jan vogel - institut néelneel.cnrs.fr/img/pdf/vogel_a13_2011.pdf · jan vogel present position:...

80
Jan Vogel Present position: Directeur de Recherche at the CNRS (Institut Néel, Grenoble) Research subjects: X-ray Magnetic Circular Dichroism, PhotoEmission Electron Microscopy (PEEM), Magnetization reversal dynamics Post-doc: 1995-1997, Laboratoire Louis Néel + ESRF Thesis: University of Nijmegen (Netherlands) 1994 “X-ray Linear and Circular Dichroism in thin Transition Metal and Rare Earth overlayers” HERCULES 1991

Upload: lethu

Post on 28-Apr-2018

219 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

Jan Vogel

Present position: Directeur de Recherche at the CNRS (Institut Néel, Grenoble)

Research subjects: X-ray Magnetic Circular Dichroism, PhotoEmission Electron Microscopy (PEEM), Magnetization reversal dynamics

Post-doc: 1995-1997, Laboratoire Louis Néel + ESRF

Thesis: University of Nijmegen (Netherlands) 1994

“X-ray Linear and Circular Dichroism in thin Transition Metal and Rare Earth overlayers”

HERCULES 1991

Page 2: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

- X-ray Absorption: general introduction- Multiplet Theory for XAS

- Some quantummechanics (orbitals, configurations and terms)

- Line strengths, cross-sections: selection rules

- Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

L-edges of Transition Metals, M-edges ofRare Earths

Page 3: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

vale

nce

band EF

core

leve

ls

2p

2s

EF

2p

2s

Ek=hν-EB

Page 4: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

vale

nce

band

core

leve

ls

EF

2p

2s

Fluorescence (radiative decay)

Typical timescales 10-15 s Auger decay(non-radiative decay)

Page 5: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

One electron model:Fermi ’s Golden Rule:

wabs = (2π/h) |< Φf |T | Φi >|2 ρf(Ehν - Ei )

|<Φf|T|Φi>|2 : matrix element of electromagnetic field operator T between initial state |Φi> and final state <Φf|

ρf(E) density of valence states at E ( > Efermi)

Ei core-level binding energy

One-photon transitions (absorption): T1 ≈ H1 = (e/mc) p⋅A

Plane wave: A = eq A0exp[i k⋅r]T1 = (eA0/mc) Σq[eq ⋅ p + i (eq ⋅ p)(k⋅r)]

q : light polarization

First term: dipole transitions (∆l = ± 1, ∆s = 0)Second term: quadrupolar transitions (∆l = 0, ± 2, ∆s = 0)

Page 6: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

k⋅ r ≈ √hν (eV)/ 80Z

K-edges: C (hν = 284eV, Z = 6) → 0.03

Zn (hν = 9659eV, Z = 30) → 0.04Transition probability T2 → quadrupolar transitions about 1000 times smaller than dipolar ones

Dipole approximation:

Transition probability : wabs ∝ Σq |< Φf | eq ⋅ r | Φi >|2 ρf (Ehν - Ei )

Page 7: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

K-edge: 1s → empty p-statesL1-edge: 2s → pL2,3-edges: 2p1/2, 3/2 → s,dM4,5 -edges: 3d3/2, 5/2 → p,fetc.

2p1/2

2p3/2

Spin-orbit coupling: l ≥ 1 Spin parallel/anti-parallel to orbit: j= l + s, l - s

p → 1/2, 3/2d → 3/2, 5/2

Branching ratios: -j ≤ mj ≤ jp1/2 → mj = -1/2, 1/2p3/2 → mj = -3/2, -1/2, 1/2, 3/2Intensity ratio p3/2 : p1/2 = 2 : 1

d5/2 : d3/2 = 3 : 2

Page 8: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

valenceband

corelevels

2p1/2

2p3/2

EF

dsp

∆l = ±1∆s = 0

• Intuitively nice: Most valence electrons are in bands

• Direct comparison with band structure calculations?

• No!The core hole spoils it all!

Page 9: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

Si K-edge absorption of NiSi2 compared to Si p-DOS.

Right: including energy dependence of matrix elements

Discrepancies:- Influence of core hole

- Dynamics of transition

Page 10: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

Si* p : p-density of states in presence of core hole

P.J.W. P.J.W. WeijsWeijs et al., Phys. Rev. B. 41, 11899 (1991)et al., Phys. Rev. B. 41, 11899 (1991)

• Core Hole pulls down DOS• Final State Rule: Spectral shape of XAS looks like final state DOS • Initial State Rule: Intensity of XAS is given by the initial state

Page 11: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

initialstate dn

finalstate

multipletpdn+1

J

J’

∆J=0,±1

• Accounts naturally for core hole

• ‘Easier’ exact theory• Good for RE M45• Extensions for less

localized final states:– Crystal fields– Impurity models

(Anderson)> mixed valence> hybridization

Page 12: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

Weakly correlated limit (interaction with neigbouring atoms >> intra-atomic interactions):

- Near edge region (0-50 eV): multiple scattering (band structure) →Y. Joly

- Extended region ( > 50 eV): single scattering (EXAFS) →S.Pascarelli

Strongly correlated electron systems (intra-atomic interactions >> interaction with environment):

- Atomic calculations:

M4,5-edges of Rare Earths (3d → 4f transitions)

- Magnetic, crystal field: weak perturbation

L2,3-edges of Transition Metals (2p → 3d transitions)

- Crystal Field (environment) more important.

Page 13: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

Free ion wavefunctions: eigenfunctions of Hamiltonian operator:

H = - (h2/8π2m)∇2 - Zeff e2/r

H⏐ψ⟩ = E⏐ψ⟩

Orbitals (s, p, d, ..) can be written as linear combinations of hydrogen-likewave functions

ψn,l,ml = Rn,lYlml

n = principal quantum number (n ≥ 1)

l = orbital quantum number (0 ≤ l ≤ n-1)

ml = projection of l on z-direction (-l ≤ ml ≤ l)

Rn,l = Radial part of wavefunction

Ylml = Angular part of wavefunction

Page 14: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

d0 d±1 d±2

p0p±1

s0

s-orbital: Y00 = 2-1/2(2π)-1/2

p-orbitals: Y11 = (3/4)1/2sinθ • (2π)-1/2eiϕ

Y10 = (3/2)1/2cosθ • (2π)-1/2

Y1-1 = (3/4)1/2sinθ • (2π)-1/2e-iϕ

d-orbitals: Y2±2 = (15/16)1/2 sin2θ • (2π)-1/2e±2 iϕ

Y2±1 = (15/4)1/2sinθcosθ • (2π)-1/2e± iϕ

Y20 = (5/8)1/2 (3cos2θ - 1) • (2π)-1/2

Page 15: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

e± i mφ = cos (mφ) ± i sin (mφ) (De Moivre’s theorem)x = r sinθcosφ , y = r sinθsinφ , z = r cosθ

θ

ϕx

y

zr

Example:Rn,2• Y2

2 + Rn,2• Y-22 =

Rn,2 • (15/16)1/2 • (2π)-1/2 • sin2θ(cos 2φ + i sin2φ) +Rn,2 • (15/16)1/2 • (2π)-1/2 • sin2θ(cos 2φ - i sin2φ) =2Rn,2 • (15/16)1/2 • (2π)-1/2 • sin2θ cos 2φ =2Rn,2 • (15/16)1/2 • (2π)-1/2 • sin2θ(cos2φ - sin2φ) =2Rn,2 • (15/16)1/2 • (2π)-1/2 • (x2 - y2 )/ r2 ~ (x2 - y2 )

Normalization: d(x2 - y2) = 2-1/2 • Rn,2 (Y22 + Y-2

2)

dz2 = Rn,2 Y02

dyz = 2-1/2 • Rn,2 (Y12 - Y-1

2)dxz = 2-1/2 • Rn,2 (Y1

2 + Y-12)

dxy = 2-1/2 • Rn,2 (Y22 - Y-2

2)

Page 16: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

pZ px py

http://en.wikipedia.org/wiki/Atomic_orbital

Page 17: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

dz2 dxz

dyz dxy dx2-y2http://en.wikipedia.org/wiki/Atomic_orbital

Page 18: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

Configuration: Number of electrons in a given (partly filled) orbital: 3d2, 3d94f8, etc.

Term: energy level of a system. Each configuration has several energy levels/terms.

Labelling terms: (2S + 1) X

L = 0 1 2 3 4 5 6

X = S P D F G H I

(2S + 1): Multiplicity

singlet doublet triplet quartet quintet sextet

S = 0 1/2 1 3/2 2 5/2

- L ≤ ML ≤ L - S ≤ MS ≤ S

Degeneracy of term: (2L + 1)(2S + 1)

Term 3P is 3x3 = 9-fold degenerate.

Page 19: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

d1 (d9 ) :

ml = 2 1 0 -1 -2

ML = 2, MS = 1/2↑

d1, d9 → 2D

↑ ↑

d2 (d8 ) :

ml = 2 1 0 -1 -2

ML = 3, MS = 1

↑ ↑ ML = 1, MS = 1

↓ ↑ ML = -2, MS = 0

↓ ↓ or ↑ ↑: 2 x ( ) = 20 ↑ ↓: 5 x 5 = 25 Total: 45 possibilities52

Page 20: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

Occurrencies for different ML and MS values:ML = ±4 (1 time each) MS = ±1 (10 times each)ML = ±3 (4) MS = 0 (25)

= ±2 (5)= ±1 (8)= 0 (9)

ML = +4 and -4 occur 1 time each → 1 G

Subtracting 1 for each ML value and 2L+1 = 9 times MS = 0 :ML = ±3 (3) MS = ±1 (10)

= ±2 (4) MS = 0 (16)= ±1 (7)= 0 (8)

ML = +3 and -3 occur 3 times each → 3 x 1F or 1 x 3F

3 x 1F gives 3 x (2L + 1) = 21 times MS = 0 → not possible

d2, d8 → 1G + 1D + 1S + 3F + 3P

Page 21: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

Configuration Terms

d1, d9 2D

d2, d8 3F,3P,1G,1D,1S

d3, d7 4F,4P,2H,2G,2F,2x2D,2P (2D occurs twice)

d4, d6 5D,3H,3G,2x3F,3D,2x3P,1I,2x1G,1F,2x1D,2x1S

d5 6S,4G,4F,4D,4P,2I,2H,2x2G,2x2F,3x2D,2P,2S

Term with lowest energy: Hund’s rules

1) For a given configuration, the terms with the highest multiplicity (spin) lie lowest.

2) Of the terms with the highest spin, the one with the largest value of L lies lowest.

Page 22: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

ml= 2 1 0 -1 -2 ML MS Ground term

d1 ↑ 2 1/2 2D

d2 ↑ ↑ 3 1 3F

d3 ↑ ↑ ↑ 3 3/2 4F

d4 ↑ ↑ ↑ ↑ 2 2 5D

d5 ↑ ↑ ↑ ↑ ↑ 0 5/2 6S

d6: 5D d7: 4F d8: 3F d9: 2D

Page 23: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

∑∑∑∑ ⋅+++= −

Niii

pairsre

NrZe

Nm

p slrHiji

i )(222

2 ζEnergy of term:

∑N

mpi2

2

Kinetic energy of electrons

∑ −

NrZe

i

2Electrostatic interaction with the nucleus

∑pairs

re

ij

2(Hee) Electron-electron repulsion

∑ ⋅N

iii slr )(ζ (Hls) Spin-orbit coupling of each electron

First two parts are the same for all terms in the configuration → average energy of configuration Hav H = Hav + H′ee + Hls

∑∑ −=−=pairs

re

pairsre

eeeeee ijijHHH 22'

Page 24: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

H = Hav + H′ee + Hls

Electron repulsion parameters: Coulomb, exchange.

∑∑ +=++

k

kk

k

kkJ

Sre

JS GgFfLL 1212 ||

12

2

Fk (fk) , Gk (gk) : radial (angular) part of direct Coulomb repulsion and exchange interaction

Examples :

2p2 : f0F0 + f2F2 2p3p : f0F0 + f2F2 + g0G0 + g2G2

3d2 : f0F0 + f2F2 + f4F4 2p3d : f0F0 + f2F2 + g1G1 + g3G3

Properties fk : f0 always present, kmax = 2 x lowest l - value

Properties gk : only present for e- in different shells

k is even if l1+l2 is even, odd if l1+l2 is odd

kmax = l1 + l2

Page 25: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

Example 1s2s, term symbols 1S and 3S

)21()21(|| 001112

2 ssGssFSS re +=

)21()21(|| 003312

2 ssGssFSS re −=

1S ↔2G0(1s2s)

3S

Page 26: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

3d2: 1S, 3P, 1D, 3F and 1G

F4 ≈ 0.62 F2

2 electrons: f0 = 1

RelativeEnergy

RelativeEnergy

1S F0 + 2/7 F2 + 2/7 F4 0.46F2 4.6 eV3P F0 + 3/21 F2 - 4/21 F4 0.02F2 0.2 eV1D F0 - 3/49 F2 + 4/49 F4 -0.01F2 -0.1 eV3F F0 - 8/49 F2 - 1/49 F4 -0.18F2 -1.8 eV1G F0 + 4/49 F2 + 1/441 F4 0.08F2 0.8 eV

Page 27: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

Energy of terms of 3dn configurations:

Page 28: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

Term: (2L + 1)(2S + 1)-fold degenerate.

Second perturbation: spin-orbit coupling.

s.o.coupling << electron repulsion: Russel-Saunders scheme. Splitting in states with

| L - S | ≤ J ≤ | L + S | (2J + 1)-fold degenerate: -J ≤ MJ ≤ J

single-electron spin-orbit coupling parameter ζ: interaction strength between spin and orbital angular momenta of a single e- in a configuration.

ζl • s with ζ = (Zeff e2/2m2c2) r-3

For a term: λL•S with λ = ± ζ/2S

Number of states: smallest of (2S + 1) and (2L + 1), ∆EJ,J+1= λ (J + 1)

Shell less than half full: λ positive → |L - S| lowest in energy

more than half full: λ negative → |L + S|Hund ’s third rule

Page 29: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

Full symbol for state: (2S+1)LJ

“normal” multiplet (d2) “inverted” multiplet (d8)

Page 30: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

electron repulsion >> s.o.coupling Russel-Saunders

s.o.coupling >> e- repulsion j-j coupling

l + s = j for each e-, splitting determined by coupling between total angular momenta j of each e-.

Russel-Saunders ⇒ jj-coupling for d2

For 3d-metals Coulomb, exchange ≈ 1000 x s.o.

4f-metals ≈ 10 x ⇒intermediate coupling

Page 31: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

4f- metals (Lanthanides or Rare Earths)

Ce 4f 1 2F7/2 Tb 4f8 7F9

Pr 4f 2 3H4 Dy 4f9 6H15/2

Nd 4f 3 4I9/2 Ho 4f10 5I8

Pm 4f 4 5I4 Er 4f11 4I15/2

Sm 4f5 6H5/2 Tm 4f12 3H6

Eu 4f6 7F0 Yb 4f13 2F7/2

Gd 4f7 8S7/2 Lu 4f14

Splitting GS ⇔ first excited state:

200 - 300 meV for Pr and Nd

50 - 100 meV for Sm and Eu

2 eV for Gd

300 → 800 meV for Tb → Yb

Page 32: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

X-ray absorption: two open shells → multiplication of (symmetry of) terms of both shells.

Shell A with LA and SA, shell B with LB and SB.

|LA - LB| ≤ L ≤ LA + LB |SA - SB| ≤ S ≤ SA + SB

Simple case 2p6 3d 0 → 2p5 3d1

p5: 2P (L = 1, S = 1/2) d1: 2D (L = 2, S = 1/2)2P⊗ 2D = 1P1 + 1D2 + 1F3 + 3P0,1,2 + 3D1,2,3 + 3F2,3,4

Coupling: p5 strong spin-orbit coupling → jj

d1 weak s.o.coupling → LS

p5 d1 intermediate coupling

Page 33: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

Fermi ’s Golden Rule: wabs∝Σq |<Φf |eq ⋅ r|Φi >|2 ρf (Ehν- Ei )

Atomic wavefunctions: <Φf |eq ⋅ r|Φi > ⇒ <φ (J′M′)|eq ⋅ r |φ (JM)>

(q = polarization of light)

Wigner-Eckhart theorem:

<φ (J′M′)|Pq |φ (JM)> = (-1)J-M ( ) <φ (J′)||Pq ||φ(J)>

3J symbol ≠ 0 if: ∆ J = (J′- J) = -1, 0, +1 and J′+ J ≥ 1

∆M = (M′- M) = q

J 1 J′- M q M′

Page 34: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

|<φ (J′)||Pq ||φ (J)>|2 : Line strength of transition

Hartree-Fock theory with relativistic corrections

Slater electronic (Fk) and exchange (Gk) integrals.

dd: F0, F2, F4

ff : F0, F2, F4, F6

pd : F0, F2, G1, G3

df : F0, F2, F4, F6, G1, G3, G5

Page 35: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

2p6 3d 0 → 2p5 3d1 : 1P1 (LS coupling), J = 1 (jj coupling)

Intermediate coupling: also 3P1 and 3D1

Ti4+, atomicmultiplet.

3P1

3D11P1

Page 36: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

[ ] [ ] [ ] 23,11

10

1 || PDFPSI XAS ∝

3P03P1

3D11P1

3P23D2

3F21D2

3D33F3

1F33F4

-3.281 1.0-2.954 -0.94 0.30 0.080.213 -0.19 -0.77 0.605.594 0.24 0.55 0.79

-2.381 0.81 -0.46 0.01 0.34-1.597 -0.03 -0.50 0.56 -0.653.451 0.04 -0.30 -0.82 -0.473.643 -0.57 -0.65 -0.06 0.48

-2.198 -0.21 0.77 0.59-1.369 0.81 -0.19 0.543.777 -0.53 -0.60 0.59

-2.481 1.0

dLSpLSELECTROeff HHHH 32 −− ++=1515 32||32

12

2 dpdpH re

ELECTRO =

pslpH ppppLS 2||22 ⋅=− ς

dsldH ddddLS 3||33 ⋅=− ς

Page 37: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

000000000

MatrixEnergy

100010001

rsEigenvecto

Energy Levels Intensities0.00 3P 0.000.00 3D 0.000.00 1P 1.00

H = 0 : only 1P1 line present (inital state 1S0, ∆J = 0, ±1 ∆S = 0 ∆L = ±1 )

Eigenvectors:

1st line: 3P 2nd: 3D 3rd: 1P

Intensity: square of 1P-character in state

Energy: diagonalize energy matrix

Page 38: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

591.3000671.0000345.1−

MatrixEnergy

100010001

rsEigenvecto

Energy Levels Intensities-1.345 3P 0.00+0.671 3D 0.00+3.591 1P 1.00

HELECTRO ≠ 0, no spin-orbit coupling :

still pure L-S coupling, no mixing of different terms

still only 1P1 line present

Page 39: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

000.0335.1312.2335.1944.0635.1312.2635.1944.0

MatrixEnergy

577.0816.00.0408.0288.0866.0707.05.05.0

−−−−−−

rsEigenvecto

Energy Levels Intensities-1.888 3P 0.00-1.888 3D 0.666+3.776 1P 0.333

HELECTRO = 0, Hls-2p = 3.776 eV :

Mixing of LS terms:

‘3P’ = 0.5 3P - 0.866 3D

‘3D’ = -0.5 3P - 0.288 3D + 0.816 1P

‘1P’ = -0.707 3P - 0.408 3D - 0.577 1P

Intensities:

‘3P’ : 0 ‘3D’ : (0.816)2 = 0.666 ‘1P’ : (-0.577)2 = 0.333

Page 40: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

591.3335.1312.2335.1289.2635.1312.2635.1615.1

MatrixEnergy

792.0603.0089.0248.0185.0951.0557.0776.0297.0

−−−

rsEigenvecto

Energy Levels Intensities-2.925 3P 0.008+0.207 3D 0.364+5.634 1P 0.628

HELECTRO : F2 = 5.042 eV, G1 = 3.702 eV, G3 = 2.106 eV

Hls-2p = 3.776 eV

-4 -3 -2 -1 0 1 2 3 4 5 6 70

2

4

6

(d)

(c)

(b)

(a)

Inte

nsity

Energy (eV)

3P 3D 1P

a) H = 0

b) Hls-2p

c) Hel.

d) Hel. + Hls-2p

Page 41: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

• TiIV L2,3 edge: 3d0→2p53d1

• TiIV M2,3 edge: 3d0→3p53d1

• LaIII M4,5 edge: 4f0→3d94f1• LaIII N4,5 edge: 4f0→4d94f1

Edge Ti 2p Ti 3p La 3d La 4d

Average Energy (eV) 464.00 37.00 841.00 103.00

Core spin-orbit (eV) 3.78 0.43 6.80 1.12F2 Slater-Condon(eV) 5.04 8.91 5.65 10.45

Intensities:

Pre-peak 0.01 10-4 0.01 10-3

p3/2 or d5/2 0.72 10-3 0.80 0.01

p1/2 or d3/2 1.26 1.99 1.19 1.99

100 105 110 115 120 125 835 840 845 850 8551E-4

1E-3

0.01

0.1

1

10

100

1000

1E-4

1E-3

0.01

0.1

1

10

100

1000

La 3dLa 4d

Inte

nsity

(lo

g sc

ale)

Energy (eV)

35 40 45 50 55 460 465 470 475 480

Ti 3p Ti 2p

Energy (eV)

Page 42: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

Transition Ground Transitions Term Symbols3d0→2p53d1 1S0 3 123d1→2p53d2 2D3/2 29 453d2→2p53d3 3F2 68 1103d3→2p53d4 4F3/2 95 1803d4→2p53d5 5D0 32 2053d5→2p53d6 6S5/2 110 1803d6→2p53d7 5D2 68 1103d7→2p53d8 4F9/2 16 453d8→2p53d9 3F4 4 123d9→2p53d10 2D5/2 1 2

All transitions with |J-1| ≤ J′ ≤ J+1 (∆J = 0, ±1)

Page 43: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

M4,5-edges: 3d104fn → 3d94fn+1

4f electrons screened by 5s, 5p , 5d and 6s electrons

Calculations: spherical,unperturbedwavefunctions

magnetic and crystal fields small perturbation.

Page 44: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

Simplest case Yb (4f13):3d104f13 → 3d94f14 2F7/2 → 2D5/2 M5 (3d5/2)

2F7/2 → 2D3/2 M4 (3d3/2)

- 4f spin-orbit coupling ≈ 1.3 eV (energy difference 2F7/2 and 2F5/2 )

- Crystal field can mix some 2F5/2-character into GS

Page 45: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

4f12 → 3d9 4f13 or equivalently f2 → df

1S3P

1D3F

1G3H

1I ΣGround

StateDeg. 1 9 5 21 9 33 13

s2 1 1 1S0p2 1 9 5 15 3P0d2 1 9 5 21 9 45 3F2f2 1 9 5 21 9 33 13 91 3H4

J-values0 0

12

2 234

4 456

6

For 4f12 Hund’s rule GS is 3H6

Intermediate coupling: 4f spin-orbit mixes some 1I6 character into ground-state (≈ 1%) (4f s.o. = 0.33eV)

F2 = 13.175 eV, F4 = 8.264 eV andF6 = 5.945 eV

025.2408.0408.0201.2

−−−MatrixEnergy

995.0095.0095.0995.0

61

63 −

IH

rsEigenvecto

Energy Levels-2.240 I ~3H62.064 II ~1I6

Page 46: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

3d9 4f13: 2D⊗2F S = 0, 1 L = 1, 2, 3, 4, 5

Five singlets: 1P1, 1D2, 1F3, 1G4 and 1H5

Fifteen triplets: 3P0,1,2, 3D1,2,3, 3F2,3,4, 3G3,4,5 and 3H4,5,6

GS J = 6 → J = 5, 6, 7 1H5, 3G5, 3H5 and 3H6

Strong 3d spin-orbit coupling (18eV) → J = 5 states mix

965.1486088.10163.19088.10995.1469607.10163.19607.10706.1484

−−−−

MatrixEnergy

680.0733.0116.0341.0302.0890.0649.0609.0455.0

51

53

53

−−−−−−

rsEigenvecto

HGH

Energy Levels Intensities1464.44 I 4.111466.89 II 0.521510.33 III 0.231462.38 3H6 1.16

Page 47: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

Tm M5-edge. Peaks from left to right:3H6

I = 0.455 | 3H5> - 0.89 | 3G5> + 0.116 | 1H5>

II = -0.609 | 3H5> - 0.302 | 3G5> + 0.733 | 1H5>

From top to bottom: increasing values of Slater-Condon parameters (0 → 80% of H.F. values).

M. Pompa et al., Phys. Rev. B 56, 2267 (1997)

Page 48: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

Pr4+ : 4f1

Pr3+ (4f2) : alltransitions

Pr3+ (4f2) : dipoleallowed transitions (200)

Experiment

Page 49: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

Ce Dy

Configuration of most RE in metallic state: 4fn(5d6s)3

Calculations for RE3+-ions (without 5d and 6s electrons).

B.T. Thole et al., Phys. Rev. B 32, 5107 (1985)

Page 50: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

- Experimental broadening (Gaussian): energyresolution of monochromator (0.25 eV → 0.4 eV for La → Yb).

- Lifetime broadening (Lorentzian): ∆E ≈ h/τ(uncertainty)

(τ = lifetime)

In general: the larger E, the smaller τΓ3/2 from 0.2 eV for La to 0.3 eV for YbΓ5/2 from 0.4 eV for La to 0.6 eV for Tm.

4f

3d5/2

3d3/2

Decay channels:

M4: Coster-Kronig decay possible, M5 not → M4 larger.

Page 51: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

A) Param. Thole et al.

B) Further reduction of Slater integrals (70-80%)

C) ∆J dependent broadening

Absorption line strengths and 3d3d4f εd-decay

lifetime broadening state dependent

Page 52: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

Polarization dependence of X-ray Absorption Spectra (Dichroism): q = -1 (right circularly polarized light)

q = 0 (linearly, // to quantization.-axis)

q = +1 (left circularly polarized light)

X-ray Magnetic Circular Dichroism (XMCD): difference in absorption for left- and right circularly pol.light.

X-ray Linear Dichroism: diff. in absorption for linearly polarized light ⊥ and // to quantization axis (q = ± 1 and q = 0 ).

Page 53: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

Difference between q = +1 and q = -1 transitions (circular dichroism): proportional to M

Difference between q = 0 and q = ±1 transitions (linear dichroism): proportional to M2

Crystal Field: no circular dichroism, only linear.

Magnetic Field: circular and linear dichroism.

Page 54: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

Magnetic field → (2J + 1)-fold degeneracy lifted (Zeeman-splitting)

J= 7/2

MJ = 7/2

MJ = 5/2

MJ = 3/2

MJ = 1/2

MJ = -1/2

MJ = -3/2

MJ = -5/2

MJ = -7/2

Energy of MJ - levels: EM = -gαJµBHM

Occupation of Mj-levels: Boltzmann-distribution nj (T) = e- (E/kT)/ Σ e- (E/kT)

T = 0K: only lowest lying level (Mj = -J) occupied

Page 55: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

M5 M4

Total

q = ±1q = 0

q = +1q = -1

XLDXMCD

Page 56: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

Axial crystal field (symmetry O20 )(Yb)

CF: no splitting of +MJ and -MJ → no circular dichroism

Page 57: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

Ce 4f 1: Hund ’s rule G.S. 2F7/2

Absorption + dichroism: contribution of J = 5/2M.Finazzi et al, Phys.Rev.Lett. 75, 4654 (1995).

Page 58: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

- 4f levels well screened → free ion wavefunctions can be used.

- magnetic + crystal fields small perturbation with respect to Coulomb + S.O. → Hund’s rule ground state.

- dichroism: polarization dependence of XAS: direct information on Magnetic (CD + LD) and CF effects.

Page 59: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

3d-electrons: CEF more important (10-100 x 4f)

spin-orbit 0.1-0.01 x 4f

Octahedral symmetry (Oh): dZ2 and dx2-y2 pointing towards ligands

Tetrahedral symmetry (Th): dxy, dxz and dyz

Page 60: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

Group theory, cubic symmetry:

eg : dz2, dx2 - y2 t2g: dxy, dxz, dyz

Octahedral symmetry Tetrahedral

Page 61: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

Calculations Ti4+ (d0) as a function of 10DqF.M.F de Groot et al, Phys.Rev.B 41, 928 (1990).

Splitting related, but not equal, to 10 Dq

Page 62: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

Splitting of atomic terms by crystal field (Oh): Tanabe-Sugano diagrams

Tanabe-Sugano diagram for d2

Page 63: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

10Dq = 2.5 eV

H. Ikeno, F.M.F de Groot, E. Stavitski and I. Tanaka, J. Phys. : Cond. Matter 21, 104208 (2009).

Page 64: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

Ti4+ 2p63d0 → 2p53d1 transition for several CF symmetries

Page 65: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

Calculations for other TM in Oh-symmetry more complicated, number of lines very large: example Mn2+

F.M.F. de Groot et al., Phys.Rev.B 42, 5459 (1990)

Oh-symmetry, 10Dq = 0.9 eVAtomic multiplet

Page 66: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

Mn in different ionic compounds → different valencies

Several bio-organic compoundsS.P.Cramer et al., J.Am.Chem.Soc. (1991)

Page 67: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

Effect of crystal field on magnetic state of ion: high-spin to low spin transition. Depending on relative weight of Crystal Field and Exchange interaction

Exchange > CEF (10Dq) : high spin

Example: Co3+

Page 68: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

C. Pinta et al, Phys.Rev.B 78, 174402 (2008).

Page 69: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

Statistical branching ratio L3 : L2 = 2 : 1 or L3/(L2 + L3) = 2/3

Valid if 2p spin-orbit coupling >> pd Slater integrals (pure jj-coupling) and ζ3d = 0

Influence of ζ2p and pd Slater integrals on 3d8 → 2p53d9.(G. v.d. Laan and B.T.Thole, Phys.Rev.Lett.60, 1977 (1988)). Branching ratios for 3d

TM-ions (multiplet model)

Page 70: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

Spin-orbit splitting in d-levels

d5/2

d

d3/2

- 2p3/2 → 4d3/2, 5/2

- 2p1/2 → 4d3/2, 5/2

Intensity shift from L2 to L3 edge → L3 : L2 ≥ 2 : 1

Absorption of Ni in NiO + theory.

a) ζ3d = 0 b) ζ3d = 0.1 eV(G. v.d. Laan and B.T.Thole, Phys.Rev.Lett.60, 1977 (1988)).

Page 71: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

Multiplets and hybridization (charge transfer model)

3dN: configuration in ionized state (Co2+, Ni2+ in CoO, NiO)

Partly covalent bonding: Ground State bonding combination of 3dN and 3dN+1L

L : hole on ligand

∆ = Charge transfer energy

U = Coulomb interaction

Page 72: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

Ground state: Φi = sin α ∗ [3dN] + cos α ∗ [3dN+1L]

Final state: Φf1 = sinβ ∗ [2p53dN+1] + cos β ∗ [2p53dN+2L]

Φf1 = -cosβ ∗ [2p53dN+1] + sin β ∗ [2p53dN+2L]

Intensity main peak: cos2(β - α) Satellite: sin2(β - α)

Experimental (a) and simulated (b,c) CrL2,3 spectra for CsINiII(CrIII[CN]6).2H2O.

(c ) Without charge transfer (d3)

(b) With 20% |3d2L>

M.A.Arrio et al., J. de Physique7, C2-409 (1997)

Page 73: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

X-ray Absorption Spectra: screening by extra e- → hybridization similar in GS and FS → small satellites

⇒ information on ground state symmetry

X-ray Photoemission Spectra: e- out → different hybridization in GS and FS

⇒ information on ground state configuration

Page 74: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

Interaction between multiplet effects and Charge Transfer

∆ > δ/2: compression of multiplet structure (≈ reduction of Slater integrals)

Page 75: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

Ab-initio Configuration Interaction calculations

Charge Transfer Multiplet calculations

Configuration Composition

H. Ikeno, F.M.F de Groot, E. Stavitski and I. Tanaka,

J. Phys. : Cond. Matter 21, 104208 (2009).

Page 76: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

Conclusion:

- Crystal (ligand) fields important → crystal field multipletcalculations including symmetry and strength of CF

- Comparison XAS and calculations:

- valency

- symmetry

- spin-state

Page 77: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

Golden rule (again): wabs = (2π / h) |< f |T |i >|2 ρf (Ehν - Ei )

T1 = CΣq[eq ⋅ p + i (eq ⋅ p)(k⋅r)]

Replacing p by r (r =(ih/m). p)

wabs ∝ |< f |e.r |i >|2 + (1/4) |< f |e.r k.r |i >|2

|< f |e.r k.r |i >|2 ≈ 0.01 |< f |e.r |i >|2

Selection rules for quadrupolar transitions:

∆ l = 0, ± 2 ∆ s = 0 ∆ J = 0, ±1, ±2

Transitions: 1s → 3d in 3d Transition Metals

2p → 4f in Rare Earths

Page 78: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

Quadrupolar (1s → 3d) transitions vs. p – d hybridization

E. Gaudry, D. Cabaret, C. Brouder, I. Letard, A. Rogalev, F. Wilhelm, N. Jaouen, and P. Sainctavit, Phys. Rev. B 76, 964110 (2007).

Page 79: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

Er L3-edge (top) and dichroism (bottom)

Er2Fe14B

QP

J.C.Lang et al., Phys.Rev.B46, 5298 (1992)

Page 80: Jan Vogel - Institut Néelneel.cnrs.fr/IMG/pdf/vogel_a13_2011.pdf · Jan Vogel Present position: ... - Magnetic and Crystal Field Effects, polarization dependence of absorption spectra

- R.D. Cowan, ‘’The Theory of Atomic Structure and Spectra’’, Berkeley: University of California Press (1981).

- B.N. Figgis, ‘’Introduction to Ligand Fields’’, Interscience Publishers, John Wiley & Sons, New York (1966).

- P.H. Butler, ‘’Point Group Symmetry Applications: Methods andTables’’, Plenum Press, New York (1981).

- http://www.anorg.chem.uu.nl/people/staff/FrankdeGroot/multiplet1.htm

- F.M.F. de Groot and J. Vogel, ‘‘Fundamentals of X-ray absorption anddichroism: the multiplet approach’’, Neutron and X-ray Spectroscopies, HERCULES Vol. V.

- Core Level Spectroscopy of Solids (book), Frank de Groot and AkioKotani (Taylor & Francis, 2008)