Určete počet všech přirozených dvojciferných čísel, v jejichţ dekadickém

zápisu se nevyskytuje 0 a zbývajících 9 číslic se kaţdá vyskytuje nejvýše

jednou.

Řešení: počet všech dvojciferných čísel je .................................... 90

počet všech dvojciferných se stejnými ciframi .................. 9

počet všech dvojciferných obsahujících nulu .................... 9

počet všech dvojciferných s různými ciframi bez nuly ...... p

platí vztah 9099 p 72p

Počet všech dvojciferných čísel, které odpovídají zadaným podmínkám je 72.

Page 6: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

6 KOMBINATORIKA

Pravidlo součtu

Varianta A

Příklady:

1) Ve třídě je 32 dětí, z nichţ se 11 učí německy a 8 španělsky. Kolik dětí se učí anglicky,

jestliţe ani jedno z dětí nemá dva jazyky.

2) Kolik přirozených čísel menších neţ 150 končí trojkou?

Řešení:

1) Ţádné dítě nemá dva jazyky, hledaný počet bude zbytek z 32 po odečtení německy

a španělsky se učících dětí.

81132 x 13x

2) Mnoţina všech jednociferných čísel končících trojkou A={3}

Mnoţina všech dvojciferných čísel končících trojkou B={13;23;33;43;53;63;73;83;93}

Mnoţina všech dvojciferných čísel končících trojkou C={103;113;123;133;143}

Stačí sečíst počty členu jednotlivých mnoţin 591 x 15x

Příklad:

Varianta A

Varianta B

Varianta C

Výsledek řešení:

1) Anglicky se učí 13 dětí.

2) Počet přirozených čísel menších neţ 150 končících trojkou je 15.

Page 7: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 7

Příklady k procvičení:

1) Sportovní oddíl navštěvuje 14 dívek a 21 chlapců. Na začátku kaţdé sezony si mezi sebou

zvolí kapitána. Kolik mají moţností volby? [Mají 35 moţností volby.]

2) Na mezinárodní výstavě psů se sešlo 7 labradorských retrívrů, 12 zlatých retrívrů,

13 německých ovčáku a 6 bílých ovčáků. Na konci výstavy rozhodčí vyberou jednoho

absolutního vítěze. Kolik mají moţností, jak vybrat? [Mají 38 moţností, jak vybrat.]

3) Veronika jede na lyţařský kurz, a protoţe od loňského roku hodně vyrostla, rozhodnou se

rodiče, ţe jí koupí nové lyţe. Kdyţ přijdou do obchodu, zjistí, ţe mají šest různých značek

lyţí. V délce, kterou rodiče Veroniky poţadují, mají od kaţdé značky čtyři páry. Z kolika

lyţí mohou Veroničiny rodiče vybírat, jestliţe lyţe dvou značek jsou nad jejich finanční

moţnosti? [Mohou vybírat z 16 lyţí.]

4) V mezinárodní autobusové lince se na cestě z Bratislavy do Vídně nachází 4 dívky, 2 děti

ze Slovenska, 16 můţu, 6 dětí z jiné země neţ je Slovensko, 21 Slováků, z nichţ je 12

muţů, a 4 ţeny jiné státní příslušnosti. Je autobus zaplněn, jestliţe se do něj vejde 42 lidí?

[Není, protoţe se v autobuse nachází 35 lidí.]

5) Na mezinárodním ţákovském hokejovém utkání mezi Švédskem a Finskem je v hledišti

126 můţu, 65 chlapců, 46 dětí ze Švédska, 50 dětí z Finska, 200 Švédů, z nichţ je

polovina muţů, a 39 ţen z Finska. Kolik lidí je v hledišti?

[V hledišti je 309 lidí.]

6) Určete počet všech dvojciferných přirozených čísel,

a) v jejichţ dekadickém zápisu se kaţdá číslice vyskytuje nejvýše jednou. [81]

b) v jejichţ dekadickém zápisu se nevyskytuje jednička. [73]

7) Určete počet všech přirozených nejvýše dvojciferných čísel, v jejichţ dekadickém zápisu

se kaţdá číslice vykytuje nejvýše jednou. [90]

Page 8: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

8 KOMBINATORIKA

8) Určete počet všech přirozených trojciferných čísel,

a) která jsou menší neţ 162 a která jsou sudá. [31]

b) která jsou menší neţ 150 a dělitelná 5. [10]

c) která jsou menší neţ 150, větší neţ 100 a v jejich dekadickém zápisu se nevyskytuje

nula. [136]

9) Jaký je počet všech přirozených čísel, která jsou menší neţ 206 a v jejichţ dekadickém

zápisu se vyskytuje šestka nejvýše jednou? [18]

Page 9: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 9

Pravidlo součtu

Varianta B

Příklady:

1) Určete počet všech přirozených trojciferných čísel, v jejichţ dekadickém zápisu se kaţdá

číslice vyskytuje nejvýše jednou.

2) Ve skupině uchazečů o práci ovládá kaţdý uchazeč alespoň jeden ze dvou jazyků.

20 uchazečů mluví anglicky a 14 francouzsky. 10 uchazečů mluví oběma jazyky. Kolik

uchazečů je na konkurzu?

Řešení:

1) Počet všech trojciferných čísel 900

Počet všech trojciferných čísel se dvěma stejnými číslicemi 243

Počet všech trojciferných se třemi stejnými číslicemi 9

2439900 x 648x

2) Počet uchazečů mluvících anglicky 20

Počet uchazečů mluvících francouzsky 14

Počet uchazečů mluvících oběma jazyky 10

Pokud bychom sečetli pouze uchazeče mluvící anglicky a francouzsky, uchazeči

ovládající oba jazyky by byli započtení dvakrát. Proto je musíme odečíst.

101420 x 24x

Příklad:

Varianta A

Varianta B

Varianta C

Výsledek řešení:

1) Počet všech trojciferných čísel, v nichţ se kaţdá číslice vyskytuje

nejvýše jednou, je 648

2) Na konkurz přišlo 24 uchazečů

Page 10: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

10 KOMBINATORIKA

Příklady k procvičení:

1) Určete počet všech trojciferných přirozených čísel, ve kterých se kaţdá číslice vyskytuje

právě jednou. [0]

2) Určete počet všech trojciferných přirozených čísel, ve kterých se kaţdá číslice vyskytuje

alespoň dvakrát. [252]

3) Ve skupině 50 lidí ovládá kaţdý člověk alespoň jeden programovací jazyk. 30 lidí ovládá

programovací jazyk Pascal, 26 lidí ovládá jak programovací jazyk Pascal, tak

programovací jazyk Delphi. Kolik lidí ve skupině ovládá programovací jazyk Delphi?

[46]

4) V pokusné laboratoři se lék A testuje na 36 pokusných myších, lék B se testuje na 42

pokusných myších, 12 myší dostává oba léky najednou. Kolik pokusných myší mají

v laboratoři? [66]

5) Na konferenci se sejde 162 vědců. 102 vědců ovládá Angličtinu, 60 vědců ovládá

Francouzštinu, 75 vědců ovládá Němčinu. Angličtinu a Francouzštinu zároveň ovládá 20

vědců, Angličtinu a Němčinu zároveň ovládá 70 vědců a Francouzštinu a Němčinu

zároveň ovládá 10 vědců. Všechny jazyky ovládají pouze tři vědci.

a) Kolik vědců ovládá alespoň jeden ze tří jazyků? [140]

b) Kolik vědců neovládá ani jeden ze tří jazyků? [22]

6) V zábavním parku fungují tři atrakce. První atrakci absolvovalo jednoho 138 dětí, druhou

atrakci absolvovalo 226 dětí, třetí atrakci absolvovalo 68 dětí. První a druhou atrakci

zvládlo navštívit 80 dětí, druhou a třetí atrakci 70 dětí a první a třetí atrakci 60 dětí.

Všechny tři atrakce zvládlo za jeden den jen 15 dětí. Kolik dětí navštívilo zábavní park,

jestliţe kaţdé dítě bylo alespoň na jedné atrakci? [237]

Page 11: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 11

Pravidlo součtu

Varianta C

Příklady:

Určete počet všech moţných tahů koněm na šachovnici 8x8.

Řešení:

Koněm můţeme táhnout vţdy do tvaru písmene L (jakýmkoli směrem). Rozdělíme si políčka

do mnoţin podle počtu tahů, které lze z daného políčka udělat.

Jednotlivé součty můţeme sečíst, protoţe mnoţiny druhů políček jsou disjunktní.

33612896802488166164203824

Příklad:

Varianta A

Varianta B

Varianta C

A B C C C C B A Z políčka označeného písmenem A je moţno táhnout

B C D D D D C B dvěma způsoby, písmenem B třemi způsoby,

C D E E E E D C písmenem C čtyřmi způsoby, písmenem D šesti způsoby

C D E E E E D C a písmenem E osmi způsoby.

C D E E E E D C

C D E E E E D C Políčka označená písmenem A jsou 4,

B C D D D D C B celkový součet moţných tahů z políčka A je 4x2=8.

A B C C C C B A U dalších písmen postupujeme obdobně.

Výsledek řešení:

Počet všech moţných tahů koněm na šachovnici je 336.

1)

Page 12: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

12 KOMBINATORIKA

Příklady k procvičení:

1) Určete počet všech moţných tahů koněm na šachovnici 8x8, jestliţe můţu táhnout pouze

z černého políčka. [168]

2) Určete počet všech moţných tahů králem na šachovnici 8x8. [420]

3) Určete počet všech moţných tahů králem na šachovnici, jestliţe

a) lze táhnou z bílého políčka pouze na bílé políčko a z černého políčka pouze na černé

políčko. [220]

b) lze táhnout z černého políčka pouze na bílé políčko a z bílého políčka pouze na černé

políčko. [224]

Page 13: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 13

Pravidlo součinu

Počet všech uspořádaných k-tic, jejichţ první člen lze vybrat 1n způsoby, druhý člen po

výběru prvního členu 2n způsoby atd. aţ k-tý člen po výběru všech předcházejících členů kn

způsoby, je roven knnn ...21 .

Příklad: Určete počet všech pěticiferných čísel, v jejichţ dekadickém zápisu se kaţdá

číslice vyskytuje nejvýše jednou.

Řešení: Na místě desetitisíců můţeme vybírat z devíti číslic 1, 2, …, 9, takţe .91 n

Na místě tisíců můţe být jakákoli cifra, kromě té, která byla na místě

desetitisíců, takţe 92 n .

Na místě stovek můţe být jakákoli cifra, kromě těch, které byly na místě tisíců

a desetitisíců, takţe 83 n .

Dále uvaţujeme podobným způsobem 74 n a 65 n .

Nyní uţ stačí počty jen vynásobit.

2721667899 x

Počet všech pěticiferných čísel, která odpovídají zadaným podmínkám,

je 27 216.

Page 14: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

14 KOMBINATORIKA

Pravidlo součinu

Varianta A

Příklady:

1) Určete počet všech přirozených trojciferných čísel, v jejichţ dekadickém zápisu se kaţdá

číslice vyskytuje nejvýše jednou a která začínají jedničkou.

2) Karel chce zabalit dárek pro kamaráda, ale zapomněl koupit balicí papír. Kdyţ přijde

těsně před zavírací dobou do obchodu, mají uţ jen dva druhy balicího papíru a tři barvy

stuh. Kolika způsoby lze zabalit dárek?

Řešení:

1) První člen je daný.

Na místě desítek můţe být jakákoli číslice kromě jedničky, protoţe číslice se nesmí

opakovat. Dohromady je to devět moţností.

Na místě jednotek můţe být jakákoli číslice kromě jedničky a číslice, která je na místě

desítek. Máme tedy osm moţností.

72891 x

2) Ke kaţdému ze dvou balicích papírů můţeme dát jednu ze tří stuh. Celkem tedy máme

632 x moţností

Příklad:

Varianta A

Varianta B

Varianta C

Výsledky řešení:

1) Počet trojciferných čísel, která odpovídají zadání je 72.

2) Karel má 6 moţností jak zabalit dárek.

Page 15: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 15

Příklady k procvičení:

1) Určete počet všech čtyřciferných přirozených čísel, v jejichţ dekadickém zápisu se kaţdá

číslice vyskytuje nejvýše jednou. [4 536]

2) Určete počet všech čtyřciferných přirozených čísel utvořených z číslic 1, 2, 3, 4, 5, 6, 7, 8,

9, v jejichţ dekadickém zápisu se kaţdá číslice vyskytuje nejvýše jednou. [3024]

3) Určete počet všech šesticiferných přirozených čísel utvořených z číslic 0, 1, 2, 4, 6, 8.

[38 880]

4) Určete počet všech pěticiferných přirozených čísel, které mají na místě jednotek dvojku

a na místě tisícovek trojku. [648]

5) Určete počet všech šestimístných telefonních čísel. Kolik z nich začíná pětkou?

[531 441, 59 049]

6) Kód zámku na kolo je trojmístný a skládá se z číslic. Jak dlouho budu odemykat zámek,

kdyţ zapomenu kód a uhodnu kód aţ posledním moţným pokusem. Vytočení jednoho

kódu trvá dvacet vteřin. [14 580 vteřin]

7) Ve vrhu jezevčíka je šest fenek a čtyři psi. Kolika moţnými způsoby lze provést výběr

dvou štěňat, jestliţe chci, aby jedno byl pes a druhý fenka. [24]

8) V misce je sedm ţlutých jablek, osm zelených jablek a deset červených jablek. Kolika

způsoby lze provést výběr tří jablek, jestliţe chci, aby kaţdé bylo jiné barvy.

[560]

Page 16: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

16 KOMBINATORIKA

Pravidlo součinu

Varianta B

Příklady:

1) Hloupý Honza cestuje z království Za Sedmero řekami do království Za Osmero

řekami. Cestou se musí zastavit v hospodě U Draka. Z království Za Sedmero řekami

vedou do hospody čtyři cesty a z hospody do království Za Osmero řekami vedou tři

cesty. Určete počet způsobů, jimiţ lze vybrat cestu.

a) Z jednoho království do druhého a zpět

b) Z jednoho království do druhého a zpět tak, ţe ţádná cesta není pouţita dvakrát.

2) V misce je 12 gumových bonbonu a 20 hašlerek. Anička si můţe vybrat buď hašlerku,

anebo gumový bonbon tak, aby Pavla, která si po ní vybere jednu hašlerku a dva gumové

bonbony, měla co největší moţnost výběru.

Řešení:

1)

a) Ke kaţdé ze čtyř cest z prvního království do hospody můţeme přiřadit jednu ze tří

cest z hospody do druhého království. Cesta zpět je obdobná.

1444334 x

b) Na cestu do druhého království má Honza stejně moţností jako v případě a), na cestu

zpět má Honza dvě moţnosti jak se vrátit do hospody a tři moţnosti, jak s e dostat

z hospody do království Za Sedmero řekami. Rovnice vypadá následovně.

723234 x

2) Pokud si Anička vybere gumový bonbon, tak bude mít Pavla 2200201011 x

moţností výběru. Pokud si Anička vybere hašlerku, bude mít Pavla 2508191112 x

moţností výběru.

Příklad:

Varianta A

Varianta B

Varianta C

Výsledky řešení:

1)

a) Cestu tam a zpět lze vybrat 144 způsoby.

b) Cestu lze vybrat 72 způsoby.

2) Anička si musí vybrat hašlerku

Page 17: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 17

Příklady k procvičení:

1) Ze Ţďánic do Bečvár vede jedna silnice, dvě lesní cesty a jedna cyklostezka. Určete počet

způsobů, kterými je moţno se dostat

a) ze Ţďánic do Bečvár a zpět. [16]

b) ze Ţdánic do Bečvár a zpět tak, aby cesta zpět do Ţďánic byla jiná neţ cesta do

Bečvár. [12]

c) ze Ţďánic do Bečvár a zpět tak, aby byla silnice pouţita právě jednou. [6]

2) Jana s Pavlem se rozhodnou, ţe v Lednickém areálu chtějí navštívit zámek, romantickou

zříceninu a Minaret. Mezi zámkem a zříceninou funguje pěší cesta, droţka a loď, mezi

zříceninou a Minaretem funguje cesta pro pěší a loď a mezi zámkem a Minaretem funguje

cesta pro pěší, loď a droţka. Určete, kolika způsoby lze vykonat cestu.

a) ze zámku na zříceninu do Minaretu a zpět do zámku (v tomto pořadí). [18]

b) ze zámku do Minaretu tak, ţe kaţdým místem můţu projít nejvýše jednou. [9]

c) ze zříceniny na Minaret a zpět, jestliţe mezi Minaretem a zříceninou nefunguje přímá

cesta z důvodu rekonstrukčních prací. [81]

3) Ve skříni jsou sešity a propisky. David si má vybrat sešit nebo propisku tak, aby Mirek,

který přijde po něm a vezme si dvě propisky a sešit, měl co největší moţnost výběru. Co si

vybere David, jestliţe ve skříni je

a) 20 propisek a 12 sešitů. [David si vybere sešit.]

b) 12 propisek a 20 sešitů. [David si vybere sešit]

c) 10 propisek a 10 sešitů. [Je jedno, co si David vybere.]

4) V obchodě mají 6 černých kabátů, 7 hnědých kabátů a 9 zelených kabátů. Jaký kabát si

vybere paní Skromná, aby paní Nerozhodná, která přijde po ní a vybere si od kaţdého

barvy kabátu jeden kabát, měla co největší moţnost výběru.

[Paní Skromná si vybere zelený kabát.]

5) V misce jsou dva druhy polodrahokamů. Ţaneta přijde k misce a vybere si jeden ametyst.

Sylva přijde po Ţanetě a z misky si vybere jeden ametyst a 2 acháty. Kolik muselo být

v misce minimálně achátů, jestliţe víme, ţe si Ţaneta vybrala tak, aby Sylva měla co

největší moţnost výběru a v misce bylo 6 ametystů.

[V misce bylo minimálně 12 achátů.]

Page 18: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

18 KOMBINATORIKA

Pravidlo součinu

Varianta C

Příklady:

1) Určete počet všech trojciferných čísel, jejichţ dekadický zápis je sloţen z číslic

0,2,4,5,6,7,8 (kaţdá z nich se můţe opakovat), která jsou dělitelná dvěma.

2) Je dán čtverec EFGH a na kaţdé jeho straně 2 vnitřní body. Určete počet všech

trojúhelníku ABC, jejichţ vrcholy leţí v daných bodech na různých stranách čtverce

EFGH.

Řešení:

1) Aby bylo číslo dělitelné dvěma, musí mít na konci sudou číslici, takţe je 5 moţností,

které můţou být na místě jednotek. Čísla se mohou opakovat, proto na místě desítek

můţou být všechny číslice ze zadání příkladu, takţe 72 n . Na místě stovek můţe být

jakákoli číslice kromě nuly, takţe 63 n .

210675 x

2) Vrchol A můţe zvolit na jakékoli straně, takţe pro něj máme 24 moţnosti, jak ho

vybrat. Bod B lze vybrat uţ jen na třech stranách, takţe je 23 způsobů, jak ho vybrat.

Bod C lze vybrat uţ jen na dvou stranách, takţe je 22 způsobů, jak ho vybrat. Ale šest

uspořádaných trojic takto vybraných trojúhelníků určuje stejný trojúhelník. Takţe

musíme daný počet vydělit šesti.

326

222324

x

Příklad:

Varianta A

Varianta B

Varianta C

Výsledky řešení:

1) Počet čísel je 210.

2) Počet trojúhelníků je 32.

Page 19: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 19

Příklady k procvičení:

1) Určete počet všech pěticiferných přirozených čísel, ve kterých se kaţdá číslice vyskytuje

nejvýše jednou a které jsou dělitelné

a) 5 [5712]

b) 4 [6720]

2) Určete počet všech čtyřciferných přirozených čísel, která jsou dělitelná

a) 5 [1980]

b) 4 [2250]

3) Určete počet všech čtyřciferných přirozených čísel větších neţ 2000, která jsou dělitelná

a) 2 [3981]

b) 10 [781]

4) Určete počet všech čtyřciferných přirozených čísel menších neţ 8000, ve kterých se kaţdá

číslice vyskytuje nejvýše jednou a která jsou dělitelná 5. [728]

5) Je dán čtverec XYVW a na kaţdé jeho straně 5 vnitřních bodů. Určete počet všech

trojúhelníku ABC, jejichţ vrcholy leţí v daných bodech na různých stranách čtverce

XYVW. [500]

6) Je dán čtverec XYVW a na kaţdé jeho straně )1( n vnitřních bodů. Určete počet všech

trojúhelníku ABC, jejichţ vrcholy leţí v daných bodech na různých stranách čtverce

XYVW. [ 816124 23 nnn ]

7) Je dán pětiúhelník EFGHI a na kaţdé jeho straně je 6 vnitřních bodů. Určete počet všech

trojúhelníků XYZ, jejichţ vrcholy leţí v daných bodech na různých stranách pětiúhelníku

EFGHI. [2 160]

8) Je dán pětiúhelník EFGHI a na kaţdé jeho straně je m vnitřních bodů. Určete počet všech

trojúhelníků XYZ, jejichţ vrcholy leţí v daných bodech na různých stranách pětiúhelníku

EFGHI. [310 m ]

Page 20: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

20 KOMBINATORIKA

Souhrnné příklady k procvičení

1) Určete počet všech trojciferných čísel, ve kterých se kaţdá číslice vyskytuje nejvýše

jednou a která mají na místě desítek 0.

a) Počítejte pomocí kombinatorického pravidla součtu. [72]

b) Počítejte pomocí kombinatorického pravidla součinu. [72]

2) Určete, kolika způsoby lze na šachovnici 8x8 vybrat dvě různobarevná políčka? Kolika

způsoby to lze udělat tak, aby obě neleţela ve stejné řadě ani ve stejném sloupci.

[1 024,768]

3) Mějme čtverec o straně 3, který je rozdělen rovnoběţkami se stranami na 9 jednotkových

čtverců. Určete kolik je v daném obrazci čtverců. [14]

4) Určete počet všech čtyřciferných přirozených čísel, jejichţ dekadický zápis je sloţen

z číslic 1, 2, 3, 4, 5 (kaţdá se můţe opakovat), která jsou dělitelná

a) dvěma [250]

b) pěti [125]

5) Z místa P do Q vedou dvě různé trasy, z místa Q do R vede šest různých tras. Určete,

kolika způsoby lze vybrat trasu

a) z P do R a zpět. [144]

b) z P do R a zpět tak, ţe ţádná z těchto osmi tras není pouţita dvakrát. [60]

c) z P do R a zpět tak, ţe právě jedna z těchto osmi tras je pouţita dvakrát. [132]

d) z P do R tak, ţe právě dvě z těchto osmi tras jsou pouţity dvakrát. [12]

Page 21: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 21

Faktoriál

Faktoriál čísla n (značíme !n ) je číslo rovné součinu všech kladných celých čísel menších

nebo rovných n .

Pro kaţdé přirozené číslo n definujeme:

123...)1(! nnn

1!0

Pozn.:

Při úpravách výrazů s faktoriály často vyuţíváme faktu, ţe platí:

!21!1! nnnnnn

Příklad: Upravte výraz !1

!!1

n

nn

Řešení: Vyuţijeme vztahu, ţe !1!1 nnn

1!1

!

!1

!

!1

!!1

!1

!!1

n

n

nn

nn

n

nn

n

nnn

n

nn

Page 22: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

22 KOMBINATORIKA

Faktoriál

Varianta A

Příklady:

1) Vypočítejte !2!3

!5

2) Zjednodušte !17!18

!17!16!15

Řešeni:

1) Vyuţijeme toho, ţe !345!5 a 12!2

!2!3

!5

!2!3

!345

12

4510

2) Vyuţijeme, ţe !15161718!18 , !151617!17 atd., pak vytkneme !15 a

dopočítáme

304

17

5168

289

16171691718!15

1617161!15

!151617!15161718

!151617!1516!15

!17!18

!17!16!15

Příklad:

Varianta A

Varianta B

Varianta C

Výsledek řešení:

1) 10

2) 304

17

Page 23: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 23

Příklady k procvičení:

9) Vypočítejte

c) !3

!4

[4]

d) !6

!10

[5040]

e) !2!7

!9

[36]

f) !3!8

!10

[15]

g) !11!11

!12

[6]

h) !10!10!2

!14

[6006]

i) !!10!10!9

!12!12

[2640]

10) Zjednodušte a vypočtěte

a) !9!10

!8!12

3

44

b) !6!4!10

!10!8!2

3

14

c) !8!6

!6!4!4

855

16

d) !104!11!12

!9!11!10

210

17

e) !9!6!0!8

!73

187

7

f) !9!65!8

!610

113

2

g) !7

!2

!6

!35

1260

53

h) !5

!4

!2!4

!38

5

6

Page 24: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

24 KOMBINATORIKA

Faktoriál

Varianta B

Příklady:

1) Zjednodušte. Předpokládejte přípustné hodnoty proměnných.

!1

1

!1!

1

nn

n

n

2) Řešte rovnici v mnoţině N.

!22!110 nn

Řešení:

1) Rozloţíme !11!1 nnnn a !1! nnn převedeme na společného

jmenovatele a dopočítáme.

!1

1

!1

11

!1

1

!11!1

1

!1

1

!1!

1

2

n

nn

n

nnnn

nnnn

n

nnnn

n

n

2) !22!110 nn / !22 n

1!12

!15

nn

n vyuţijeme, ţe !12!2 nnn

52

5

n dopočítáme

25 n

3n

Zk.: pro 3n

240!410 L 240!52 P PL

Příklad:

Varianta A

Varianta B

Varianta C

Výsledky řešení:

1) !1

12

n

nn

2) 31 n

Page 25: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 25

Příklady k procvičení:

1) Zjednodušte, předpokládejte přípustné hodnoty proměnných

a) !1

!2

n

n

2n

b) !1

!

n

n

n

c)

!12

!2

n

n

12

1

n

d)

23

!22

nn

n

!n

e)

!3

!1

!3

!2

n

n

n

n

2

1

n

f)

!14

!4

!14

!4

n

n

n

n

14

1416 2

n

nn

g) !21

!1

nn

n

n

n

nn 11

h)

!1

!12

!3

!2

n

n

n

n

23 22 nn

i)

4

1

!1

!2

n

n

n

1!24 nnn

j)

23

1

!2

!1

!1

!2

nnn

n

n

n

1

2

n

k)

!53

4353

!43

43

!33

33

n

nn

n

n

n

n

23

1

n

l)

!

!1

!2

!1

!1

!212

n

n

n

n

n

nn

2

1

n

m)

!1

!

!2

!1

!1

!

n

n

n

n

n

n

2

1

1

n

n

n)

1!2

!1

!1

!1

!2

!1

!1

!1

nn

n

n

n

n

n

n

n

1

122n

n

Page 26: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

26 KOMBINATORIKA

2) Řešte rovnice v mnoţině N

a)

23!1

!

n

n

n

3

b)

2!22

!1

!1

! n

n

n

n

n

c)

xx

x3

!2

!

4

d)

3

!4

!3!5

x

xx

5

e)

84!3

!14

n

n

n

4

f) !!125!1 nnn 5

Page 27: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 27

Faktoriál

Varianta C

Příklady:

1) Vyjádřete pomocí faktoriálu 1...21 knnnn

2) Dokaţte, ţe pro všechny přípustné hodnoty n platí:

nnnnnnnnnn 23!1!1!13!1! 22

Řešení:

1) Nejprve musíme rozšířit výrazem 123...1

123...1

knkn

knkn , čitatel je po rozšíření

roven !n , jmenovatel je po rozšíření roven !kn .

1...21 knnnn

123...1

123...11...1

knkn

knknknnn

!!

kn

n

2) Upravíme levou stranu rovnice.

!1!13!1! 2 nnnnnnn

!1113!1!1 2 nnnnnnnnnn

nnnnn 131!1 23!1 nnn 23!1 2 nn

Příklad:

Varianta A

Varianta B

Varianta C

Výsledky řešení:

1) !

!

kn

n

2) Platí

Page 28: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

28 KOMBINATORIKA

Příklady k procvičení:

1) Vyjádřete pomocí faktoriálu

a) 4...8910

!3

!10

b) 50...9899100

!49

!100

c) 6...990

!5

!11

d) 1...21 kBABABABA

!

!

kBA

BA

2) Dokaţte, ţe pro všechny přípustné hodnoty n platí

a) !1!1!2 nnnnn

b) !1!1! 2 nnnnnn

c) nnnn 2!2!2!12

d)

!!!1

nn

n

n

n

e) 11!2!1!1! 2 nnnnnn

f) 32!2!1!2

nnnnnn

g) !!!1!! 2 nnnnnnnn

Page 29: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 29

Souhrnné příklady k procvičení

1) Upravte na společného jmenovatele

a) !4

1

!3

1

!4

5

b) !8

6

!7

12

!8

90

c) !7

6

!6

5

!5

4

!7

197

d) 1!2

23

!4

5

!4

53

2) Zjednodušte a určete podmínky

a)

!

!2

n

n

0,,12 nNnnn

b) !2

!2

n

n

2,,12 nNnnnn

c) !39

!40

n

n

40,,

39

1nNn

n

d)

!14

!4

n

n

1,,4 nNnn

e) !5

2

!4

nn

n

5,,

!4

8nNn

n

n

f) !1

!

!2

!1

n

n

n

n

2,,1 nNn

g) !1

!

!2

!

!2

!1

n

n

n

n

n

n

Nn

n,

2

2

3) Řešte v N nerovnice

a)

4!1

!2

n

n

2n

b)

5

!1

!

!

!1

n

n

n

n

2n

c)

6

!2

!2

!

!2

n

n

n

n

24 n

d) !13!!2 nnn

2n

Page 30: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

30 KOMBINATORIKA

Kombinační číslo

Vlastnosti kombinačních čísel

Pro všechna nezáporná celá čísla kn, nk , je !!

!

knk

n

k

n

Symbol

k

n se nazývá kombinační číslo a čteme ho „en nad ká“

Kombinační číslo určuje počet všech k -prvkových podmnoţin n -prvkové mnoţiny

Pro všechna nezáporná celá čísla kn, , nk platí:

k

n

k-n

n

Pro všechna nezáporná čísla kn, , nk 1 platí:

1k

1n

1k

n

k

n

Příklad: Dokaţte tvrzení:

Pro všechna nezáporná čísla kn, , nk 1 platí:

1k

1n

1k

n

k

n

Řešení: Kombinační čísla napíšeme ve tvaru zlomku dle definice kombinačního čísla,

faktoriály upravíme tak, abychom dostali zlomek ve tvaru

!!1

!1

knk

n

,

který lze opět podle definice napsat ve tvaru kombinačního čísla

1k

1n.

!1!1

!

!!

!

1k

n

k

n

kkn

n

knk

n

!!1

!!!1!

knk

knnkn

!!1

1!

knk

knkn

!!1

1!

knk

nn

!!1

!1

knk

n

1k

1n

Tvrzení je dokázané.

Page 31: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 31

Vlastnosti kombinačních čísel

Varianta A

Příklady:

Nechť 0Nn , spočítejte

1)

2

10 2)

0

n 3)

0

0 4)

5

6

4

6

Řešení:

1) Upravíme na zlomek dle definice kombinačního čísla, dopočítáme.

4595!2!8

!10

2

10

2) Upravíme na zlomek dle definice kombinačního čísla, dopočítáme

1!!0

!

0

n

nn

3) Upravíme na zlomek dle definice kombinačního čísla, dopočítáme

1!0

!0!0

0

0

4) Nejprve vyuţijeme, ţe platí

1k

1n

1k

n

k

n, pak upravíme na zlomek podle

definice kombinačního čísla a dopočítáme.

21!2!5

!7

5

7

5

6

4

6

Příklad:

Varianta A

Varianta B

Varianta C

Výsledky řešení:

1) 45

2) b) 1

3) 1

4) 21

Page 32: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

32 KOMBINATORIKA

Příklady k procvičení:

1) Vypočítejte

a)

3

12

220

b)

2

5

2

6

25

c)

6

7

5

7

28

d)

13

16

2

16

680

e)

6

8

6

9

56

f)

7

7

6

7

5

7

8

21

g)

2

4

4

5

2

5

2

5

h)

2

11

2

11

9

11

0

i)

1

2

2

3

2

5

3

6

2

j)

4

7

4

6

1

5

3

5

35

Page 33: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 33

2) Zjednodušte, předpokládejte přípustné hodnoty x

a)

1

x

x

b)

2

x

2

2 xx

c)

2x

x

2

2 xx

d)

3

1

x

x

2

232 xx

e)

48

50

x

x

2

2450992 xx

f)

1

2

1

3

x

x

x

x

2

1072 xx

g)

15

72

x

x

x

42122 xx

h)

2

4

3

5

x

x

x

x

4x

i)

01

1

xx

x

x

1

j)

1021

2 xxxx

x 122 xx

Page 34: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

34 KOMBINATORIKA

Vlastnosti kombinačních čísel

Varianta B

Příklady:

1) Vyjádřete jediným kombinačním číslem

a)

4

21

15

20

4

20

b)

9

13

9

12

9

11

9

10

9

9

2) Řešte v N

31-x

x

2

x

Řešení:

1)

a) Podle vztahu

k

n

k-n

nplatí, ţe

5

20

15

20, dále vyuţijeme toho, ţe platí

1k

1n

1k

n

k

n

5

22

4

21

5

21

4

21

5

20

4

20

4

21

15

20

4

20

b)

10

101

9

9, v dalších úpravách vyuţíváme vztahu

1k

1n

1k

n

k

n

9

13

9

12

9

11

9

10

10

10

9

13

9

12

9

11

9

10

9

9

10

14

10

13

9

13

9

13

10

12

9

12

9

13

9

12

10

11

9

11

Page 35: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 35

2) Kombinační čísla v rovnici upravíme podle definice kombinačního čísla, úpravou

faktoriálů dojdeme ke kvadratické rovnici.

31-x

x

2

x

3

!1!1

!

!2!2

!

x

x

x

x

3

2

1

x

xx

062 xx

2

24112,1

x

21 x

32 x není z oboru přirozených čísel

Zk. pro 21 x

L(2) = 3211

2

2

2

P(2) = 3 L(2) = P(2)

21 x je řešení rovnice

Příklad:

Varianta A

Varianta B

Varianta C

Výsledky řešení:

1)

a)

5

22

b)

10

14

2) 21 x

Page 36: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

36 KOMBINATORIKA

Příklady k procvičení:

1) Vyjádřete jedním kombinačním číslem

a)

2

5

4

5

4

6

b)

4

7

3

5

4

5

5

7

c)

2

6

5

6

1

6

2

6

3

8

d)

7

10

7

9

7

8

7

7

8

11

e)

4

9

5

8

5

7

5

6

5

5

6

10

f)

51

52

50

51

1

50...

1

3

1

2

1

1

2

53

2) Řešte v N rovnice

a)

3

10

3

6x 6x

b) 102

4

3

5

x

x

x

x

6x

c) 33

1

x

x

4x

d) 51

2

1

3

x

x

x

x

0x

e) 48715

72

x

x

x

x

1x

f)

2

51

1

36

1

1

1

4

x

x

x

x

2x

g)

1

1

5

1

17

8

2

1

x

x

x

xx

x

x

5x

h)

1

14

22

1

n

nxx

2x

Page 37: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 37

Vlastnosti kombinačních čísel

Varianta C

Příklad:

Nechť je dáno následující schéma

n=0

0

0

n=1

0

1

1

1

n=2

0

2

1

2

2

2

n=3

0

3

1

3

2

3

3

3

……………………………………………………..

n=k

0

k

1

k …………………………….

1k

k

k

k

Toto schéma se nazývá Pascalův trojúhelník.

Napište pátý řádek Pascalova trojúhelníku.

Page 38: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

38 KOMBINATORIKA

Řešení:

Jestliţe kombinační čísla v tomto schématu vyčíslíme např. pro n=3, dostaneme schéma ve

tvaru

1

1 1

1 2 1

1 3 3 1

Sobě rovná čísla jsou rozmístěna podle svislé přímky procházející jeho vrcholem. Můţeme

vidět, ţe platí, ţe součet dvou libovolných sousedních čísel v kaţdém jeho řádku je roven

číslu, které se nachází „pod jejich středem“ v řádku následujícím. To znamená, ţe můţeme

určit libovolný řádek Pascalova trojúhelníku, známe-li řádek předcházející.

Příklad:

Varianta A

Varianta B

Varianta C

Výsledek řešení:

Pátý řádek Pascalova trojúhelníku:

0

4

1

4

2

4

3

4

4

4

Page 39: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 39

Příklady k procvičení:

1) Napište

a) šestý řádek Pascalova trojúhelníku

5

5

4

5

3

5

2

5

1

5

0

5

b) řádek Pascalova trojúhelníků odpovídající n=7

7

7

6

7

5

7

4

7

3

7

2

7

1

7

0

7

c) (k+1). řádek Pascalova trojúhelníku

1

7

1

1

2

1

2

3

1

2

0

1

kk

k

k

kkkk

2) Napište devátý řádek Pascalova trojúhelníku, kombinační čísla vyčíslete.

18285670562881

3) Napište řádek Pascalova trojúhelníku odpovídající n=6, kombinační čísla vyčíslete.

1 6 15 20 15 6 1

4) Dopište druhou polovinu 10. řádku Pascalova trojúhelníku: 1 9 36 84 126

1 9 36 84 126 126 84 36 9 1

5) Sedmý řádek Pascalova trojúhelníku je 1 6 15 20 15 6 1. Odvoďte z něj šestý řádek.

1 7 21 35 35 21 7 1

Page 40: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

40 KOMBINATORIKA

Souhrnné příklady k procvičení

1) Určete, která z následujících kombinačních čísel jsou si rovna, aniţ je vyčíslíte.

a) ,2

14

,

8

15

,4

15

,5

15

,12

14

11

14,

11

15

11

15

4

15,

12

14

2

14

b) ,20

50

,

21

51

,22

52

,31

50

,30

51

34

54,

31

52

30

51

21

51

2) V N řešte nerovnice

a)

2

8

2

5x

3xN, x

b) 322

2

xx

2xN, x

c) 102

x

x

5x2N, x

d) 512

4

2

1

xx

5x1N, x

3) Dokaţte, ţe pro všechna nezáporná čísla , nk platí:

kn

n

k

n.

4) Dokaţte, ţe pro všechna nezáporná čísla n,k taková, ţe k je menší neţ n platí:.

i.

11

k

kn

k

n

k

n

kn,

Page 41: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 41

Binomická věta

Pro všechna čísla ba, a kaţdé přirozené číslo n platí:

n

k

kknnnnnnnba

k

nb

n

nab

n

nba

nba

na

nba

0

1221

1...

210

Kombinační čísla se nazývají binomické koeficienty.

k -tý člen binomického rozvoje má tvar: 11

1

kkn bak

n

Příklad: Určete 6. člen binomického rozvoje výrazu 102 x .

Řešení: Dosadíme do vzorce pro výpočet k -tého členu binomického rozvoje.

,2a ,xb

,6k

10n

5555580643247932

!5!5

!102

5

10xxxx

Šestý člen binomického rozvoje je 58064x .

Page 42: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

42 KOMBINATORIKA

Binomická věta

Varianta A

Příklady:

1) Vypočtěte pomocí binomické věty

a) 462 x

b) 31,2

2) Určete pátý člen binomického rozvoje výrazu 82ia .

Řešení:

1)

a) Dosadíme dle definice

43223446

4

462

3

462

2

462

1

42

0

462 xxxxx

432 1296172886419216 xxxx

b) Číslo 2,1 lze napsat jako 31102 , dále dosadíme dle definice binomické věty

a dopočítáme.

312112331 10

3

3102

2

3102

1

32

0

3102

261,9001,006,02,18

2) Dosadíme do vzorce pro výpočet k -tého členu binomického rozvoje.

,0a ,2ib ,5k 8n

44444 1120162516!4!4

!82

4

8aaaia

Pátý člen binomického rozvoje je .1120 4a

Příklad:

Varianta A

Varianta B

Varianta C

Výsledky řešení:

1)

a) 432 1296172886419216 xxxx

b) 261,9

2) 41120a

Page 43: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 43

Příklady k procvičení:

1) Vypočtěte pomocí binomické věty

a) 631 3120208

b) 51 x 5432 5101051 xxxxx

c) 6ba 654233245 61520156 babbabababaa

d) 426 a 432 1663214464836 aaaa

e) 532 yx 54322345 243810108072024032 yxyyxyxyxx

f) 433 i i3172

g)

4

2

yx

162

1

2

32

432234 y

xyyxyxx

h) 52 xx xxxxxxxxx 457810 510105

2) Vypočtěte pomocí binomické věty

a) 4001,1 004006004,1

b) 398,0 941192,0

c) 326,2 543176,11

d) 3014,0 000002744,0

3) Určete třetí člen binomického rozvoje výrazu

a) 712 x xx2672

b)

5

2

a

ca

2

5 2ac

c) 1032 iy

8103680 y

4) Určete pátý člen binomického rozvoje výrazu

a) 835 wz 12443750 wz

b)

6

32

yx

42

4860

yx

c) 722i i6720

Page 44: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

44 KOMBINATORIKA

5) Určete 15. člen binomického rozvoje výrazu

a) 176 2 xx xx 2680 14

b) 18xyy

18143060 yx

c)

16

y

ix

14

2120

y

x

Page 45: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 45

Binomická věta

Varianta B

1) Vypočtěte pomocí binomické věty 3311 xx .

2) Který člen binomického rozvoje výrazu

12

6

3 96

xx je absolutní?

Řešení:

1) Dosadíme dle definice

323233

2

3

1

3

0

3

2

3

1

3

0

311 xxxxxxxx

33 2621

32 xxxx

2) Pouţijeme vzorec pro výpočet k -tého členu binomického rozvoje.

Absolutní člen je ten, který neobsahuje x .

1

6

1123 96

1

12

kk

xx

k

kkkk xxk

66133913 961

12

kkk xk

945113 961

12

Aby nebyla ve výrazu obsaţena nula, musí platit: 0945 k .

459 k

5k

Příklad:

Varianta A

Varianta B

Varianta C

Výsledek řešení:

1) 326 xx

2) Absolutní je pátý člen binomického rozvoje.

Page 46: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

46 KOMBINATORIKA

Příklady k procvičení:

1) Vypočítejte pomocí binomické věty

a) 44

2121 4

b) 3311 ii i4

c) 3322 yxyx

32 1612 yyx

d) 9911 aa 0

e) 4412 yy

1528184 23 yyy

f) 3321 yy

999 2 yy

2) Určete, který člen binomického rozvoje výrazu

21

2 2

xx , je absolutní.

[Absolutní je 15. člen.]

3) Určete, který člen binomického rozvoje

12

12

aa , je absolutní.

[Absolutní je 7. člen.]

4) Určete, který člen binomického rozvoje výrazu

13

3

17

2

y

iy ,obsahuje

a) 3y [10. člen]

b) 15y [7. člen]

5) Určete, který člen binomického rozvoje výrazu

14

6

1

abab

a) neobsahuje a [8. člen].

b) neobsahuje b [3. člen]

6) Určete, který člen binomického rozvoje výrazu 3262 52 xx ,

a) je absolutní [9. člen]

b) obsahuje 24x [12. člen]

Page 47: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 47

Binomická věta

Varianta C

1) V binomickém rozvoji výrazu 102 3x určete koeficient členu obsahujícího 6x .

2) S vyuţitím binomické věty vyjádřete jako jedno číslo součet

6

6

5

6

4

6

3

6

2

6

1

6

0

6.

Řešení:

1) Musíme zjistit, který člen obsahuje 6x . Pouţijeme vzorec pro výpočet k -tého členu

binomického rozvoje.

11102 31

10

kkx

k

1222 31

10

kkxk

Koeficient x musí být roven šesti.

6222 k

8k

8k dosadíme do téhoţ vzorce a dopočítáme.

6676732 26244072949103!3!7

!103

7

10xxxx

Koeficient je 262 440.

2) Je vidět, ţe daný součet odpovídá binomickému rozvoji 611 .

00116

6

5

6

4

6

3

6

2

6

1

6

0

666

Příklad:

Varianta A

Varianta B

Varianta C

Výsledek řešení:

1) Koeficient je 262 440.

2) 0

Page 48: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

48 KOMBINATORIKA

Příklady k procvičení:

1) V binomickém rozvoji výrazu 55 1x určete koeficient členu obsahujícího

a) 8x 5

b) 6x 10

2) V binomickém rozvoji výrazu 82 3x určete koeficient členu obsahujícího

a) 6x 13608

b) 10x 4536

3) V binomickém rozvoji výrazu

143

22

yurčete koeficient členu obsahujícího

a) 24y

32

3003

b) 15y 21001

4) V binomickém rozvoji výrazu

13

6 42

4 12

yyy určete koeficient členu obsahujícího

a) 4y 292864

b) 28y 26

5) Nalezněte koeficient členu, který obsahuje 3x u mnohočlenu 42511 xxxx .

6

6) Nalezněte koeficient členu, který obsahuje 4x u mnohočlenu 10

5

112

xx

x.

77

7) Nalezněte koeficient členu, který obsahuje 6x u mnohočlenu

726352 1132 xxxxx . [-495]

Page 49: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 49

8) S vyuţitím binomické věty vyjádřete jako jedno číslo součet

a)

7

7

6

7

5

7

4

7

3

7

2

7

1

7

0

7

128

b)

4

416

3

48

2

44

1

42

0

4

1

c)

5

5243

4

5162

3

5108

2

572

1

548

0

532

1

d)

n

n

n

nnnn

1210

n2

e)

n

n

n

nnnnn nn1

11

3210

1

0

f)

n

n

n

nnnnnn 3

13

29

13

0

1

n4

g)

n

n

n

nnnnn nn2

12

38

24

12

0

1

n1

Page 50: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

50 KOMBINATORIKA

Souhrnné příklady k procvičení:

1) S vyuţitím binomické věty řešte rovnici

a) 92133 yy 1,0 21 xx

b) 814211 244 xxxx 2x

2) V binomickém rozvoji výrazu 623 x je čtvrtý člen roven číslu 160. Vypočtěte x .

3

1x

3) V binomickém rozvoji výrazu

10

11

y je třetí člen roven číslu 5. Vypočtěte y .

3y

4) V binomickém rozvoji výrazu 12

22 y je jedenáctý člen roven číslu 528.

Vypočtěte y .

4

1y

5) V binomickém rozvoji výrazu nxx 2 určete n tak, aby třetí člen byl tvaru 8

4

15x .

6n

6) V binomickém rozvoji výrazu

n

yy

22 určete n tak, aby sedmý člen byl tvaru

y215040 . 10n

7) Určete počet racionálních členů binomického rozvoje výrazu

a) 52

12 26

b) 63 32 2

8) Určete všechny členy binomického rozvoje výrazu 743 2 32 , které jsou racionálním

číslem. 420

9) V binomickém rozvoji výrazu

7

2

5

1

xx určete člen, který obsahuje

2x , a dále určete

pro která x je tento člen roven 3125

343.

5

7,

125

7 2x

Page 51: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 51

10) V binomickém rozvoji výrazu

9

2

12

xx určete, který člen obsahuje x , a dále určete,

pro která Zx je tento člen větší nebo roven neţ -12.

0,.5 xZxčlen

11) V binomickém rozvoji výrazu

n

xx

2

5 1 je koeficient u druhého členu 7-krát větší neţ

koeficient u posledního členu. Určete absolutní člen.

21

12) V binomickém rozvoji výrazu

n

xx

1 je koeficient u druhého členu o 5 větší neţ

koeficient u posledního členu. Určete absolutní člen.

15

13) V binomickém rozvoji výrazu

n

xx

5

2 1 je koeficient u třetího členu 91-krát větší neţ

koeficient u posledního členu. Určete absolutní člen.

1001

14) V binomickém rozvoji výrazu

n

xx

1 je koeficient u třetího členu o 65 větší neţ

koeficient u posledního členu. Určete absolutní člen.

495

Page 52: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

52 KOMBINATORIKA

Variace

Nechť je dána neprázdná konečná množina, která má n prvků.

Každá uspořádaná k -tice, sestavená z těchto prvků tak, že každý se v ní vyskytuje nejvýše

jednou, se nazývá k-členná variace (variace k-té třídy) z n prvků.

Počet nkV , všech k-členných variací z n prvků je:

nkV , !

!1...21

kn

nknnnn

pro všechna nk

Příklad: Určete počet všech přirozených trojciferných čísel, v jejichţ dekadickém zápisu

se kaţdá z číslic 0,2,3,5,7 vyskytuje nejvýše jednou.

Řešení: Tvoříme uspořádané trojice z pěti různých číslic.

Jejich počet je 603455,3 V

Nesmíme zapomenout, ţe je třeba odečíst všechna čísla začínající nulou.

Jejich počet je 12344,2 V

4812604,25,3 VV

Počet všech trojciferných čísel vyhovujících zadaným podmínkám je 48.

Page 53: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 53

Variace

Varianta A

Příklady:

1) Vytvořte všechny variace druhé třídy z prvků mnoţiny zyxM ,, tak, ţe se kaţdý

prvek vyskytuje nejvýše jednou.

2) Z kolika různých prvků je moţné vytvořit 132 variací druhé třídy?

Řešení:

1) Tvoříme uspořádané dvojice ze tří prvků. Jejich počet bude 6233,2 V

yx, , zx, , zy, , xy, , xz, , yz,

2) Pouţijeme vzorec pro výpočet počtu k-členných variací z n prvků. Sestavíme následující

rovnici, kterou upravíme.

132

!2

!

n

n

132!2

!2!1

n

nnn

1321 nn Z

01322 nn

2

528112,1

n

121 n

112 n

Záporný počet prvků je nesmysl.

Příklad:

Varianta A

Varianta B

Varianta C

Výsledky řešení:

1) yx, , zx, , zy, , xy, , xz, , yz,

2) 132 variací 2. třídy je moţné vytvořit z 12 prvků.

Page 54: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

54 KOMBINATORIKA

Příklady k procvičení:

1) Vytvořte všechny uspořádané trojice z prvků mnoţiny 4,3,2,1M tak, ţe se kaţdý

prvek vyskytuje nejvýše jednou.

[[1,2,3],[1,2,4],[1,3,2],[1,3,4],[1,4,2],

[1,4,3],[2,1,3],[2,1,4],[2,3,1],[2,3,4],

[2,4,1],[2,4,3],[3,1,2],[3,1,4],[3,2,1],

[3,2,4],[3,4,1],[3,4,2],[4,1,2],[4,1,3],

[4,2,1],[4,2,3],[4,3,1],[4,3,2]]

2) Kolik variací páté třídy je moţné sestavit z osmi různých prvků? [6720]

3) Kolik uspořádaných čtveřic lze vytvořit z třiceti různých prvků, jestliţe se v nich ţádný

prvek neopakuje?

[24 387]

4) Z kolika různých prvků lze vytvořit 30 521 variací první třídy?

[30 521]

5) Z kolika různých prvků lze vytvořit 1722 variací druhé třídy? [42]

6) Určete počet prvků, z nichţ lze utvořit

a) 272 dvoučlenných variací. [17]

b) 1122 dvoučlenných variací. [34]

7) Určete počet prvků, jestliţe počet variací druhé třídy bez opakování je 25 krát menší neţ

počet variací třetí třídy bez opakování. [27]

8) Z kolika prvků lze vytvořit 4 krát více variací čtvrté třídy neţ variací třetí třídy? [7]

9) Určete počet prvků, z nichţ lze utvořit

a) 56 krát více čtyřčlenných variací neţ dvoučlenných variací. [10]

b) 30 krát méně variací třetí třídy neţ variací páté třídy. [9]

10) Zvětšíme-li počet prvků o jeden, zvětší se počet variací třetí třídy bez opakování o 330.

Určete původní počet prvků. [11]

11) Zvětší-li se počet prvků o dva, zvětší se počet dvoučlenných variací z těchto prvků

a) o 26

b) 2,1 krát

Určete původní počet prvků. [a) 6, b) 5]

12) Zmenší-li se počet prvků o dva, zmenší se počet variací čtvrté třídy 3 krát. Určete původní

počet prvků. [10]

13) Zmenší-li se počet prvků o 2, zmenší se počet variací druhé třídy z těchto prvků

vytvořených o 38. Určete původní počet prvků. [11]

Page 55: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 55

Variace

Varianta B

Příklady:

1) Kolik různých trojciferných přirozených čísel dělitelných deseti lze sestavit z číslic 0, 1, 2,

3, 4, 5, 6, 7, 8, 9, jestliţe se ţádná číslice neopakuje.

2) Mistrovství světa v hokeji se účastní 16 muţstev, Kolik různých umístění můţe být na

prvních třech místech.

Řešení:

1) Čísla dělitelná deseti musí mít na konci nulu, takţe sestavujeme uspořádané dvojice

z devíti prvků.

Jejich počet je 7289!7

!99,2 V

2) Máme vytvořit uspořádané trojice z 16 prvků.

Jejich počet je 3360141516

!13

!1616,3 V

Příklad:

Varianta A

Varianta B

Varianta C

Výsledky řešení:

1) Počet všech trojciferných přirozených čísel dělitelných deseti

je 72.

2) Na prvních třech místech můţe být 3360 různých umístění.

Page 56: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

56 KOMBINATORIKA

Příklady k procvičení:

1) Kolik různých dvojciferných přirozených čísel lze sestavit z číslic 2, 4, 6, 8, jestliţe se

ţádná číslice neopakuje. [ 124,2 V ]

2) Kolik různých trojciferných přirozených čísel lze sestavit z číslic 1, 3, 5, 7, 9, jestliţe se

ţádná číslice neopakuje. [ 605,3 V ]

3) Kolik je čtyřciferných přirozených čísel s různými ciframi, jestliţe tato čísla neobsahují

cifry 0,2,4. [ 8407,4 V ]

4) Kolik je trojciferných přirozených dvojkou dělitelných čísel s různými ciframi, jestliţe

tato čísla neobsahují cifry 0, 4, 6, 8. [ 205,2 V ]

5) Kolik čtyřciferných přirozených čísel lze sestavit z číslic 1, 2, 3, 5, 6, 7, jestliţe se ţádná

číslice neopakuje a na místě desítek je šestka. [ 605,3 V ]

6) Kolik čtyřciferných přirozených čísel lze sestavit z číslic 1, 2, 3, 5, 7, 9 tak, aby se ţádná

číslice neopakovala. Kolik jich je dělitelných dvěma? [ 3606,4 V , 605,3 V ]

7) Kolika způsoby lze rozdělit tři medaile mezi 28 účastníků soutěţe v orientačním běhu?

[ 1965628,3 V ]

8) V hokejové extralize je 14 muţstev. Kolika způsoby můţe být na konci ligového ročníku

obsazeno první, druhé a třetí místo. [ 218414,3 V ]

9) V anglické první fotbalové lize hraje 20 muţstev, z nichţ se do ligy mistrů mají moţnost

kvalifikovat první čtyři. Kolika způsoby můţe být na konci soutěţe obsazeno první, druhé,

třetí a čtvrté místo? [ 11628020,4 V ]

10) V zastupitelstvu zasedá 20 lidí. Kolika způsoby můţeme zvolit starostu a místostarostu?

[ 38020,2 V ]

11) V senátu zasedá 81 senátorů. Kolika způsoby lze zvolit předsedu a místopředsedu?

[ 648081,2 V ]

12) Pavel chce mít kaţdou stěnu v pokoji nabarvenou jinou barvou. K dispozici má 8 různých

barev (bílou, modrou, ţlutou, černou, červenou, modrou, zelenou, oranţovou). Kolika

způsoby, můţe vymalovat obývací pokoj, jestliţe stěnu, která je naproti oknu, chce mít

vymalovaný bílou barvou. [ 2107,3 V ]

13) K otevření trezoru je třeba znát šestimístný číselný kód. Kolik existuje moţností, jak kód

sestavit, jestliţe se ţádná číslice neopakuje. [ 15120010,6 V ]

Page 57: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 57

14) K otevření trezoru je třeba znát šestimístný číselný kód. Kolik existuje moţností, jak kód

sestavit, jestliţe se ţádná číslice neopakuje a kód je dělitelný padesáti. [ 16808,4 V ]

15) Do stojanu na CD a DVD se vejde 30 CD nebo DVD. Kolika způsoby do něj lze dát 5

různých CD? [ 1710072030,5 V ]

16) Čtyři přátele si slíbili, ţe si kaţdý rok o Vánocích pošlou pohlednici. Kolik pohlednic bylo

rozesláno? [ 124,2 V ]

Page 58: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

58 KOMBINATORIKA

Variace

Varianta C

Příklady:

1) Na parkovišti je pět řad parkovacích míst. Do kaţdé řady se vejdou čtyři auta. Dvě místa

v první řadě jsou rezervována pro handicapované. Kolika způsoby můţe zaparkovat šest

různých aut, jestliţe pan Slabozraký bude parkovat na místě pro handicapované.

(Nikdo jiný na místě pro handicapované parkovat nebude).

2) Kolik různých přirozených čísel větších neţ 100 a menších neţ 12 000 lze utvořit tak, aby

se v jejich dekadickém zápisu ţádná číslice neopakovala?

Řešení:

1) Pan Slabozraký má dvě moţnosti, jak zaparkovat, zbytek aut můţe parkovat na kterémkoli

z dalších 18 míst. Takţe budeme tvořit uspořádané pětice z osmnácti prvků, které

vynásobíme dvěma.

205632014151617182!13

!18218,52 V

2) Sestavujeme troj a čtyř a pěticiferná čísla z desíti číslic.

Počet všech trojciferných číslic větších neţ 100, která nezačínají nulou je 9,210,3 VV

Počet všech čtyřciferných číslic, která nezačínají nulou je 9,310,4 VV

Pěticiferná čísla musí být menší neţ 12 000, takţe musí začínat jedničkou a na místě

tisícovek musí být nula. Počet takových pěticiferných čísel je 8,3V

55203364536648!4

!8

!6

!9

!6

!10

!7

!9

!7

!108,39,210,39,210,3 VVVVV

Příklad:

Varianta A

Varianta B

Varianta C

Výsledky řešení:

1) Auta mohou zaparkovat 2 056 320 způsoby.

2) Je moţno sestavit 5520 takových čísel.

Page 59: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 59

Příklady k procvičení:

1) Kolik čtyřciferných přirozených čísel s různými číslicemi lze sestavit z číslic 0, 1, 2, 4, 5,

6, 7. [ 7203,64,7 VV ]

2) Kolik různých přirozených nejvýše trojmístných čísel s různými číslicemi lze sestavit

z číslic 0, 1, 2, 3, 4, 5, 6, 7. [ 3502,73,81,72,87 VVVV ]

3) Jsou dány cifry 1, 2, 3, 4, 5. Cifry nelze opakovat. Kolik je moţno vytvořit z těchto cifer

přirozených čísel, která jsou čtyřmístná sudá. [ 483,42 V ]

4) Určete počet všech přirozených čísel menších neţ 358, v jejichţ dekadickém zápisu jsou

pouze cifry 3, 5, 7, 9, kaţdá nejvýše jednou. [ 1712,44 V ]

5) Určete počet všech přirozených čísel menších neţ 476, v jejichţ dekadickém zápisu jsou

pouze cifry 3, 5, 7, 9, kaţdá nejvýše jednou. [ 222,442,3 VV ]

6) Určete počet všech lichých trojciferných přirozených čísel s různými číslicemi, jejichţ

dekadický zápis je tvořen z číslic 0, 1, 2, 3, 4, 6. [ 321,422,52 VV ]

7) Určete počet všech sudých trojciferných čísel s různými číslicemi, jejichţ dekadický zápis

je tvořen z číslic 0, 1, 2, 3, 4, 6. [ 682,51,432,53 VVV ]

8) O telefonním čísle víme, ţe je devítimístné, neobsahuje ţádné dvě stejné číslice, nezačíná

nulou a je dělitelné 20. Kolik telefonních čísel přichází v úvahu. [ 1612808,74 V ]

9) Ve třídě 3. B je 18 lavic, které jsou uspořádány do šesti řad po třech lavicích. Do kaţdé

lavice se můţou posadit dva studenti. Kolika způsoby lze rozmístit 30 studentů, jestliţe

a) Marek a Kamila budou sedět spolu. [ 29,362 V 3710476,1 ]

b) Radek chce sedět v první řadě. [ 29,356 V 371061,8 ]

c) Lucie nechce sedět s Honzou. [ 381002,534,2836306 VV ]

d) Karolína nechce sedět v poslední řadě. [

3810306,429,3530 V ]

10) V chemické učebně je 15 lavic, které jsou spořádány do pěti řad po třech lavicích. Do

kaţdé lavice se můţou posadit dva studenti. Kolika způsoby lze rozmístit 13 studentů tak,

a) aby kaţdý seděl v lavici sám. [ 15,132 V 1210308,1 ]

b) aby druhá a čtvrtá řada byla prázdná. [ 131034,518,13 V ]

c) aby Petr a Libor neseděli spolu. [ 17102,728,113030,13 VV ]

d) aby Hanka seděla v první řadě v prostřední lavici. [

1610972,429,122 V ]

Page 60: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

60 KOMBINATORIKA

Permutace

Permutace z n prvků je uspořádaná n -tice sestavená z těchto prvků tak, že každý se v ní

vyskytuje nejvýše jednou.

Počet nP všech k -členných permutací z n prvků je:

!nnP

Příklad: Kolika způsoby lze zamíchat balíček 32 karet?

Řešení: Rozlišujeme čísla i barvy, takţe budeme tvořit uspořádané 32-tice z 32 prvků.

Jejich počet je 351063,2!3232 P

Karty lze zamíchat 351063,2 způsoby.

Page 61: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 61

Permutace

Varianta A

Příklady:

1) Vytvořte všechny uspořádané trojice z prvků mnoţiny CBAM ,, tak, aby se ţádný

prvek neopakoval.

2) Určete počet všech čtyřciferných přirozených čísel, která lze sestavit z číslic 1,2,3,4 tak,

aby se ţádná číslice neopakovala.

Řešení:

1) Jedná se o permutaci ze tří prvků, počet takových trojic bude 623!33 P

CBA ,, , BCA ,, , CAB ,, , ACB ,, , BAC ,, , ABC ,,

2) Tvořím uspořádané čtveřice ze čtyř prvků

Jejich počet je 24!44 P

Počet všech čtyřciferných čísel sestavených z daných číslic je 24.

Příklad:

Varianta A

Varianta B

Varianta C

Výsledky řešení:

1) CBA ,, , BCA ,, , CAB ,, , ACB ,, , BAC ,, , ABC ,,

2) Počet všech čtyřciferných čísel sestavených z daných číslic je 24.

Page 62: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

62 KOMBINATORIKA

Příklady k procvičení:

1) Vytvořte všechny uspořádané dvojice z prvků mnoţiny 2,1M tak, aby se ţádný prvek

neopakoval. [[1, 2],[2, 1]]

2) Vytvořte všechny uspořádané čtveřice z prvků mnoţiny zyxwM ,,, tak, aby se ţádný

prvek neopakoval. [[w, x, y, z],[w, x, z, y],[w, y, x, z],[w, y, z, x],

[w, z, x, y],[w, z, y, x],[x, w, y, z],[x, w, z, y],

[x, y, w, z],[x, y, z, w],[x, z, w, y],[x, z, y, w],

[y, w, x, z],[y, w, z, x],[y, x, w, z],[y, x, z, w],

[y, z, w, x],[y, z, x, w],[z, w, x, y],[z, w, y, x],

[z, x, w, y],[z, x, y, w],[z, y, w, x],[z, y, x, w]]

3) Kolik permutací bez opakování je moţné sestavit z pěti různých prvků? [120]

4) Kolik uspořádaných osmic lze vytvořit z osmi různých prvků tak, aby se ţádný prvek

neopakoval? [40 320]

5) Kolik šesticiferných přirozených čísel lze sestavit z číslic 1, 2, 3, 4, 5, 6, jestliţe se

v ţádném čísle nemá opakovat ţádná číslice. [720]

6) Kolik čtyřciferných přirozených čísel je moţné sestavit z číslic 2, 4, 6, 8, jestliţe se

v ţádném čísle nemá opakovat ţádná číslice. [24]

7) Kolik čtyřciferných přirozených čísel dělitelných pěti je moţné sestavit z číslic,

a) 0, 2, 4, 6,

b) 4, 5, 6, 7,

jestliţe se v ţádném čísle nemá opakovat číslice. [a) 6, b) 6]

8) Kolik pěticiferných přirozených lichých čísel lze sestavit z číslic 1, 2, 4, 6, 8, jestliţe

v jejich dekadickém zápisu jsou kaţdé dvě číslice různé. [24]

9) Kolika způsoby lze postavit do řady 15 vojáků? [ 1210308,1 ]

10) Ve třídě 4.A je 30 míst a v plném počtu 30 studentů. Kolika způsoby lze sestavit zasedací

pořádek? [

321062,2 ]

11) Na vědecké konferenci má vystoupit 7 různých vědců. Určete počet všech moţných

pořadí jejich vystoupení. [5 040]

Page 63: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 63

12) Kolik různých slov majících i nemajících smysl lze vytvořit z písmen slova

a) FLORIDA [5 040]

b) JUDITA [720]

c) KNIHA [120]

13) Závod v triatlonu má 52 účastníků. Určete počet všech moţných výsledků této soutěţe,

jestliţe

a) všichni závod dokončí. [

671007,8 ]

b) polovina závodníků závod vzdá. [

261003,4 ]

Page 64: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

64 KOMBINATORIKA

Permutace

Varianta B

Příklady:

1) Zvětší -li se počet prvků o dva, zvětší se počet permutací bez opakování z těchto prvků

20 krát. Určete původní počet prvků.

2) Určete, kolika způsoby lze přemístit písmena slova KOMBINACE tak, aby v tomto

přemístění nějaká skupina po sobě jdoucích písmen tvořila slovo EMA.

Řešení:

1) Dle zadání vytvoříme rovnici nPnP 202 , kterou vyřešíme. Řešení musí být

přirozené číslo.

nPnP 202

!20!2 nn

2012 nn

01832 nn

2

72932,1

n

31 n

62 n

2) Trojici písmen EMA bereme jako jedno písmeno. Budeme tvořit uspořádané sedmice ze

sedmi prvků.

Jejich počet je 5040!77 P

Příklad:

Varianta A

Varianta B

Varianta C

Výsledky řešení:

1) Prvky jsou 3.

2) Písmena slova KOMBINACE lze poţadovaným způsobem

přemístit 5 040 krát.

Page 65: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 65

Příklady k procvičení:

1) Určete počet prvků tak, aby z něj bylo moţné vytvořit

a) 5040 permutací bez opakování [7]

b) 120 permutací bez opakování. [5]

2) Zvětší-li se počet prvků o jeden, zvětší se počet permutací bez opakování z těchto prvků

a) 7 krát.

b) 132 krát.

Určete původní počet prvků. [a) 6, b) 131]

3) Zvětší-li se počet prvků o dva, zvětší se počet permutací bez opakování z těchto prvků

a) 72 krát.

b) 132 krát.

c) 210 krát

d) 380 krát.

Určete původní počet prvků. [a) 7, b) 10, c) 13, d) 18 ]

4) Zmenší-li se počet prvků o 3, zmenší se počet permutací bez opakování z těchto prvků

a) 24 krát.

b) 60 krát.

Určete původní počet prvků. [a) 4, b) 5]

5) Na mezinárodní vědecké konferenci vystoupí 8 vědců z osmi různých zemí. Určete počet

pořadí,

a) v nichţ vědec z Finska vystupuje ihned po vědci z USA. [ 7P 5040]

b) v nichţ vědec z Německa vystupuje mezi vědcem z Holandska a Ruska.

[ 6P 720]

6) Závodu v moderní gymnastice se účastní 17 děvčat. Určete počet všech moţných pořadí,

kde

a) se Aneta umístí ihned za Kamilou. [ 16P 131009,2 ]

b) Klára skončí mezi Dominikou a Monikou. [ 15P 121031,1 ]

7) Určete, kolika způsoby lze přemístit písmena slova EVROPA tak, aby v tomto přemístění

nějaká skupina po sobě jdoucích písmen tvořila slovo EPO. [ 4P 24]

8) Určete kolik různých přirozených osmiciferných čísel lze vytvořit z číslic 1, 2, 3, 4, 5, 6,

7, 8 tak, aby se ţádná číslice neopakovala a aby dvojka byla ihned za jedničkou.

[ 7P 5040]

Page 66: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

66 KOMBINATORIKA

Permutace

Varianta C

Příklady:

1) Kolika způsoby lze seřadit 11 lidí, jestliţe Monika a David nechtějí stát vedle sebe.

2) Určete, kolika způsoby můţeme navléknout na nit deset různě barevných korálků. Konec

nitě poté sváţeme.

Řešení:

1) Počet všech moţností, jak vedle sebe seřadit 11 lidí je !1111 P .

Počet všech moţností, jak vedle sebe seřadit 11 lidí je, kdyţ David a Monika stojí vedle

sebe je !102102 P .

32659200725760039916800!10!1110211 PP

2) Uspořádání, které se liší jen otočením v kruhu, nepovaţujeme za různé.

Nejprve určíme počet všech uspořádání, jako kdybychom navlékali vedle sebe !1010 P .

V tomto počtu jsou ale započítány i umístění, která se liší jen otočením v kruhu. Těchto

umístění je deset pro kaţdé upořádání.

362880!9

10

!10

10

10

P

Příklad:

Varianta A

Varianta B

Varianta C

Výsledky řešení:

1) Lidi lze seřadit 32 659 200 způsoby.

2) Korálky můţeme navléknout 362 880 způsoby.

Page 67: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 67

Příklady k procvičení:

1) Určete, kolika způsoby můţe 12 dětí nastoupit do řady, jestliţe

a) dvě děti chtějí stát vedle sebe. [ 112 P 79 833 600]

b) jedno dítě chce stát na kraji. [ 112 P 79 833 600]

c) dvě děti chtějí stát vedle sebe a jedno na kraji. [ 1122 P 14 515 2500]

d) tři děti chtějí stát vedle sebe. [ 113 PP 21 772 800]

e) dvě děti nechtějí stát vedle sebe. [ 11212 PP 399 168 000]

f) jedno dítě nechce stát na kraji. [ 11212 PP 399 168 000]

2) Novoročního plaveckého závodu ve Vltavě se kvůli velké zimě zúčastnilo jen 8 plavců.

Určete počet pořadí, v nichţ pan Vondruška doplaval za panem Štikou.

[ 82

1P 20160]

3) Určete počet všech způsobů, jakými lze postavit do řady 3 muţe a 5 ţen tak, aby všechny

ţeny stály před muţi. [ 53 PP 720]

4) Určete počet všech šesticiferných přirozených čísel, v nichţ se číslice neopakují a která

lze utvořit z číslic 2, 3, 4, 5, 6, 7 tak, ţe

a) sudé číslice stojí na lichých místech a liché číslice stojí na sudých místech.

[ 33 PP 36]

b) ţádné dvě sudé ani ţádné dvě liché číslice nestojí vedle sebe. [ 332 PP 72]

5) Určete, kolika způsoby se můţou posadit rytíři kulatého stolu, jestliţe záleţí jen na

vzájemném umístění. Rytířů je 25. [

25

25P 2310204,6 ]

6) Na duchovní seanci přijde 6 účastníků. Kolika způsoby se můţou rozesadit okolo kulatého

stolu, jestliţe záleţí jen na vzájemném pořadí. [

6

6P120]

Page 68: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

68 KOMBINATORIKA

Souhrnné příklady k procvičení

1) Vypočtěte

a) 45,2 PV [-4]

b) 34 PP [30]

c) 6,16,26,3 VVV [156]

d) 4,23424,2 VPV [0]

2) Řešte rovnice

a) 201,1 xV

19x

b) 01,2 xV

řešenínemá

c) 324,2 xV

12x

d) 123,2 xV

1x

3) Řešte v N nerovnice

a) 02,2 xV

4 xNx

b) 202,2 xV

3 xNx

c) 601,23 xV

6 xNx

4) Určete, kolika způsoby můţe (m+1) chlapců a (n+2) dívek nastoupit do zástupu tak, aby

nejdříve stály všechny dívky a pak všichni chlapci. !2!1 nm

5) V biochemické laboratoři se rozhodlo prozkoumat účinnost pěti léků, které měl být

podávány pokusným myším vţdy po dvou, přičemţ chtěli zjistit, zda záleţí na pořadí

uţívaných látek. Kaţdý pokud byl proveden na jedné myši. Kolik myší bylo potřeba?

[20]

6) Martin byl s přáteli na utkání v házené, po kterém šel s přáteli oslavit svůj svátek do

oblíbené hospůdky, kde vypil 10 piv. Doma se ho manţelka ptala, jak utkání skončilo, ale

Martin si po deseti vypitých pivech byl schopen vzpomenou pouze na to, ţe utkání

neskončilo nerozhodně a ţe ţádné z obou druţstev nevstřelilo vice neţ 27 a méně neţ 16

košů. Určete počet všech moţných výsledků. [132]

7) Kolik různých výsledků můţe mít zápas ve florbale, jestliţe obě muţstva nastřílí nejvýše

po čtyřech gólech, přičemţ hostující muţstvo dostane alespoň jeden gól a remíza nastane

pouze v případě, ţe obě muţstva střelí pouze dva góly. [17]

Page 69: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 69

8) Kolik pěticiferných čísel bez opakování je moţno sestavit z cifer 1, 2, 3, 4, 5, jestliţe čísla

mají začínat 2 nebo 4 nebo 5. [72]

9) Určete počet všech čtyřciferných přirozených čísel, v jejichţ dekadickém zápisu je kaţdá

z číslic obsaţena 0,2,4,5 právě jednou. Kolik z těchto číslic je větších neţ 4000.

[18, 12]

Page 70: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

70 KOMBINATORIKA

Kombinace

K-členná kombinace z n prvků je neuspořádaná k-tice sestavená z těchto prvků tak, že

každý se v ní vyskytuje nejvýše jednou.

Počet ),( nkK všech k -členných kombinací z n prvků je:

k

n),( nkK

Příklad: Do tanečních chodí 32 dívek a 28 chlapců. Kolik různých párů mohou vytvořit?

Řešení: Tvoříme neuspořádané dvojice chlapecdívka, .

Počet všech moţností, jak vybrat dívku je 32,1K .

Počet moţností, jak vybrat chlapce je 28,1K .

Oba počty vynásobíme. Vyuţíváme kombinatorické pravidlo součinu.

89628321

28

1

3228,132,1

KK

Můţeme vytvořit 896 různých párů.

Page 71: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 71

Kombinace

Varianta A

Příklady:

1) Vytvořte všechny neuspořádané trojice z prvků mnoţiny dcbaM ,,, tak, ţe kaţdý

prvek se v ní vyskytuje nejvýše jednou.

2) Řešte v N rovnici 32,2 xK

Řešení:

1) Jedná se o troj-člennou kombinaci ze čtyř prvků. Počet takových kombinací je

4!1!3

!4

3

44,3

K

.

cba ,, dca ,, dcb ,, dba ,,

2) Kombinační číslo nahradíme zlomkem, rovnici upravíme.

32,2 xK

32

2x

3

!2!

!2

x

x

612 xx

0432 xx

2

16932,1

x

11 x

42 x

-4 není přirozené číslo, takţe výsledek je pouze číslo 1

Příklad:

Varianta A

Varianta B

Varianta C

Výsledky řešení:

1) cba ,, dca ,, dcb ,, dba ,,

2) 11 x

Page 72: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

72 KOMBINATORIKA

Příklady k procvičení:

1) Vytvořte všechny neuspořádané dvojice z prvků mnoţiny M tak, ţe kaţdý prvek se v ní

vyskytuje nejvýše jednou.

a) 4,3,2,1M 4,34,23,24,13,12,1

b) 3,2,1M 3,23,12,1

2) Určete počet všech pětičlenných kombinací z

a) deseti prvků. [252]

b) patnácti prvků. [3003]

3) Řešte v N rovnice

a) 31,2 xK 2x

b) 1010,2 xK 15x

c) 455,2 xK 15x

d) 34,3 xxK řešenínemáNv

e) 105,3 xxK řešenínemáNv

f) 442

42,2

1

2

xxK 8x

g) 5,18,25

15,32,2

3

46,5,1 KKKxKKxK

1x

h) 3,26,21,13

54,11,2 KKxKKxK

2x

4) Řešte v N nerovnice

a) 36)1,2( xK 81 xNx

b) 3)6,2( xK 9 xNx

c) 15)2,4(),2( xxKxxK 94 xNx

Page 73: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 73

Kombinace

Varianta B

Příklady:

Ve třídě je 13 děvčat a 15 chlapců. Kolika způsoby je moţné vybrat 3 studenty tak, aby ve

skupině byli

1) samí chlapci

2) samé dívky

3) 2 chlapci a jedna dívka

Řešení:

1) Vybírám trojici chlapců z patnácti. Je mi jedno v jakém pořadí. Takţe tvoříme

neuspořádané trojice z patnácti prvků.

Jejich počet je 4551375!3!12

!15

3

1515,3

K .

2) Vybírám trojici dívek z třinácti. Je mi jedno v jakém pořadí. Takţe tvoříme neuspořádané

trojice z 13 prvků.

Jejich počet je 286111213!3!10

!13

3

1313,3

K .

3) Vybírám dvojici chlapců z patnácti a jednu dívku z třinácti. Je mi jedno v jakém pořadí.

Počet všech moţností jak vybrat chlapce je

2

1515,2K

Počet všech moţností jak vybrat dívky je

1

1313,1K

Oba počty vynásobíme 13657131513!2!13

!15

1

13

2

1513,115,2

KK

Příklad:

Varianta A

Varianta B

Varianta C

Výsledky řešení:

1) Studenty je moţné vybrat 455 způsoby.

2) Studenty je moţné vybrat 286 způsoby.

3) Studenty je moţné vybrat 1365 způsoby.

Page 74: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

74 KOMBINATORIKA

Příklady k procvičení:

1) Určete, kolika způsoby lze na šachovnici 8x8 vybrat

a) 4 políčka. [ 64,4K 635 376]

b) 5 políček. [ 64,5K 7 624 512]

2) Na setkání přišlo 10 účastníků. Všichni si navzájem podali ruce. Kolik podání ruky

neuskutečnilo? [ 10,2K 45]

3) Podnik má 9 zaměstnanců. Na daný úkol jsou potřeba 3. Kolika způsoby je lze vybrat?

[ 9,3K 84]

4) Kolikerým způsobem je moţné sestavit delegaci, ve které budou 3 muţi a 2 ţeny, je-li

k dispozici 15 muţů a 11 ţen? [ 11,215,3 KK 25 025]

5) V podniku na výrobu bonbonů pracuje 15 muţů a 16 ţen. Kolika způsoby lze vybrat 7

zaměstnanců tak, aby byli vybrání 3 muţi a 4 ţeny? [ 16,415,3 KK 828 100]

6) V krabici je 12 výrobků, z nichţ jsou právě tři vadné. Kolika způsoby lze vybrat 4

výrobky tak, aby nejvýše jeden byl vadný. [ 9,43,19,3 KKK 378]

7) Kolik hráčů se účastnilo ţákovského turnaje ve stolním tenisu, jestliţe hrál kaţdý

s kaţdým jednou a bylo odehráno 91 zápasů? [14]

8) Jakub má deset různých mincí a Michal má osm jiných různých mincí. Kolka způsoby si

Michal můţe vyměnit dvě své mince za dvě mince Jakuba? [ 8,210,2 KK 1260]

9) Při přípitku novomanţelům se ozvalo 66 ťuknutí. Kolik bylo na svatbě lidí, jestliţe si

ťukal kaţdý s kaţdým. [12]

10) Určete, kolika způsoby je moţno z dvaceti dětí vybrat 5, jestliţe chceme, aby mezi

vybranými

a) nebyl Tomáš. [ 19,5K 11 628]

b) nebyli zároveň David a Václav. [ 18,320,5 KK 14 688]

Page 75: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 75

Kombinace

Varianta C

Příklady:

1) V rovině je dáno šest bodů. Kolik přímek je těmito body určeno, jestliţe

a) ţádné 3 neleţí ve stejné přímce?

b) právě 3 leţí ve stejné přímce?

2) Zámecká podlaha v tanečním sále je rozdělena na 50x50 černých a bílých čtverců tak, ţe

černý a bílá se střídají jako na šachovnici. Určete, kolika způsoby lze na podlaze vybrat

a) dvojici čtverců neleţících ve stejném sloupci.

b) trojici čtverců tak, aby všechny nebyli stejné barvy.

Řešení:

1)

a) Protoţe ţádné dva body neleţí ve stejné přímce, můţeme tvořit neuspořádané dvojice

ze šesti prvků (přímka je určena dvěma body).

Jejich počet je 15!2!4

!6

2

6)6,2(

K .

b) Počet přímek, které jsou určeny body, které neleţí ve stejné přímce je )3,2(K .

Počet přímek, které jsou určeny body, které leţí ve stejné přímce je 1.

Kaţdý ze tří bodů, leţících ve stejné přímce je moţno spojit s jedním z bodů, které

neleţí ve stejné přímce. Počet těchto přímek je )3,1(3 K .

1319311

33

2

313,133,2

KK

2)

a) Vybereme libovolnou dvojici čtverců. Od tohoto výběru musíme odečíst všechny

výběry, ve kterých leţí oba čtverce ve stejném sloupci.

Počet všech moţností, jak vybrat libovolnou dvojici čtverců 5002,2K .

Počet všech moţností, jak vybrat dva čtverce leţící ve stejném sloupci je 50,250 K .

5000623!2!48

!5050

!2!2498

!2500

2

5050

2

250010,210100,2

KK

b) Vybereme libovolnou trojici čtverců. Od tohoto výběru odečteme všechny trojice

čtverců, které jsou tvořeny samými černými čtverci a samými bílými čtverci

Page 76: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

76 KOMBINATORIKA

Počet všech moţností, jak vybrat libovolnou trojici čtverců 2500,3K .

Počet všech moţností, jak vybrat trojici čtverců, taky aby byli jen bílé 1250,3K .

Počet všech moţností, jak vybrat trojici čtverců, taky aby byli jen černé 1250,3K .

91095,1!3!1247

!12502

!3!2497

!2500

3

12502

3

25001250,322500,3

KK

Příklad:

Varianta A

Varianta B

Varianta C

Výsledky řešení:

1)

a) Body je určeno 15 přímek

b) Body je určeno 13 přímek.

2)

a) Dvojici čtverců lze vybrat 3 062 500 způsoby.

b) Trojici čtverců lze vybrat 91095,1 způsoby.

Page 77: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 77

Příklady k procvičení:

1) Kolik přímek je určeno 7 body, jestliţe

a) právě tři leţí na stejné přímce. [ 4,1314,2K 19]

b) právě čtyři leţí na stejné přímce. [ 3,1413,2K 16]

2) Kolik přímek je určeno 9 body, jestliţe

a) právě tři leţí na stejné přímce. [ 6,1316,2K 34]

b) právě čtyři leţí na stejné přímce. [ 5,1415,2K 31]

3) Kolik přímek je určeno 16 body, jestliţe

a) právě dvě leţí na stejné přímce. [ 14,12114,2K 120]

b) právě čtyři leţí na stejné přímce. [ 12,14112,2K 115]

4) Zámecká podlaha v tanečním sále je rozdělena na 20x20 černých a bílých čtverců tak, ţe

černý a bílá se střídají jako na šachovnici. Určete, kolika způsoby lze na podlaze vybrat

a) trojici čtverců. [ 400,3K 10 586 800]

b) dvojici čtverců neleţících ve stejném sloupci. [ 200,220400,2 KK 76 000]

c) trojici čtverců tak, aby všechny nebyli stejné barvy.

[ 200,32400,3 KK 1 568 000]

d) dvojici čtverců neleţících v témţe sloupci ani v téţe řadě.

[ 20,240400,2 KK 72 200]

e) trojici čtverců tak, aby jeden byl černý a dva bílé.

[ 200,2200,1 KK 3980000]

5) Zámecká podlaha v tanečním sále je rozdělena na 10x10 černých a bílých čtverců tak, ţe

černý a bílá se střídají jako na šachovnici. Určete, kolika způsoby lze na podlaze vybrat

a) pětici čtverců. [ 100,5K 75 287 520]

b) pětici čtverců neleţících ve stejném sloupci. [ 10,510100,5 KK 75 282 000]

c) čtveřici čtverců tak, aby všechny nebyli stejné barvy.

[ 50,42100,4 KK 3 460 625]

d) čtveřici čtverců neleţících v témţe sloupci ani v téţe řadě.

[ 10,410100,4 KK 39 191 25]

e) pětici čtverců tak, aby jeden byl černý a čtyři bílé.

[ 50,450,1 KK 11 515 000]

Page 78: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

78 KOMBINATORIKA

Souhrnné příklady k procvičení

1) Zmenší-li se počet prvků o čtyři, zmenší se počet kombinací druhé třídy z těchto prvků

a) třikrát.

b) o 38.

Určete původní počet prvků. [a) 10, b) 12 ]

2) Zvětší li se počet prvků o tři, zvětší se počet kombinací druhé třídy z těchto prvků

a) pětkrát.

b) o 33.

Určete původní počet prvků. [a) 3, b) 10 ]

3) Z kolika prvků lze vytvořit

a) 45 kombinací druhé třídy. [10]

b) 105 kombinací druhé třídy. [15]

c) 325 kombinací druhé třídy. [26]

d) 91 kombinací druhé třídy [14]

4) Počet dvoučlenných kombinací z n prvků je o 27 větší neţ počet jednočlenných kombinací

z n prvků. Určete počet prvků. [9]

5) Na přednášce z fyziky se sešlo 12 dívek a 20 chlapců. Kolika způsoby lze vybrat

šestičlennou skupinu, v níţ jsou

a) právě 3 dívky. [250 800]

b) alespoň 5 dívek. [16 764]

c) alespoň jedna dívka. [23 521 308]

d) samí chlapci. [38 760]

6) Karel za den vyrobil 16 kusů ţidlí, z nichţ 2 mají vadu. Kolika způsoby lze vybrat

a) 4 libovolné ţidle. [1820]

b) 4 ţidle bez vady [1001]

c) 4 ţidle, z nichţ je právě jedna vadná. [728]

d) 4 ţidle, z nichţ je alespoň jedna bez vady. [1001]

e) 4 ţidle, z nichţ je alespoň jedna vadná. [806]

Page 79: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 79

7) Ivan podcenil přípravu na písemku z češtiny a z 60 témat se naučil jen 45. Na písemce

bude 10 otázek, kaţdá z jiného tématu. Ivan potřebuje znát odpověď alespoň na 3 otázky,

jinak nedostane lepší známku neţ pětku a hrozí mu propadnutí z češtiny.

Kolik je moţností, jak zadat písemku, aby Ivan znal odpověď alespoň na 3 otázky?

1010538,7

8) Kolik pětiprvkových podmnoţin má mnoţina 10,9,,3,2,1 M ? [252]

9) V osudí je 9 bílých a 12 červených lístků. Kolika způsoby lze náhodně vybrat 7 lístků tak,

aby alespoň jeden byl bílý? [115 488]

10) Kolika moţnými způsoby je moţné seřadit 10 závodníků do dvou řad po pěti, jestliţe

v kaţdé řadě záleţí na pořadí? [3 628 800].

11) Určete, kolika způsoby je moţné na šachovnici 8x8 postavit 4 různé figury tak, aby dvě

stály na černých a dvě na bílých polích. [5 904 384]

12) Deset lidí se má ubytovat ve třech hotelových pokojích. Kaţdý z pokojů je v jiném patře.

Pokoj v prvním patře je čtyřlůţkový, pokoj v druhém patře je třílůţkový stejně jako pokoj

ve třetím patře. Kolika způsoby je moţné rozmístit deset lidí v těchto třech pokojích.

[84 000]

Page 80: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

80 KOMBINATORIKA

Variace s opakováním

K-členná variace s opakováním z n prvků je uspořádaná k-tice sestavená z těchto prvků

tak, že každý se v ní vyskytuje nejvýše k-krát.

Počet ),(' nkV všech k-členných variací s opakováním z n prvků je:

knnkV ),('

Příklad: Kolik různých čtyřciferných čísel lze sestavit z číslic 0, 1, 2, 3, 4, 5, 6, 7, 8?

Řešení: Číslice se mohou opakovat. Jedná se o variaci čtvrté třídy s opakováním

z osmi prvků. Nesmíme zapomenout, ţe na začátku nesmí být nula.

Počet všech čtyřciferných číslic z osmi prvků je 8,4V´

Počet všech moţností kde je na začátku nula, je 8,3V´

358487888,3V´8,4V´ 334

Počet všech čtyřciferných čísel vyhovujících zadaným podmínkám je 3584.

Page 81: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 81

Variace s opakováním

Varianta A

Příklady:

1) Určete všechny dvoučlenné variace s opakováním ze dvou prvků qp, .

2) Kolik různých trojciferných čísel lze vytvořit z číslic 5, 6, 7, 8.?

Řešení:

1) Tvoříme uspořádané dvojice ze dvou prvků. Prvky se mohou opakovat.

Jejich počet bude 422,2V´ 2

2) Číslice se mohou opakovat, na pořadí nám záleţí, proto půjde o variaci třetí třídy

s opakováním ze čtyř prvků.

6444,3V´ 3

Příklad:

Varianta A

Varianta B

Varianta C

Výsledky řešení:

1) pp, , qp, , qq, , pq,

2) Lze vytvořit 64 čísel.

Page 82: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

82 KOMBINATORIKA

Příklady k procvičení:

1) Určete všechny trojčlenné variace s opakování z prvků

a) a [a, a, a]

b) 1, 2 [[1, 1, 1,],[1, 1, 2],[1, 2, 1],[1, 2, 2],

[2, 2, 2],[2, 2, 1],[2, 1, 2],[2, 1, 1]]

2) Kolik trojčlenných variací s opakováním je moţné vytvořit z

a) osmi různých prvků. [6561]

b) 50 různých prvků. [ 231018,7 ]

3) Kolik různých čtyřciferných čísel lze vytvořit z číslic

a) 2 a 3 [16]

b) 1, 2, 3, 4 [256]

c) 2, 4, 6, 8, 9 [625]

d) 1, 2, 3, 4, 5, 6, 7, 9 [4096]

4) Kolik vrhů lze provést

a) dvěma kostkami [36]

b) pěti kostkami [7776]

c) (a+b) kostkami [ ba6 ]

5) Trezor má kód sestavený z číslic 0, 1, 2,…, 8, 9. Kolik moţných kódů lze vytvořit, jestliţe

kód je

a) pětimístný [100 000]

b) devítimístný [1 000 000 000]

6) Kolik moţných výsledků je při hodu čtyřmi mincemi. [16]

7) Abeceda má 26 písmen. Kolik různých slov (majících i nemajících smysl) o pěti

písmenech z nich lze vytvořit. Kolik z nich začíná písmenem A. Kolik z nich nekončí

písmenem Q. [11 881 376, 456 976, 11 424 400]

8) Kolik různých trojciferných čísel dělitelných deseti lze vytvořit z číslic

a) 0, 2, 4, 6 [27]

b) 1, 2, 3, 4 [0]

c) 5, 6, 7, 8, 9, 0 [216]

Page 83: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 83

Variace s opakováním

Varianta B

Příklady:

1) Řešte rovnici v N

283,3V´,2V´ xx

2) Z kolika prvků můţeme vytvořit 784 variací druhé třídy s opakováním?

Řešení:

1) Rovnici upravíme podle vzorce knnk,V´ a dopočítáme

283,3V´,2V´ xx

283x 32 x

02827x2 x

2

11229272,1

x

2

29272,1

x

11 x

282 x není z oboru přirozených čísel

Zk. pro 11 x

L= 28271311 32 P=28 L=P

11 x je řešení rovnice

2) Ze zadání sestavíme rovnici, kterou vyřešíme. Řešení musí být přirozené číslo.

784,2V´ n

784n2

282,1 n

Protoţe počet prvků nemůţe být záporné číslo, řešením je 281 n .

Příklad:

Varianta A

Varianta B

Varianta C

Výsledky řešení:

1) 11 x

2) 281 n

Page 84: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

84 KOMBINATORIKA

Příklady k procvičení:

1) Z kolika prvků lze sestavit

a) 289 [17]

b) 441 [21]

c) 529 [23]

d) 841 [29]

e) 1089 [33]

f) 4489 [67]

variací druhé třídy s opakováním.

2) Z kolika prvků lze sestavit

a) 729 [9]

b) 2197 [13]

tříčlenných variací s opakováním.

3) Zvětší-li se počet prvků o dva, zvýší se počet dvoučlenných variací s opakováním

a) o 28 [6]

b) o 60 [14]

Určete původní počet prvků.

4) Zmenší-li se počet prvků o 4, zmenší se počet dvoučlenných variací s opakováním

a) o 64 [10]

b) o 120 [17]

Určete původní počet prvků.

5) Zvětší-li se počet trojčlenných variací o 3, zvětší se počet trojčlenných variací

a) o 387 [5]

b) o 657 [7]

Určete původní počet prvků.

6) Zmenší-li se počet prvků o 2, zmenší se počet trojčlenných variací

a) a) o 1352 [16]

b) b) o 2648 [22]

Určete původní počet prvků.

7) Řešte v N rovnice

a) 42,2V´,2V´ xx 4x

b) 172,3V´1,2V´ x 2x

Page 85: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 85

c) 31,1V´,2V´ xxx 2x

d) 831,2V´3,2V´5,2V´ xxx 2x

e) 361,2V´1,3V´ xxx 5x

f) xxxx 7611,2V´1,3V´ 4x

Page 86: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

86 KOMBINATORIKA

Variace s opakováním

Varianta C

Příklady:

1) Určete počet podmnoţin k-prvkové mnoţiny.

2) Určete počet všech nejvýše šesticiferných čísel, která mají na konci pětku.

Řešení:

1) Prvky k-prvkové mnoţiny si označíme čísly 1, 2, 3,…, k. kaţdé její podmnoţině

přiřadíme uspořádanou k-tici, která se skládá z nul a jedniček. Přiřazení provedeme takto:

Jestliţe je ve zvolené podmnoţině prvek označený číslem j, přiřadíme jí uspořádanou k-

tici, jejímţ j-tým členem je jednička. Jestliţe tento prvek v mnoţině není, bude na j-tém

místě příslušné uspořádané k-tice nula.

Takţe například podmnoţině 4,3,2,1 mnoţiny 5,4,3,2,1 bude přiřazena uspořádaná

pětice 0,1,1,1,1 .

Podmnoţině 5,2 mnoţiny 5,4,3,2,1 bude přiřazena uspořádaná šestice 1,0,0,0,1,0

atd.

Kaţdé takto uspořádané k-tici odpovídá jediná podmnoţina k-prvkové mnoţiny, proto je

toto přiřazení vzájemně jednoznačné. Z toho můţeme odvodit, ţe k-prvková mnoţina má

právě tolik podmnoţin, kolik existuje uspořádaných k-tic z nul a jedniček.

Tyto k-tice jsou k-členné variace s opakováním ze dvou prvků, takţe počet podmnoţiny

k prvkové mnoţiny je k2 .

Page 87: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 87

2) Číslice se mohou opakovat, na pořadí nám záleţí, proto půjde o variaci s opakováním

z deseti prvků. Nesmíme zapomenout odečíst čísla, která mají na začátku nulu

Jednociferné číslo je jen jedno, je to 5.

Počet všech dvojciferných je 110,1V´ .

Počet všech trojciferných je 10,1V´10,2V´ .

Počet všech čtyřciferných je 10,2V´10,3V´ .

Počet všech pěticiferných je 10,3V´10,4V´ .

Počet všech šesticiferných je 10,4V´10,5V´ .

Jednotlivé počty stačí sečíst.

10000010101010101010101-101 4534232

Počet čísel je 100 000.

Příklad:

Varianta A

Varianta B

Varianta C

Výsledky řešení:

1) k2

2) Počet čísel je 100 000.

Page 88: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

88 KOMBINATORIKA

Příklady k procvičení:

1) Určete počet podmnoţin mnoţiny M.

a) zyxM ,, 8

b) 1,,2,1,0 nM n24

c) 1,,2,1 nM n22

2) Určete, kolik značek Morseovy abecedy lze utvořit sestavením teček a čárek do skupin o

jednom aţ šesti prvcích.

[ 2,6V´2,5V´2,4V´2,3V´2,2V´2,1V´ 126]

3) Určete, kolik značek Morseovy abecedy lze utvořit sestavením teček a čárek do skupin o

jednom aţ osmi prvcích.

[ 2,8V´2,7V´2,6V´2,5V´2,4V´2,3V´2,2V´2,1V´ 510]

4) Určete počet všech přirozených nejvýše čtyřciferných čísel dělitelných 20.

[500]

5) Určete počet všech přirozených nejvýše čtyřciferných čísel, která jsou větší neţ 849 a

menší neţ 1500. [650]

6) Určete počet všech nejvýše čtyřciferných čísel menších neţ 4000. [3999]

7) Určete počet všech nejvýše čtyřciferných čísel

a) menších jak 1500 a větších jak 8. [1491]

b) větších jak 15 a menších jak 5200. [5184]

Page 89: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 89

Permutace s opakováním

Permutace s opakováním z n prvků je uspořádaná k-tice sestavená z těchto prvků tak, že

každý se v ní vyskytuje alespoň jednou.

Počet ),,,(' 21 nkkkP všech k -členných permutací s opakováním z n prvků nk , kde se

první prvek opakuje 1k -krát, druhý 2k -krát, atd. je:

!!!

!

21

21

21

n

n

nkkk

kkk,k,kkP´

Příklad: Kolika způsoby lze přemístit písmena slova ARITMETIKA tak, aby obě

písmena A byla vedle sebe?

Řešení: Bereme obě písmena A, jako jedno písmeno. Slovo dále obsahuje dvě písmena

I a dvě písmena T. Půjde o permutaci s opakováním z devíti prvků kde 11́ k ,

,12 k ,23´ k ,24´ k ,15´ k ,16 k 17 k

907202356789!2!2

!91,11,1,2,2,1,P´

Písmena lze přemístit 90 720 způsoby.

Page 90: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

90 KOMBINATORIKA

Permutace s opakováním

Varianta A

Příklady:

1) Určete všechny trojčlenné permutace s opakováním z prvků C, C, D.

2) Určete počet všech šesticiferných přirozených čísel, jeţ můţeme sestavit z číslic 1 a 2 tak,

ţe v kaţdém z nich je číslice 1 právě dvakrát.

Řešení:

1) Tvoříme uspořádané dvojice ze dvou prvků. Prvky se mohou opakovat.

Jejich počet bude 3!2

!32,1P´

2) Jestliţe jednička má být v čísle právě dvakrát, dvojka tam musí být právě čtyřikrát.

Tvořím uspořádané šestice kde 21 k

a 42 k .

Jejich počet je:

15!4!2

!62,4P´

Příklad:

Varianta A

Varianta B

Varianta C

Výsledek řešení:

1) DCC ,, CDC ,, CCD ,,

2) Počet čísel je 15.

Page 91: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 91

Příklady k procvičení:

1) Určete všechny čtyřčlenné permutace z prvků

a) 1, 1, 5, 5 [[1, 1, 5, 5],[1, 5, 1, 5],[1, 5, 5, 1],

[5, 5, 1, 1],[5, 1, 5, 1],[5, 1, 1, 5]]

b) 1, 3, 3, 3 [[1, 3, 3, 3],[3, 1, 3, 3],[3, 3, 1, 3],[3, 3, 3, 1]]

2) Kolik různých slov majících i nemajících smysl lze vytvořit z písmen slova

a) OKO [3]

b) OLOVO [20]

c) KALIFORNIE [1 814 400]

d) BRATISLAVA [604 800]

e) MATEMATIKA [151 200]

3) Kolik šesticiferných čísel lze vytvořit z číslic 2, 4, 6, tak, ţe

a) číslo 2 se v kaţdém z nich vyskytuje právě třikrát a číslo 6 právě jednou [140]

b) čísla 2 a 4 se v kaţdém z nich vyskytují právě dvakrát [210]

4) Kolik pěticiferných čísel lze sestavit z číslic 1, 2, 3, 3, 5 tak, aby všechna byla sudá.

[12]

5) Hodíme n-krát korunou. Víme, ţe orel padl právě dvakrát. Určete všechna moţná

uspořádání, jestliţe

a) házíme čtyřikrát [6]

b) házíme jedenáctkrát [55]

Page 92: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

92 KOMBINATORIKA

Permutace s opakováním

Varianta B

Příklad:

Kolika způsoby lze přemístit písmena slova TANGANIKA. Kolik z těchto přemístění nemá

na prvním místě K.

Řešení:

Tvoříme uspořádané devítice ze dvou ze šesti prvků, kdy A se vyskytuje třikrát, N se

vyskytuje dvakrát, ostatní písmenka jsou obsaţena jednou.

Počet všech moţných přemístění je: 30240!3!2

!913,2,1,1,1,P´

Počet přemístění, které nemá na prvním místě K, dostaneme tak, ţe od všech moţných

přemístění odečteme ty, které mají na začátku K.

Jejich počet je: 3360!3!2

!83,2,1,1,1P´

268803360-30240

Příklad:

Varianta A

Varianta B

Varianta C

Výsledek řešení:

Počet všech moţných přemístění je 30 240.

Počet všech přemístění, která nemají na začátku písmeno K

je 26 880.

Page 93: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 93

Příklady k procvičení:

1) Kolika způsoby lze přemístit písmena slova GEOMETRIE. Kolik z těchto přemístění má

na prvním místě G. Kolik z těchto přemístění nemá na prvním místě G.

[ 1,13,1,1,1,1,P´ 604 80,

13,1,1,1,1,P´ 6720, 1,13,1,1,1,1,P´ 13,1,1,1,1,P´

53 760]

2) Kolika způsoby lze přemístit písmena slova PALETA. Kolik z těchto přemístění má na

prvním místě T. Kolik z těchto přemístění nemá na prvním místě T.

[ 2,1,1,1,1P´ 360, 2,1,1,1P´ 60, 2,1,1,1,1P´ 2,1,1,1P´ 300]

3) Kolika způsoby lze přemístit písmena slova NOTEBOOK. Kolik z těchto přemístění má

na prvním místě B. Kolik z těchto přemístění nemá na prvním místě B.

[ 13,1,1,1,1,P´ 6720, 3,1,1,1,1P´ 840,

13,1,1,1,1,P´ 3,1,1,1,1P´ 5880]

4) Kolika způsoby lze přemístit písmena slova BARBORA. Kolik z těchto přemístění má na

prvním místě B. [ 2,2,2,1P´ 630, 2,2,1,1P´ 180]

5) Kolika způsoby lze přemístit písmena slova MARIANA. Kolik z těchto přemístění má na

prvním místě A. [ 3,1,1,1,1P´ 840,

12,1,1,1,1,P´ 360]

6) Kolika způsoby lze přemístit písmena slova KARMA. Kolik z těchto přemístění nemá na

prvním místě A. [ 2,1,1,1P´ 60,

2,1,1,1P´ 4P 36]

7) Kolika způsoby lze přemístit písmena slova KOLENO. Kolik z těchto přemístění nemá na

prvním místě O. [ 2,1,1,1,1P´ 360, 2,1,1,1,1P´ 5P 240]

8) Určete počet šesticiferných čísel sestavených z číslic 0, 2, 4, tak, ţe v kaţdém z nich se

všechny číslice vyskytují právě dvakrát. [ 2,2,2P´ 2,1,2P´ 60]

9) Určete počet devíticiferných čísel sestavených z číslic 0, 3, 8, tak, ţe v kaţdém z nich se

všechny číslice vyskytují právě třikrát. [ 3,3,3P´ 2,3,3P´ 1120]

10) Máme 3 bílé korálky, 2 černé korálky a 5 červených korálků. Kolika způsoby je můţeme

postavit do řady? Kolik z těchto seskupení má černé korálky na kraji?

[ 3,2,5P´ 2520, 3,5P´ 56]

Page 94: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

94 KOMBINATORIKA

Permutace s opakováním

Varianta C

Příklady:

1) Určete počet všech sedmiciferných přirozených čísel, jejichţ ciferný součet je roven

dvěma.

2) Určete počet všech pěticiferných přirozených čísel sestavených z číslic 2 a 3 tak, ţe číslice

3 se v nich vyskytuje alespoň třikrát.

Řešení:

1) Jsou dvě moţnosti, jak sestavit čísla, aby byl ciferných součet roven dvěma.

první moţnost: Číslo se skládá z číslic 0 a 1, kdy jednička je obsaţena právě dvakrát

a nula právě pětkrát.

Počet takto sestavených čísel je: 2,4P´2,5P´

druhá moţnost: Číslo se skládá z číslic 2 a 0, kdy dvojka je obsaţena právě jednou a nula právě

šestkrát.

Počet čísel sestavený z dvojky a nul je: 1

12115211!6

!7

!2!4

!6

!2!5

!711,6P´2,4P´2,5P´

2) Vypočítáme si počet moţností, kde se číslice tři vyskytuje právě třikrát, právě čtyřikrát,

právě pětkrát a sečteme je.

Počet všech čísel, kde se dvojka vyskytuje právě dvakrát a trojka právě třikrát: 2,3P´

Počet všech čísel, kde se dvojka vyskytuje právě jednou a trojka právě čtyřikrát: 1,4P´

Počet všech čísel, kde se dvojka nevyskytuje, trojka se vyskytuje právě pětkrát: 5P´

1615101!4

!5

!2!3

!55P´1,4P´2,3P´

Příklad:

Varianta A

Varianta B

Varianta C

Výsledky řešení:

1) Počet čísel je 7.

2) Počet čísel je 16.

Page 95: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 95

Příklady k procvičení:

1) Určete počet všech přirozených devíticiferných čísel, jejichţ ciferný součet je roven

a) čtyřem. [165]

b) pěti. [505]

2) Určete počet všech přirozených čtyřciferných čísel, jejichţ ciferný součet je menší neţ

a) tři. [5]

b) čtyři. [7]

3) Určete počet všech trojciferných přirozených čísel dělitelných devíti sloţených z číslic

2, 3, 4, 5, 9. Číslice se mohou opakovat. [10]

4) Určete počet všech čtyřciferných přirozených čísel, jeţ lze sestavit z číslic 1 a 2 tak, ţe

číslice 1 se v nich vyskytuje

a) alespoň dvakrát. [11]

b) nejvýše dvakrát. [11]

5) Určete počet všech šesticiferných čísel, jeţ lze sestavit z číslic 0 a 7 tak, ţe číslice nula se

v nich vyskytuje

a) alespoň čtyřikrát. [6]

b) nejvýše třikrát. [26]

Page 96: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

96 KOMBINATORIKA

Kombinace s opakováním

K-členná kombinace s opakováním z n prvků je neuspořádaná k-tice sestavená z těchto

prvků tak, že každý se v ní vyskytuje nejvýše k-krát.

Počet ),(' nkK všech k-členných kombinací s opakováním z n prvků je:

k

knk,nK´

1

Příklad: V osudí jsou černé, bílé a červené koule. Koule téţe barvy jsou nerozlišitelné.

Kolika způsoby lze vybrat 3 koule, jestliţe v osudí je 5 černých koulí, 4 bílé

koule a 2 červené koule.

Řešení: Koule jsou nerozlišitelné, proto půjde o trojčlennou kombinaci s opakováním

ze tří prvků (tři barvy koulí). Jejich počet je 3,3K´

V osudí nejsou 3 červené koule, proto musíme moţnost, ţe vytáhneme samé

červené koule odečíst.

912!3!

5!1

3

513,3K´

Koule lze vybrat devíti způsoby.

Page 97: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 97

Kombinace s opakováním

Varianta A

Příklady:

1) Vytvořte všechny moţné dvoučlenné kombinace s opakováním z prvků a, b, c.

2) Kolika způsoby lze rozdělit 8 stejných jablek mezi 6 lidí?

Řešení:

1) Tvoříme neuspořádané dvojice ze tří prvků. Prvky se mohou opakovat.

Jejich počet bude 6!2!2

!4

2

42,2K´

2) Osmkrát vybereme mezi šesti lidmi. Někdo můţe dostat i více jablek. Tvoříme

osmičlenné kombinace ze šesti prvků.

Jejich počet bude 1287911138

138,6K´

Příklad:

Varianta A

Varianta B

Varianta C

Výsledky řešení:

1) cccacbbbbaaa ,,,,,,

2) Jablka lze rozdělit 1287 způsoby.

Page 98: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

98 KOMBINATORIKA

Příklady k procvičení:

1) Vytvořte všechny moţné tříčlenné kombinace s opakováním z prvků

a) 1, 2. [{1, 1, 1},{1, 1, 2},{1, 2, 2},{2, 2, 2}]

b) 1, 2, 3. [{1, 1, 1},{1, 1, 2},{1, 2, 2},{2, 2 ,2},

{2, 2, 3},{2, 3, 3},{1, 3, 3}{1, 2, 3}]

2) Kolik čtyřčlenných kombinací s opakováním je moţné vytvořit z

a) 10 prvků [715]

b) 3 prvků [15]

c) 20 prvků [8855]

3) Kolik je moţností zakoupení 5 sešitů, mám-li na výběr ze 6 druhů. Od kaţdého druhu mají

alespoň 5 kusů. [120]

4) Firma kupuje čtyři nová firemní auta. Má na výběr z deseti barev. Kolik je moţností, jak

vybrat. [715]

5) Pan Slanina kupuje na oslavu 6 láhví šampaňského. Na výběr má ze 4 druhů. Kolika

způsoby můţe vybrat? Od kaţdého druhu mají alespoň 10 kusů. [84]

6) Určete, kolika způsoby je moţné rozmístit 25 triček do 4 zásuvek. [3276]

7) Kolika způsoby lze rozdělit 10 kusů ovoce mezi 10 dětí? [92378]

8) Existují 4 různé krevní skupiny (A, B, AB, O). Určete počet všech moţných rozdělení 9

osob podle uvedených krevních skupin. [220]

9) V sáčku jsou červené, modré a zelené kuličky. Kuličky téţe barvy jsou nerozlišitelné.

Určete, kolika způsoby lze vybrat 4 kuličky, jestliţe v sáčku jsou alespoň 4 kuličky od

kaţdé barvy. [15]

10) Knihovna má 5 regálů. Do kaţdého regálu se vejde 7 knih. Určete, kolika způsoby lze do

knihovny umístit 7 knih. [330]

Page 99: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 99

Kombinace s opakováním

Varianta B

Příklady:

1) Řešte rovnici

41,2K´,2K´ nn

2) Zvětšíme-li počet prvků o jeden, zvětší se počet dvoučlenných kombinací s opakováním

o 4. Určete původní počet prvků.

Řešení:

1) Rovnici upravíme podle vzorce ,1

nk,K´

k

kn

určíme podmínky a dopočítáme.

41,2K´,2K´ nn

42

2

2

1n

n

14

!2!

!2

!2!1

!1

nNn

n

n

n

n

4

2

12

2

1

nnnn

8221 nn

0322 nn

2

422,1

n

11 n 32 n

Výsledek 3n 2 nevyhovuje podmínkám, řešením rovnice je 1n1

Page 100: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

100 KOMBINATORIKA

2) Ze zadání vytvoříme rovnici, kterou vyřešíme

41,2K´,2K´ nn

42

2

2

1n

n

14

!2!

!2

!2!1

!1

nNn

n

n

n

n

082322 nnnn

062 n

3n

Příklad:

Varianta A

Varianta B

Varianta C

Výsledky řešení:

1) 11 n

2) Původní počet prvků je 3.

Page 101: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 101

Příklady k procvičení:

1) Zmenší-li se počet prvků o 2, zmenší se počet dvoučlenných kombinací s opakováním

a) o 19. [10]

b) o 29. [15]

Určete původní počet prvků.

2) Zvětší-li se počet prvků o 3, zvětší se počet tříčlenných kombinací s opakováním

a) o 46 [3]

b) o 109 [5]

Určete původní počet prvků.

3) Počet dvojčlenných kombinací s opakováním z n prvků je o 45 větší neţ jednočlenných

kombinací z n prvků. Určete n . [10]

4) Určete, z kolika prvků je moţné vytvořit

a) 66 dvojčlenných kombinací s opakováním. [11]

b) 153 dvojčlenných kombinací s opakováním. [17]

5) Řešte rovnice v N

a) 15,2K´ n [5]

b) 91,2K´ n [13]

c) 312,2K´,2K´ nn [4]

d) -243,2K´,2K´ nn [6]

e) 122,2K´,2K´ nn [5]

f) -362,3K´,3K´ nn [4]

g) 281,3K´,3K´ nn [7]

h) 111,2K´2,2K´,2K´ nnn [3]

i) 121,2K´3,2K´,2K´ nnn [6]

j) 92,3K´3,3K´1,3K´,3K´ nnnn [2]

k) 332,3K´,3K´1,3K´1,3K´ nnnn [3]

Page 102: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

102 KOMBINATORIKA

Kombinace s opakováním

Varianta C

Příklady:

1) Určete, kolika způsoby si můţe 5 osob rozdělit 6 stejných pentelek a 7 stejných

obyčejných tuţek.

2) V novinovém stánku mají deset druhů časopisů, přičemţ kaţdý časopis mají v 13 kusech.

Kolika způsoby lze zakoupit 14 časopisů?

Řešení:

1) Počet všech moţností jak přiřadit pět osob k šesti pentelkám (jedna osoba můţe dostat

více pentelek, přičemţ nezáleţí na tom, v jakém pořadí ty pentelky dostanou) je: 5,6K´

Počet všech moţností jak přiřadit pět osob k sedmi tuţkám (jedna osoba můţe dostat více

tuţek, přičemţ nezáleţí na tom, v jakém pořadí ty tuţky dostanou) je: 5,7K´

Pouţijeme kombinatorické pravidlo součinu a oba počty vynásobíme.

693003101137107

11

6

105,7K´5,6K´

2) Budeme vybírat 14 časopisů z 10 druhů časopisu. Nezáleţí nám na tom, v jakém pořadí si

jednotlivé časopisy vybereme. Protoţe časopisů od kaţdého druhu je jenom 13, musíme

od celkového počtu moţností, jak časopisy vybrat, odečíst ty moţnosti, kdy jsme vybrali

14 stejným časopisů od jednoho druhu. Protoţe časopisů mají 10 druhů, je počet

moţností, kdy bylo vybráno 14 časopisů stejného druhu 10.

Počet všech moţností, jak vybrat 14 časopisů je: 10,14K´

817180108171901051719222310!14!9

!2310

14

231010,14K´

Příklad:

Varianta A

Varianta B

Varianta C

Výsledek řešení:

1) Pentelky a tuţky si pět osob můţe rozdělit 69 300 způsoby.

2) Je 817 180 způsobů, jak si zakoupit časopisy.

Page 103: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 103

Příklady k procvičení:

1) V pytli je 12 modrých, 10 ţlutých a 10 červených rozlišováků. Rozlišováky téţe barvy

jsou nerozlišitelné. Určete, kolika způsoby lze vybrat 11 rozlišováků.

[ 23,11K´ 76]

2) V pytli je 15 modrých, 12 ţlutých a 11 červených trik. Trika téţe barvy jsou

nerozlišitelné. Určete, kolika způsoby lze vybrat 12 trik. [ 13,12K´ 90]

3) Určete, kolika způsoby si mohou 3 osoby rozdělit pět stejných čokolád, čtyři stejné sáčky

bonbonů, čtyři stejné sáčky sušenek a čtyři stejné balíčky oplatek.

[ 3

3,43,5K´ K 70 875]

4) V obchodě mají dva druhy marockého koření v balíčcích 25 gramech. Určete, kolika

způsoby lze koupit 100 gramů koření, jestliţe prvního druhu mají 3 balíčky a druhého

druhu 5 balíčků. [ 12,4K´ 4]

5) V obchodě mají tři druhy čaje, kaţdý po 75 gramech. Určete, kolika způsoby lze koupit

300 gramů čaje, jestliţe od jednoho druhu mají 7 balíčků a od zbývajících pouze 3

balíčky. [ 23,4K´ 13]

Page 104: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

104 KOMBINATORIKA

Souhrnné příklady k procvičení

1) Zjistěte, kolik existuje různých kvádrů, pro něţ platí, ţe délka kaţdé jejich hrany je

přirozené číslo z intervalu

a) (2,15) [364]

b) (2,10) [165]

2) Určete počet způsobů, jimiţ lze přemístit písmena ve slově ATLANTA tak, aby ţádná

trojice sousedních písmen nebyla tvořena třemi písmeny A. [360]

3) Heslo se skládá z pěti číslic (0, 1,…, 9) a tří písmen (kaţdé můţeme volit z 26). Kolik

existuje moţností, jak zvolit heslo. [1 757 600 000]

4) Určete počet všech trojúhelníků, z nichţ ţádné dva nejsou shodné a jejichţ kaţdá strana

má jednu z velikostí daných čísly 1, 2, 3, 4, 5. [23]

5) Určete počet všech trojúhelníků, z nichţ ţádné dva nejsou shodné a jejichţ kaţdá strana

má jednu z velikostí daných čísly 3, 4, 5, 6, 8. [31]

6) Kolik různých neuspořádaných trojic mohou dát počty ok na jednotlivých kostkách při

vrhu čtyřmi kostkami? [126]

7) Určete, kolika způsoby je moţno přemístit písmena slova KABELKA tak, aby se

souhlásky a samohlásky střídaly. [72]

8) Určete, kolika způsoby je moţno přemístit písmena slova PERMUTACE tak, aby se

souhlásky a samohlásky střídaly. [1440]

9) Určete, kolika způsoby lze z jednoeurových a dvoueurových mincí zaplatit částku

10 euro, jsou-li oba druhy mincí k dispozici v dostatečném počtu. [6]

10) Kolika způsoby lze vybrat ze 50 mikročipů 3 mikročipy ke kontrole, jestliţe po kontrole je

vţdy mikročip vrácen zpět. [22 100]

11) Poměr počtu variací druhé třídy bez opakování z n-prvkové mnoţiny a počtu variací třetí

třídy s opakováním z n prvků je 9:10. Určete počet prvků. [10]

12) K dispozici jsou 2 tabletky vitamínu C, 3 tabletky vitamínu B a 4 tabletky vitamínu D.

kaţdý den si lze vzít pouze jednu tabletku jednoho druhu vitamínu. Kolik existuje

způsobů, jak si brát vitamíny? [1260]

13) Určete počet všech přirozených čísel větších neţ 400 000, které lze sestavit z cifer 2, 4, 7,

vyskytuje-li se v v kaţdém z nich cifra 2 dvakrát cifra 4 jedenkrát a cifra 7 třikrát. [40]

14) Určete, kolika způsoby lze rozdělit 14 láhví whisky mezi deset dospělých, jestliţe

a) kaţdý člověk dostane alespoň jednu láhev [715]

b) nejmladší člověk dostane dvě láhve. [293 930]

Page 105: KOMBINATORIKA - Student na prahu 21. stoletístudent21.gjwprostejov.cz/uploads/VG7 - Kombinatorika.pdf · KOMBINATORIKA 5 Základní kombinatorická pravidla Pravidlo součtu Jsou-li

KOMBINATORIKA 105

Literatura:

[1] Fuchs E., Kubát J. a kolektiv.: Standardy a testové úlohy z matematiky pro čtyřletá

gymnázia, Prometheus, Praha, 2001

[2] Calda E., Dupač V.: Matematika pro gymnázia - Kombinatorika, pravděpodobnost

a statistika, Prometheus, Praha, 2001

[3] Jirásek F., Braniš K., Horák S., Vacek M.: Sbírka úloh z matematiky pro SOŠ a pro

studijní obory SOU, 2. část, Prometheus, Praha, 1999

[4] Kubát J., Hrubý D., Pilgr J.: Sbírka úloh z matematiky pro střední školy - Maturitní

minimum, Prometheus, Praha, 2003

[5] Calda E.: Matematika pro netechnické obory SOŠ a SOU, 3. díl, Prometheus, Praha,

2000

[6] Hudcová M., Kubičíková L.: Sbírka úloh z matematiky pro SOŠ, SOU a nástavbové

studium, Prometheus, Praha, 2004

[7] Herman J., Kučera R., Šimša J.: Metody řešení matematických úloh II, Masarykova

univerzita, Brno, 1997

[8] http://carolina.mff.cuni.cz/~jana/kombinatorika/

[9] http://www.mg-akademie.cz/stranky_profesori/horsky/stat/st_3_PVC.pdf