jean-claude yakoubsohn - unican.es · jean-claude yakoubsohn institut de math´ematiques de...

30
Tracking multiplicities Jean-Claude Yakoubsohn Institut de Math´ ematiques de Toulouse Santalo’s Summer School Recent Advances in Real Complexity and Computation Work in collaboration with Marc Giusti. Jean-Claude Yakoubsohn (IMT) Tracking multiplicities July , 2012 1 / 30

Upload: others

Post on 26-Mar-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Jean-Claude Yakoubsohn - unican.es · Jean-Claude Yakoubsohn Institut de Math´ematiques de Toulouse Santalo’s Summer School Recent Advances in Real Complexity and Computation Work

Tracking multiplicities

Jean-Claude Yakoubsohn

Institut de Mathematiques de Toulouse

Santalo’s Summer SchoolRecent Advances in Real Complexity and Computation

Work in collaboration with Marc Giusti.

Jean-Claude Yakoubsohn (IMT) Tracking multiplicities July , 2012 1 / 30

Page 2: Jean-Claude Yakoubsohn - unican.es · Jean-Claude Yakoubsohn Institut de Math´ematiques de Toulouse Santalo’s Summer School Recent Advances in Real Complexity and Computation Work

The problem

1– x = (x1, . . . , xn) ∈ Cn.

2– a polynomial system f = (f1, . . . , fm) ∈ Cm[x ].

3– w an isolated multiple root of f , i.e. Df (w) has not a full rank.

The quadratic convergence of the Newton method is lost in aneighborhood of w . To recover it

1– determine a regular system at w from the initial.

fi =∑9

k=1 xk + x2i − 2xi − 8,

i = 1 : 9

(1, ..., 1)multiplicity 256(Dayton − Zeng)

Jean-Claude Yakoubsohn (IMT) Tracking multiplicities July , 2012 2 / 30

Page 3: Jean-Claude Yakoubsohn - unican.es · Jean-Claude Yakoubsohn Institut de Math´ematiques de Toulouse Santalo’s Summer School Recent Advances in Real Complexity and Computation Work

Contents

1– Dimension and number of roots

2– Multiplicity : algebraic point of view.

3– Rouche theorem and dimension

4– Multiplicity and duality via linear algebra.

5– On methods recovering quadratic convergence.

6– Another way : deflating and kernelling.

Jean-Claude Yakoubsohn (IMT) Tracking multiplicities July , 2012 3 / 30

Page 4: Jean-Claude Yakoubsohn - unican.es · Jean-Claude Yakoubsohn Institut de Math´ematiques de Toulouse Santalo’s Summer School Recent Advances in Real Complexity and Computation Work

References

1– B.H. Dayton, T.Y. Li, Z. Zeng, Multiple zeros of nonlinearsystems, Math of Comp. 80, 2143-2168, 2011.

2– N. Li, L. Zhi, Computing isolated singular solutions ofpolynomials systems : case of breadth one, SIAM J. Numer.Math., 50,1 ,354-372, 2012.

3– A. Leykin, J. Vershelde, A. Zhao, Newton’s method withdeflation for isolated singularities of polynomial systems,Theoretical Comput. Sci.,359, 1112-122,2006.

4– Angelos Mantzalaris and Bernard Mourrain, Deflation andCertified Isolation of Singular Zeros of Polynomial Systems,arXiv1101.340v1, 17-01-2011.

5– Two papers of M. Giusti,G.Lecerf,B. Salvy, J.-C. Yak., in FOCM,2005, 2007.

Jean-Claude Yakoubsohn (IMT) Tracking multiplicities July , 2012 4 / 30

Page 5: Jean-Claude Yakoubsohn - unican.es · Jean-Claude Yakoubsohn Institut de Math´ematiques de Toulouse Santalo’s Summer School Recent Advances in Real Complexity and Computation Work

References

7– J.-P. Dedieu, M. Shub, On Simple Double Zeros and BadlyConditioned Zeros of Analytic Functions of n Variables.Mathematics of Computation, 70 (2001) 319-327.

Book

6– D.A. Cox, J. Little, D.O’Shea, Using Algebraic Geometry,Springer, 2005.

Jean-Claude Yakoubsohn (IMT) Tracking multiplicities July , 2012 5 / 30

Page 6: Jean-Claude Yakoubsohn - unican.es · Jean-Claude Yakoubsohn Institut de Math´ematiques de Toulouse Santalo’s Summer School Recent Advances in Real Complexity and Computation Work

Number of roots of a polynomial system

Theorem Let I =< f1, . . . , fm > and V (I ) ⊂ Cn the associatedvariety.

1– The dimension of C [x ]/I is finite iff the dimension of V (I ) iszero.

2– In the finite dimension case one has

dimC [x ]/I = #V (I )

where #V (I ) is the number of points of V (I ) counted withmultiplicities.

Jean-Claude Yakoubsohn (IMT) Tracking multiplicities July , 2012 6 / 30

Page 7: Jean-Claude Yakoubsohn - unican.es · Jean-Claude Yakoubsohn Institut de Math´ematiques de Toulouse Santalo’s Summer School Recent Advances in Real Complexity and Computation Work

Example

f1(x , y ) = x2 + x3, f2(x , y ) = x3 + y 2 and V (I ) = {(0, 0), (−1, 1)}.A Groebner basis of I is :g1(x , y ) = x0y 4 − y 2, g2(x , y ) = x1y 2 + y 2, g3(x , y ) = x2y 0 − y 2,We deduce

dimC [x ]/I = 6

Jean-Claude Yakoubsohn (IMT) Tracking multiplicities July , 2012 7 / 30

Page 8: Jean-Claude Yakoubsohn - unican.es · Jean-Claude Yakoubsohn Institut de Math´ematiques de Toulouse Santalo’s Summer School Recent Advances in Real Complexity and Computation Work

Multiplicities and local rings

Let w an isolated root of f = (f1, . . . , fm) and I =< f1, . . . fm >.Let C{x − w} the local ring of convergent power series in n variableswhich the maximal ideal is generated by x1 − w1, . . . xn − wn.Let IC{x − w} the ideal generated by I in C{x − w}We note Aw = C{x − w}/IC{x − w}.Theorem.

Let V (I ) = {w1,w2, . . .wN}. Then

1– C[x ]/I ∼ Aw1× . . .× AwN

.

2– dimC[x ]/I =N∑

i=1

dim Awi.

Jean-Claude Yakoubsohn (IMT) Tracking multiplicities July , 2012 8 / 30

Page 9: Jean-Claude Yakoubsohn - unican.es · Jean-Claude Yakoubsohn Institut de Math´ematiques de Toulouse Santalo’s Summer School Recent Advances in Real Complexity and Computation Work

Example

f1(x , y ) = x2 + x3, f2(x , y ) = x3 + y 2 andV (I ) = {(0, 0), (−1, 1), (−1, 1)}.1– A standard basis of IC{x , y} is : g1 = x2, g2 = y 2.Hence dimA(0,0) = 4.2– A standard basis of IC{x + 1, y − 1} (resp. IC{x + 1, y + 1}) is :g1 = 3x , g2 = 2y .Hence dimA(−1,1) = dimA(−1,−1) = 1.

= + +

Jean-Claude Yakoubsohn (IMT) Tracking multiplicities July , 2012 9 / 30

Page 10: Jean-Claude Yakoubsohn - unican.es · Jean-Claude Yakoubsohn Institut de Math´ematiques de Toulouse Santalo’s Summer School Recent Advances in Real Complexity and Computation Work

Multiple roots and clusters of roots

Let w a multiple root of f with multiplicity µ. Let f a pertubatedsystem of f . In an open neighborhood Uw where the Rouche theoremholds, i.e. if for all x ∈ ∂Uw we have

||f (x)− f (x)|| < ||f (x)||

then f has µ roots in Uw .

dim Afw =

w∈f −1(0)∩Uw

dimAfw .

Jean-Claude Yakoubsohn (IMT) Tracking multiplicities July , 2012 10 / 30

Page 11: Jean-Claude Yakoubsohn - unican.es · Jean-Claude Yakoubsohn Institut de Math´ematiques de Toulouse Santalo’s Summer School Recent Advances in Real Complexity and Computation Work

Duality and Multiplicities

We define

Dkw (f ) = {L =

|α|≤k

Lα∂α[w ] : L(f ) = 0

and φi(L) ∈ Dk−1w , ∀i = 1 : n}

where the φ′is are the linear anti-differentiation transformations :

φi(∂α[w ]) = ∂β[w ] with βj =

{

βj if j 6= i

βi − 1 if j = i

Theorem

1– The root w is isolated iff there exists l s.t. Dl−1w = Dl

w .

2– In this case the dimension of Dlw is equal to the multiplicity of w .

Jean-Claude Yakoubsohn (IMT) Tracking multiplicities July , 2012 11 / 30

Page 12: Jean-Claude Yakoubsohn - unican.es · Jean-Claude Yakoubsohn Institut de Math´ematiques de Toulouse Santalo’s Summer School Recent Advances in Real Complexity and Computation Work

Macaulay matrices and multiplicity

We consider the Macaulay matrices

Sk = (∂α[w ]((x − w)βfi(x))) for |β| ≤ k − 1 and i = 1 : m.

Theorem Dkw is isomorphic to the kernel of Sk .

Consequently D l−1w = D l

w when nullity (Sl−1) = nullity (Sl)

Jean-Claude Yakoubsohn (IMT) Tracking multiplicities July , 2012 12 / 30

Page 13: Jean-Claude Yakoubsohn - unican.es · Jean-Claude Yakoubsohn Institut de Math´ematiques de Toulouse Santalo’s Summer School Recent Advances in Real Complexity and Computation Work

Example

f1 = x2 + y 2 − 2, f2 = xy − 1. w = (1, 1).

∂00 ∂10 ∂01 ∂20 ∂11 ∂02

S0 f1 0 | 2 2 | 2 0 2f2 0 | 1 1 | 0 1 0

−−− −| |S1 |

− − − − − −|S2 (x − 1)f1 0 0 0 4 2 0

(x − 1)f2 0 0 0 2 1 0(y − 1)f1 0 0 0 0 2 4(y − 1)f2 0 0 0 0 1 2

rank(S0) = 0, corank(S0) = 1rank(S1) = 1, corank(S1) = 2rank(S2) = 4, corank(S2) = 2. Hence µ = 2.Jean-Claude Yakoubsohn (IMT) Tracking multiplicities July , 2012 13 / 30

Page 14: Jean-Claude Yakoubsohn - unican.es · Jean-Claude Yakoubsohn Institut de Math´ematiques de Toulouse Santalo’s Summer School Recent Advances in Real Complexity and Computation Work

Recovering the quadratic convergence

The idea is to determine a sequence of systems which the last isregular at the multiple root of the original system.

Jean-Claude Yakoubsohn (IMT) Tracking multiplicities July , 2012 14 / 30

Page 15: Jean-Claude Yakoubsohn - unican.es · Jean-Claude Yakoubsohn Institut de Math´ematiques de Toulouse Santalo’s Summer School Recent Advances in Real Complexity and Computation Work

The method of LVZ

Let r the rank of the jacobian matrix J of f at w .The LVZ method consist to add at each step of deflation r + 1equations and unknowns at the initial system.

f (x) = 0

J(x)Bλ = 0 B ∈ Cn×(r+1) randommatrix

λTh − 1 = 0 h ∈ Cr+1 random vector

The unknowns of this new system are (x , λ) ∈ Cn+r+1.The corank of the system (J(x)Bλ = 0, hTλ− 1 = 0) is generalicallyequal to 1 and the multiplicty of the new system is less than theinitial system.We have added m + r + 1 equations and n + r + 1 unknowns.The number of step of deflations to restore quadratic convergence forthe Gauss-Newton method is bounded by the multiplicity of the root.

Jean-Claude Yakoubsohn (IMT) Tracking multiplicities July , 2012 15 / 30

Page 16: Jean-Claude Yakoubsohn - unican.es · Jean-Claude Yakoubsohn Institut de Math´ematiques de Toulouse Santalo’s Summer School Recent Advances in Real Complexity and Computation Work

The first method of DLZ

f (x) = 0

J(x)λ = 0

λTh − 1 = 0

At the end of this of this process we can to add 2µ−1 ×m equationsand 2µ−1 × n unknowns.

Jean-Claude Yakoubsohn (IMT) Tracking multiplicities July , 2012 16 / 30

Page 17: Jean-Claude Yakoubsohn - unican.es · Jean-Claude Yakoubsohn Institut de Math´ematiques de Toulouse Santalo’s Summer School Recent Advances in Real Complexity and Computation Work

The second method of DLZ : case of breadth one.

Breadth one : if at each deflation step corank(system) = 1.In this case the second method of DLZ constructs a regular systemwith at most µ×m equations and µ× n unknowns.

Jean-Claude Yakoubsohn (IMT) Tracking multiplicities July , 2012 17 / 30

Page 18: Jean-Claude Yakoubsohn - unican.es · Jean-Claude Yakoubsohn Institut de Math´ematiques de Toulouse Santalo’s Summer School Recent Advances in Real Complexity and Computation Work

Mantzalaris and Mourrain improvement.

Step 1- Compute a basis for the dual space of the local quotient ringAw : Λ = (Λ1, . . . ,Λµ)Step 2- Compute the system f Λ := (Λ(f1), . . . ,Λ(fm)).

Theorem The system f Λ is regular at w .

Example.

f1(x , y ) = x2 + y 2 − 2, f2 = xy − 1. w = (1, 1).Λ = (1, ∂1 − ∂2).f Λ = (f1, f2, x − y ).

Jean-Claude Yakoubsohn (IMT) Tracking multiplicities July , 2012 18 / 30

Page 19: Jean-Claude Yakoubsohn - unican.es · Jean-Claude Yakoubsohn Institut de Math´ematiques de Toulouse Santalo’s Summer School Recent Advances in Real Complexity and Computation Work

Recovering quadratic convergence : another way.

Newton method does not converge quadratically closed to an isolatedroot. To recover this quadratic convergence the idea is to determinea polynomial system which admits w as regular root, i.e, its jacobianis full rank at w .To do that we use both numerical and symbolic computation. Twoingredients

1– Deflation based on numerical computation of derivatives.

2– Determination of new polynomials based on computation ofnumerical ranges.

This way does not require to compute the whole structure of thelocal qotient algebra which is too huge.

Jean-Claude Yakoubsohn (IMT) Tracking multiplicities July , 2012 19 / 30

Page 20: Jean-Claude Yakoubsohn - unican.es · Jean-Claude Yakoubsohn Institut de Math´ematiques de Toulouse Santalo’s Summer School Recent Advances in Real Complexity and Computation Work

Recovering quadratic convergence : deflating and kernelling.

We proceed by two actions :

1– Deflating

2– Kerneling

We do that without to add new variables. The number of equationsonly increases.

Jean-Claude Yakoubsohn (IMT) Tracking multiplicities July , 2012 20 / 30

Page 21: Jean-Claude Yakoubsohn - unican.es · Jean-Claude Yakoubsohn Institut de Math´ematiques de Toulouse Santalo’s Summer School Recent Advances in Real Complexity and Computation Work

Deflating

We can replace an equation g(x) = 0 by the n equations ∂g(x)∂xi

= 0,i = 1 : n if

g(w) = 0,∂g(w)

∂xi= 0, i = 1 : n.

We decide of this thanks to a point closed to w .

Jean-Claude Yakoubsohn (IMT) Tracking multiplicities July , 2012 21 / 30

Page 22: Jean-Claude Yakoubsohn - unican.es · Jean-Claude Yakoubsohn Institut de Math´ematiques de Toulouse Santalo’s Summer School Recent Advances in Real Complexity and Computation Work

Deflating. Example

f1 = x3/3 + y 2x + x2 + 2yx + y 2, f2 = x2y + x2 + 2yx + y 2

The multiplicity of (0, 0) is 6.We have

∂1 ∂2 ∂1 ∂2x2 + y 2 + 2x + 2y 2yx + 2x + 2y 2xy + 2x + 2y x2 + 2x + 2y

∂11 ∂12 ∂21 ∂22 ∂11 ∂12 ∂11 ∂122x + 2 2y + 2 2y + 2 2x + 2 2y + 2 2x + 2 2x + 2 2

The new polynomial system consists of tree polynomials

x2 + y 2 + 2x + 2y , xy + x + y , x2 + 2x + 2y .

Jean-Claude Yakoubsohn (IMT) Tracking multiplicities July , 2012 22 / 30

Page 23: Jean-Claude Yakoubsohn - unican.es · Jean-Claude Yakoubsohn Institut de Math´ematiques de Toulouse Santalo’s Summer School Recent Advances in Real Complexity and Computation Work

Kerneling

Let us consider a polynomial system f (x) = 0 such that Df (w) isrank deficient and Dfi(w) 6= 0, i = 1 : n. Hence the rank of Df (w) isr > 0. If

Df (w) =

(

A(w) B(w)C (w) D(w)

)

∈ Cm×n

with A(w) invertible matrix of size r × r .The Jacobian matrix Df (w) has rank r iff the Schur complement iszero

D(w)− C (w)A(w)−1B(w) = 0.

i.e., w is a root of

D(x)− C (x)A(x)−1B(x).

Jean-Claude Yakoubsohn (IMT) Tracking multiplicities July , 2012 23 / 30

Page 24: Jean-Claude Yakoubsohn - unican.es · Jean-Claude Yakoubsohn Institut de Math´ematiques de Toulouse Santalo’s Summer School Recent Advances in Real Complexity and Computation Work

Kerneling using Schur complement

Then we add to the initial system at most the (m − r)× (n − r)equations given by:

numer(D(x)− C (x)A−1(x)B(x)) = 0.

Alternative : we can also deal with

1– the rational functions D(x)− C (x)A−1(x)B(x) = 0.

2– the power series D(x)− C (x)A1(x)B(x) where A1(x) is thepower series of A−1(x) at w .

Jean-Claude Yakoubsohn (IMT) Tracking multiplicities July , 2012 24 / 30

Page 25: Jean-Claude Yakoubsohn - unican.es · Jean-Claude Yakoubsohn Institut de Math´ematiques de Toulouse Santalo’s Summer School Recent Advances in Real Complexity and Computation Work

Kerneling using Schur Complement. Example

f1 = x2 + y 2 + 2x + 2y , f2 = xy + x + y , f3 = x2 + 2x + 2y .The root (0, 0) has multiplicity 2.

J =

2x + 2 2y + 2y + 1 x + 12x + 2 2y + 2

and Df (0, 0, 0) =

2 21 12 2

with rank 1.

Then there are two equations which are added to f since :

numer(J(2..3,2)−J(2..3,1)J(1,1)−1 J(1,2))=

2x2 + 4x − 2y2y

Moreover the rank of the new system is 2.

Jean-Claude Yakoubsohn (IMT) Tracking multiplicities July , 2012 25 / 30

Page 26: Jean-Claude Yakoubsohn - unican.es · Jean-Claude Yakoubsohn Institut de Math´ematiques de Toulouse Santalo’s Summer School Recent Advances in Real Complexity and Computation Work

Recovering quadratic convergence

Let GNf (x) = x − (Df (x)TDf (x))−1Df (x)T f (x) and

xk+1 = GNf (xk), k ≥ 0.

Considerf1 = x2 + y 2 + 2x + 2y , f2 = xy + x + y , f3 = x2 + 2x + 2yf4 = x2 + 2x − y , f5 = y .

e1 = 0.22e2 = 0.0088e3 = 3× 10−5

e4 = 6× 10−10

e5 = 1.7× 10−19

e6 = 1.4× 10−38

e7 = 1× 10−76

Jean-Claude Yakoubsohn (IMT) Tracking multiplicities July , 2012 26 / 30

Page 27: Jean-Claude Yakoubsohn - unican.es · Jean-Claude Yakoubsohn Institut de Math´ematiques de Toulouse Santalo’s Summer School Recent Advances in Real Complexity and Computation Work

Example from Kobayashi-Suzuki-Sakai

fi =9

k=1

xk + x2i − 2xi − n + 1, i = 1 : n. w = (1, . . . , 1).

J(x) =

2x1 − 1 1 . . . 11 2x2 − 1 . . . 1

1 1 . . . 2xn − 1

Jw = (1)i ,j . Hence rank(J) = 1.

The Shur complement is

2x2 − 1 1 . . . 11 2x3 − 1 . . . 1

.

.

.

.

.

. . . .

.

.

.1 1 . . . 2xn − 1

11

.

.

.1

12x1−1

(1, . . . , 1).

The deflated system is

(f1, . . . , fn, x1 − 1, (2x1 − 1)(2xi − 1)− 1, i = 2 : n)

Jean-Claude Yakoubsohn (IMT) Tracking multiplicities July , 2012 27 / 30

Page 28: Jean-Claude Yakoubsohn - unican.es · Jean-Claude Yakoubsohn Institut de Math´ematiques de Toulouse Santalo’s Summer School Recent Advances in Real Complexity and Computation Work

Lecerf example

f =

2 x + 2 x2 + 2 y + 2 y 2 + z2 − 1

(x + y − z − 1)3 − x3

(2 x3 + 2 y 2 + 10 z + 5 z2 + 5)3− 1000 x5

The multiplicity of the root (0, 0,−1) is 18.The deflated system is :

x

y

1+z

y−z−1

914

x5+ 528 (2 x

3+2 y2+10 z+5 z2+5)x2− 625126

x

x+y−z−1

x+x2+y+y2+1/2 z2−1/2

RemarkJean-Claude Yakoubsohn (IMT) Tracking multiplicities July , 2012 28 / 30

Page 29: Jean-Claude Yakoubsohn - unican.es · Jean-Claude Yakoubsohn Institut de Math´ematiques de Toulouse Santalo’s Summer School Recent Advances in Real Complexity and Computation Work

Theoretical results

f = (f1, . . . fm) and w a multiple root of f .

Theorem Let f (w) = 0 and ∇f1(w) = 0 such that ∇∂i f1(w) 6= 0,i = 1 : n. Then

multiplicityw (f ) > multiplicityw (∇f1, f )

Theorem Let f (w) = 0, rank(Df (w)) < n and ∇fi(w) 6= 0,i = 1 : n. Let S = { numerators of a Schur complement of Df (x)}.Then

multiplicityw (f ) > multiplicityw (f , S)

Jean-Claude Yakoubsohn (IMT) Tracking multiplicities July , 2012 29 / 30

Page 30: Jean-Claude Yakoubsohn - unican.es · Jean-Claude Yakoubsohn Institut de Math´ematiques de Toulouse Santalo’s Summer School Recent Advances in Real Complexity and Computation Work

Complexity

1- At each step of deflating-kernelling the multiplicity decreases atless by one.

2- The number of steps of deflating-kernelling is bounded by themultiplicity of the root.

Jean-Claude Yakoubsohn (IMT) Tracking multiplicities July , 2012 30 / 30