jason koglin – kavli symposium – dec 11, 20051 indirect dark matter search with antideuterons:...

13
Jason Koglin – KAVLI Symposium – Dec 11, 2005 1 Indirect Dark Matter Search with Antideuterons: Progress and Future Prospects for General Antiparticle Spectrometer (GAPS) T Aramaki, C J Hailey, J Jou, J E Koglin, H T Yu Columbia Astrophysics Laboratory W W Craig, L Fabris, N Madden, K P Ziock Lawrence Livermore National Laboratory F Gahbauer University of Latvia/Columbia University K Mori CITA/Toronto Thanks to J Collins and LLNL electronics shop, T Decker, R Hill, G Tajiri, M Ieiri and the KEK staff Support in part by a NASA SR&T grant, NAG5-5393

Post on 21-Dec-2015

213 views

Category:

Documents


0 download

TRANSCRIPT

Jason Koglin – KAVLI Symposium – Dec 11, 2005 1

Indirect Dark Matter Search with Antideuterons: Progress and Future Prospects for General Antiparticle

Spectrometer (GAPS) T Aramaki, C J Hailey, J Jou, J E Koglin, H T Yu

Columbia Astrophysics LaboratoryW W Craig, L Fabris, N Madden, K P Ziock

Lawrence Livermore National LaboratoryF Gahbauer

University of Latvia/Columbia UniversityK Mori

CITA/Toronto

• Thanks to J Collins and LLNL electronics shop, T Decker, R Hill, G Tajiri, M Ieiri and the KEK staff

• Support in part by a NASA SR&T grant, NAG5-5393

Jason Koglin – KAVLI Symposium – Dec 11, 2005 2

How Does Cold Dark Matter Generate Antideuterons?

HadronizationMonte Carlo

_p

_n

X

Dark MatterModel

q,h,W…

CoalescenceModel

_D

• Pair annihilating WIMPS produce:

, , e+…

• Donato et al. (2000) suggest antideuteron signal

Baer & Profumo 2005

Uncertainties in Primary Antideuteron Flux

_p…

Jason Koglin – KAVLI Symposium – Dec 11, 2005 3

Low energy, neutralino-neutralino produced

antideuterons are near background free• Primary component:

neutralino annihilation _

X+X → D

• Secondary component: spallation

_ p+H → p+H+D+D

_ p+He → p+He+D+D

• Clean signature @ low E, but see Baret et al. 2003

• However, sensitivity demand is daunting

Antideuteron flux at the earth (with propagation and solar modulation)

Primary

Secondary

Jason Koglin – KAVLI Symposium – Dec 11, 2005 4

GAPS is based on radiative emission ofantiparticles captured into exotic atoms

TOF_D

Target

Segmented Detector

Degrader

LadderDeexcitationsn=1, l=1

NuclearAnnihilation

Exotic Atom

n=1

n=2

n=3

n=4

n=5

n=6

n=nK~15

no,lo

Atomic Transitions

19 keV

75 keV

35 keV *

*

*

Anti-protonic atoms (in addition to Muonic, Pionic, Kaonic atoms) extensively studied and atomic transitions well understood.

22

11

if

H*

nnRMzZE 2

Auger e-

Refilling e-

Jason Koglin – KAVLI Symposium – Dec 11, 2005 5

Comparison of Direct & Indirect Antideuteron Detection Sensitivities for

SUSY DMThere are ~20 current or planned

direct detection experimentsIndirect Antideuteron search offers

a complementary methodCDMS (Soudan) 2005 Si (7 keV threshold) CDMS (Soudan) 2004 + 2005 Ge (7 keV threshold) CDMS Soudan 2004+2005 Ge/Si SD-neutron/protonCDMSII (Projected) Development ZBG SuperCDMS (Projected) Phase C CDMSII (Soudan) projected CUORICINO projected exclusion limit COSME 2001 Exclusion Limit, 72.7 kg-days CRESST-I projection limit, Al2O3 CRESST-II projected limit, CaWO4 CRESST I SD-neutron/protonCRESST II SD-neutron/protonDAMA 2000 58k kg-days NaIDAMA 2003 NaI SD-neutron/protonDAMA Xe129 DMRC projection for 100kg CsI, 1cpd ELEGANT V NaI SI/SD limit, OTO COSMO Observatory Edelweiss I final limit, 62 kg-days Ge 2000+2002+2003 limit Edelweiss SD-neutron/protonEdelweiss Ge, projected GEDEON projection Genius Test Facility projected limit, 2001, energy threshold 2 keV Genino projected exclusion limit, DM2000 Heidelberg - Genius, projected IGEX projected exclusion limit (for 1kgyr) IGEX 2002 Nov limit NAIAD 2005 final result SI/SDPICASSO SD-neutron/proton (2005)SIMPLE SD-neutron/protonZEPLIN I First Limit (2005) NAIAD spin indep. projected limit, 12 p.e./keV with 100 kg-yrs exposure XENON100 (100 kg) projected sensitivity XENON10 (10 kg) projected sensitivity XENON1T (1 tonne) projected sensitivity ZEPLIN I SD-neutron/proton(preliminary) ZEPLIN 2 projection ZEPLIN 4/MAX projected (2004) SuperK indirect SD-proton

Baer & Profumo 2005

Jason Koglin – KAVLI Symposium – Dec 11, 2005 6

Detector approach was dictated by trade between performance and shoe string

budget• 16 NaI(Tl) detector modules covering 40 cm long x 12 cm diameter target cell

• Each modular 4x2 arrays of 25mm diameter x of 5 mm thick crystals (128 total)

• Solid angle coverage ~ 0.3

2004 KEK Experiment

GAPS Detector

C2F6 (gas)C (Aerogel)

Jason Koglin – KAVLI Symposium – Dec 11, 2005 7

KEK Accelerator Tests to Demonstrate Fast-timing, Multi-X-ray Spectroscopy

Approach

TOF [ns]

E [keV]

TOF & ShowerBeam Counters

NaI Detector [keV]Charged

Veto [MeV]

-0.3 -0.2

2.3 2.7 3.3 3.9

0.1

4.5

-0.1

5.7

50

92

198

0.2

0.4

0.2

*

*

*

TOF Trigger Counters Degrader ShowerCounters

Exotic Atom

Atomic Transitions

Nuclear Annihilation

Jason Koglin – KAVLI Symposium – Dec 11, 2005 8

2004 KEK GAPS Results

We clearly get X-rays when we dump Antiprotons into our gas target

50 100 150 200 250 300NaI Energy Deposit [keV]

No Target

C2F6 Target

00

400

600

800

200

1000

More importantly, we see X-ray transitions in events with multiple signatures!!!

33

*

86

BeamDirection

NaI Energy [keV]

38

3 X-ray + 1 * Event

Hailey et al. 2005 (accepted by JCAP)

Jason Koglin – KAVLI Symposium – Dec 11, 2005 9

Solid and Liquid Targets Tested in 2005

CCl4Al

CBr4

(liquid)

S

Targets chosen based on known, high Kaonic yields Goal to measure Antiprotonic atom yields

Jason Koglin – KAVLI Symposium – Dec 11, 2005 10

CBr4 – KEK 2005

50 100 150 200 250 300X-ray Energy [keV]

0

5

10

15

20

25

30

b) NaI Energy [keV]

0.7 0.7 0.8 0.33.1 3.8 5.8 7.6 5.4 7.6

Time [ns]E [MeV]

P1 P2 S1 S2 S3 S4 P3 P4 P5

a)

223

145

99

71

52

31,40

99

74

248 153 BeamDirection

ChargedVeto [MeV]

Target

Cut: 2 X-ray & 4 total signals

50 100 150 200 250 300X-ray Energy [keV]

0

5

10

15

20

25

30

b) NaI Energy [keV]

0.7 0.7 0.8 0.33.1 3.8 5.8 7.6 5.4 7.6

Time [ns]E [MeV]

P1 P2 S1 S2 S3 S4 P3 P4 P5

a)

223

145

99

71

52

31,40

99

74

248 153 BeamDirection

ChargedVeto [MeV]

Target

Multi-X-ray Spectrum 4 X-ray Transition Event

Hailey et al. 2005 (accepted by JCAP)

Jason Koglin – KAVLI Symposium – Dec 11, 2005 11

Sulfur – KEK 2005

Cut: 2 X-ray & 4 total signals

50 100 150 200 250 300X-ray Energy [keV]

0

5

10

15

20

25

30

b) NaI Energy [keV]

-0.2 -0.1 0.0 -0.22.5 2.9 2.7 3.2 5.2 5.2

Time [ns]E [MeV]

P1 P2 S1 S2 S3 S4 P3 P4 P5

a)

139

76

46

30

83

*

147

BeamDirection

ChargedVeto [MeV]

Target

1.6

0.3

0.4

0.3

*

*

Multi-X-ray Spectrum 2 X-ray + 3 * Event

50 100 150 200 250 300X-ray Energy [keV]

0

5

10

15

20

25

30

b) NaI Energy [keV]

-0.2 -0.1 0.0 -0.22.5 2.9 2.7 3.2 5.2 5.2

Time [ns]E [MeV]

P1 P2 S1 S2 S3 S4 P3 P4 P5

a)

139

76

46

30

83

*

147

BeamDirection

ChargedVeto [MeV]

Target

1.6

0.3

0.4

0.3

*

*

Hailey et al. 2005 (accepted by JCAP)

Jason Koglin – KAVLI Symposium – Dec 11, 2005 12

Preliminary results from KEK experiments

• Solid targets have been successfully utilized: simplification over initial gas concept is enormous

Gaseous Antiparticle Spectrometer General Antiparticle Spectrometer

• Pion stars provide substantial additional antiparticle identification

• Preliminary results on X-ray yields per capture are consistent with those used in original sensitivity calculations

• Non-antiparticle background is cleanly identified and rejected

Conclusion: GAPS is probably more promising than originally anticipated

Jason Koglin – KAVLI Symposium – Dec 11, 2005 13

Goal is to conduct balloon-based GAPS antideuteron search by 2009-2010

• Investigate flight detectors (e.g., CZT, LaCl, NaI), readout geometries (PMT, APD, fiber-coupled scintillator bars) and low cost electronics. 2006-2007

• Detailed design and simulation of flight geometry, extending on original work. 2006-2007

• Design and construction of gondola and first flight module. 2007-2008

• Flight test of prototype GAPS – possibly from Sanriku in Iwate, Japan. 2008 (T Yoshida & H Fuke have recently joined GAPS collaboration)

• LDB flight from Antarctica or ULDB flight from Australia (if available). 2009-2010