ionic liquids for enzymatic sensing - doras - dcudoras.dcu.ie/16873/1/acs_meeting.pdf · ionic...

64
UNIVERSITY COLLEGE DUBLIN DUBLIN CITY UNIVERSITY TYNDALL NATIONAL INSTITUTE 29/03/12 1 of 33 Ionic Liquids For Enzymatic Sensing Monday, 2 April 12

Upload: duongxuyen

Post on 17-Mar-2018

220 views

Category:

Documents


2 download

TRANSCRIPT

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

29/03/12

1 of 33

Ionic Liquids For Enzymatic Sensing

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

29/03/12

1 of 33

@ cyrusmekon #ACS

Ionic Liquids For Enzymatic Sensing

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

Contents The need for wearable sensors.

Wearable electrochemical sensors.

Diverse material for sensing platforms.

Electrochemical biosensing: The road ahead.

Conclusions.

• Ionic Liquids & Organic Electrochemical Transistors (OECTs)

• Ionogels & OECTs

2 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

CLARITY – SFI CSET

• 5-year, €16.4 million research program to develop next generation Sensor Web Technologies with significant environmental focus

• Brings together fundamental materials science, functional polymers, device prototyping, energy management, adaptive middleware, wearable sensors, distributed environmental monitoring.

www.clarity-centre.org/

3 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

CLARITY – SFI CSET

• 5-year, €16.4 million research program to develop next generation Sensor Web Technologies with significant environmental focus

• Brings together fundamental materials science, functional polymers, device prototyping, energy management, adaptive middleware, wearable sensors, distributed environmental monitoring.

www.clarity-centre.org/

3 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

http://www.slideshare.net/hewlettpackard/hp-cense-sensor-networks-and-the-pulse-of-the-planet

The need for sensors.

4 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

http://www.slideshare.net/hewlettpackard/hp-cense-sensor-networks-and-the-pulse-of-the-planet

HP's Peter Hartwell: "one trillion nanoscale sensors and actuators will need the equivalent of 1000 internets: the next huge demand

for computing!"

The need for sensors.

4 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

http://www.slideshare.net/hewlettpackard/hp-cense-sensor-networks-and-the-pulse-of-the-planet

The need for sensors.

Sensing Systems: $ 70 B global market by 2013 (Frost & Sullivan)

Sensing Services: $290 B Global market by 2013 (Harbour research)

4 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

http://www.slideshare.net/hewlettpackard/hp-cense-sensor-networks-and-the-pulse-of-the-planet

The need for sensors.

Similar strategies proposed by IBM, INTEL, Nokia….

4 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

In-house UV Sensor

5 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

2 hrs Sicily

Dublin

In-house UV Sensor

5 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

The need for wearable sensors.

• Wearable sensors allow the continuous monitoring of a person’s physiology in a natural setting.

• Health-monitoring systems using electronic textiles are mainly targeting applications based upon physiological parameter measurements, such as body movements or electrocardiography (ECG).

• However, due to their relative complexity, there is very little activity in the development of real-time wearable chemo/bio sensing for sports applications.

6 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

PHYSICAL SENSORSBreath rate, heart rate, activity, posture, skin temperature…

Current Wearable Sensors

7 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

TRAINTRAK™heart rate, respiration rate, posture,

activity, and GPS location

NIKE-APPLE iPOD SPORTS KIT

PHYSICAL SENSORSBreath rate, heart rate, activity, posture, skin temperature…

LIFESHIRT®

Bipolar affective disorder

and schizophrenia‘Activity’

Current Wearable Sensors

7 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

Current Wearable Sensors

The myTREK utilizes two LEDs combined with a photo sensor to detect minute changes in the user's blood pressure to accurately measure pulse. A built-in accelerometer allows the myTREK to adjust for movement during exercise from the user's heartbeat allowing for an extremely accurate measurement of pulse and calories burned.

7 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

Current Wearable Sensors

Ultra-thin, self-adhesive electronics

device that can effectively measure

data about the human heart, brain

waves and muscle activity--all

without the use of bulky equipment,

conductive fluids or glues.

John Rogers @ University of Illinois

11/08/2011

Link :http://www.nsf.gov/news/news_summ.jsp?cntn_id=121343&org=NSF&from=news

7 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

Current Wearable Sensors

Ultra-thin, self-adhesive electronics

device that can effectively measure

data about the human heart, brain

waves and muscle activity--all

without the use of bulky equipment,

conductive fluids or glues.

John Rogers @ University of Illinois

11/08/2011

Link :http://www.nsf.gov/news/news_summ.jsp?cntn_id=121343&org=NSF&from=news

7 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

Current Wearable Sensors

PharmChek Sweat Patch Abbot Freestyle Navigator

Glucowatch NASA: Wearable sensor patches

8 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

Current Wearable Sensors

PharmChek Sweat Patch Abbot Freestyle Navigator

Glucowatch NASA: Wearable sensor patches

SAMPLING BIG ISSUE!!!!h3p://www.youtube.com/watch?v=pmMo3AYKOk0

8 of 33

Monday, 2 April 12

Ideas Tree for Ionic liquids

StableNon-

volatileOrganic

Salts

ActiveStableSolar C

ells

Media

Electrolytes

Reactiv

e

Catalytic

Bioactive

Medicinal

Act

ives

Agrichem

Fungi

Cryo-Biostabilization

Bio-Engineering

Cells

Proteins

VolatilePlastic

Electrowinning

Batteries

Electrosynthesis

Ti, AlI2

Mg

Li

Bio

TiO2

Doped

Organic

Solvents

Sepa

ratio

ns

Nanostructured

H+

Li

Uns

tabl

e

Biocidal

MIC

Antibacterial

Cell bioprocessing

2010 2005 2000 1995 2000 2005 2010

http://www.chem.monash.edu.au/ionicliquids/Monday, 2 April 12

Ideas Tree for Ionic liquids

StableNon-

volatileOrganic

Salts

ActiveStable

Media

Electrolytes

Reactiv

e

Catalytic

Bioactive

Medicinal

Act

ives

Agrichem

Fungi

Cryo-Biostabilization

Bio-Engineering

Cells

Proteins

Volatile

Plastic

Electrowinning

Solvents

Sepa

ratio

ns

Uns

tabl

e

Biocidal

MIC

Antibacterial

Cell bioprocessing

2010 2005 2000 1995 2000 2005 2010http://www.chem.monash.edu.au/ionicliquids/Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

Ionic Liquids: A brief introduction

[1] H. Zhao, J. Chem. Tech. Biotech, 2010, 85, 891-907.

• Ionic liquids (ILs) have evolved as a new type of non-aqueous solvents for biocatalysis, mainly due to their unique and tunable physical properties [1]

IL polarity Hydrogen bonding bascicity

Ion kosmotropicity

Viscosity

Enzyme dissolution

Factors that affect Enzyme activity in ILs

10 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

Ionic Liquids: A brief introduction

[2] K. Fujita, D. R. MacFarlane and M. Forsyth, Chem. Commun., 2005, 4804-4806.

PBS

Through smart design enzyme stability can be greatly enhanced

11 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

Ionic Liquids: A brief introduction

[2] K. Fujita, D. R. MacFarlane and M. Forsyth, Chem. Commun., 2005, 4804-4806.

Through smart design enzyme stability can be greatly enhanced

• Choline DHP showed enzyme stability up to 130 oC [2]

• Enhanced solubility of cytochrome c.

• dhp anion provided both a proton activity similar to that in neutral water as well as hydrogen bonding donor and acceptor sites.

11 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

Sensing Platform: Ionic liquids

• Point-of-care (POC) glucose biosensors play an important role in themanagement of blood sugar levels in patients with diabetes.

• One of the most commonly used enzymes in glucose biosensors isGlucose Oxidase (GOx).

• Amperometric biosensors employing IL’s have been reported previously,for example, ([C4mIm][BF4]) has been used as a mediator in a electrochemicalH2O2 biosensor[3].

[3] Y. Liu, M. Wang, J. Li, Z. Li, P. He, H. Liu and J. Li, Chem. Commun., 2005, 1778-1780.

• This interest is driven by the need to find molecular environments in whichenzymes are highly stabilized while retaining redox activity.

12 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

Organic Electrochemical Transistors (OECTs)

Sensing Platform: OECTs

13 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

Sensing Platform: OECTs

• The field of organic electronics has grown significantly in the past 20 years largely due to the many desirable properties of organic semiconductors such as low cost, ease of processing and tunability through synthetic chemistry.

• A prototypical semiconductor used in OECTs is poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS), a material that is commercially available and stable under a variety of conditions.

• PEDOT:PSS is a degenerately doped p-type semiconductor (commonly referred to as a conducting polymer), where holes on the PEDOT are compensated by acceptors (SO3–) on the PSS.

• OECTs have been utilized in a variety of biosensing applications such as thedetection of metabolites, ions, neurotransmitters, cells, antibodies and DNA

[4] D. Bernards, G. Malliaras, “steady state and transient response of organic electrochemical transistors” Adv. Func Mat 2007.

14 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

Ion-­‐to-­‐electron  converter

Vd

-+ + + + +- -- -

+-+ +

++- --

-

[4] D. Bernards, G. Malliaras, “steady state and transient response of organic electrochemical transistors” Adv. Func Mat 2007.

Sensing Platform: OECTs

The  organic  electrochemical  transistor [4]

15 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

Ion-­‐to-­‐electron  converter

Vd

-+ + + + +- -- -

+-+ +

++- --

-

[4] D. Bernards, G. Malliaras, “steady state and transient response of organic electrochemical transistors” Adv. Func Mat 2007.

Sensing Platform: OECTs

The  organic  electrochemical  transistor [4]

15 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

Ion-­‐to-­‐electron  converter

Vd

-- -- -+

-

+

+

+

+

- -- -

+ +

Vg

[4] D. Bernards, G. Malliaras, “steady state and transient response of organic electrochemical transistors” Adv. Func Mat 2007.

Sensing Platform: OECTs

The  organic  electrochemical  transistor [4]

15 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

Sensing Platform: OECTs

• Response of the transistor is defined as the difference in modulationlevel of the drain channel during application of a gate voltage in theabsence and presence of a target analyte

• To develop an enzymatic sensor based on an OECT that uses an IL as an integral part of its structure.

The Aim:

• The strategy involves patterning the RTIL over the active area of the OECT, and using it as a reservoir for the enzyme and the mediator.

• GOx enzyme for glucose detection.

16 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

• Important properties of the electrolyte for this device must include wetting the PEDOT : PSS film.

[5] S. Y. Yang, F. Cicoira, R. Byrne, F. Benito-Lopez, D. Diamond, R. A. Owens and G. G. Malliaras, Chem. Commun., 2010, 46, 7972-7974.

Sensing Platform: Ionic liquids & OECTs

17 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

• Important properties of the electrolyte for this device must include wetting the PEDOT : PSS film.

• This allows the enzyme and the mediator to be patterned over the active area of the device.

• The IL should be miscible with the aqueous phase (PBS).

• Triisobutyl(methyl)phosphonium Tosylate ([P1,4,4,4][Tos]) due to the hydrophilic nature of the cation / anion.

Fig 1: [P1,4,4,4][Tos] Ionic Liquid used in this study. (provided by Cytec Canada Inc. Ontario, Canada)

P

CH3

C4H9C4H9

C4H9

S

O

O

O

[5] S. Y. Yang, F. Cicoira, R. Byrne, F. Benito-Lopez, D. Diamond, R. A. Owens and G. G. Malliaras, Chem. Commun., 2010, 46, 7972-7974.

Sensing Platform: Ionic liquids & OECTs

17 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

[5] S. Y. Yang, F. Cicoira, R. Byrne, F. Benito-Lopez, D. Diamond, R. A. Owens and G. G. Malliaras, Chem. Commun., 2010, 46, 7972-7974.

• The transient response of the drain current of an OECT upon application of a gate voltage of 0.4 V and duration of 3 min. Thedrain voltage was -0.2 V.

Sensing Platform: Ionic liquids & OECTs

17 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

[5] S. Y. Yang, F. Cicoira, R. Byrne, F. Benito-Lopez, D. Diamond, R. A. Owens and G. G. Malliaras, Chem. Commun., 2010, 46, 7972-7974.

• Inset shows the concept of device operation, and the arrows indicate thedissolution of the RTIL carrying the enzyme and the mediator into the analytesolution.

• Current modulation of the OECT as a function of glucose concentration.

Sensing Platform: Ionic liquids & OECTs

17 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

• The data show the characteristic decrease of drain current upon gatingwhich has been understood on the basis of the reactions shown below

Reactions at the gate electrode (a) and at the channel (b) of the OECT.

Sensing Platform: Ionic liquids & OECTs

D-glucono-1,5-lactone GOxred Fe+ PEDOT+ : PSS- + e-

D-glucose GOx Fe PEDOT+ : PSS-

(A)

(B) PEDOT+ : PSS- + M+ + e- PEDOT + M+: PSS- } Drain Electrode

}Gate Electrode

18 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

Sensing Platform: Ionic liquids & OECTsD-glucono-1,5-lactone GOxred Fe+ PEDOT+ : PSS- + e-

D-glucose GOx Fe PEDOT+ : PSS-

(A)

(B) PEDOT+ : PSS- + M+ + e- PEDOT + M+: PSS- } Drain Electrode

}Gate Electrode

• For example, for 10-2 M of glucose, this cascade of reactions causesa current of 8x10-8 A to flow to the gate electrode.

• As glucose in the solution is oxidised, the enzyme (GOx) itself isreduced, and cycles back with the help of the Fc/ferricenium ion (Fc+)couple, which shuttles electrons to the gate electrode (A).

•At the same time, cations from the solution (M+) enter the PEDOT : PSS channel and dedope it. (B)

18 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

Conclusions:

• Successful integration of an OECT with an IL as electrolyte.

Sensing Platform: Ionic liquids & OECTs

19 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

Conclusions:

• Successful integration of an OECT with an IL as electrolyte.

• The ionic liquid was confined on the surface of the transistorusing a photolithographically patterned hydrophobic monolayer.

• Using the glucose/ glucose oxidase pair as a model, it wasdemonstrated the analyte detection in the 10-7 to 10-2 M concentrationrange.

• The enzyme was in a dispersed state in the ionic liquid, which mayprove to be a good strategy for improving long-term storage.

Sensing Platform: Ionic liquids & OECTs

19 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

• Currently for applications in materials science, there is a growing interest in ‘ionogels’.

• • Polymers with ionic liquids integrated such that they retain their specific properties within the polymer/gel environment.

Electrochemical biosensing: The road ahead

20 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

[6] M.-A. Nouze, J. L. Bideau, P. Gaveau, S. Bellayer and A. Vioux, Chem. Mater., 2006, 18, 3931-3936.

Electrochemical biosensing: The road ahead

Ionogel synthesis:

Inorganic route: Oxides, Sol-Gel.

• Applications in catalysis & photonics.

[6]

21 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

[6] M.-A. Nouze, J. L. Bideau, P. Gaveau, S. Bellayer and A. Vioux, Chem. Mater., 2006, 18, 3931-3936.

Electrochemical biosensing: The road ahead

Ionogel synthesis:

Inorganic route: Oxides, Sol-Gel.

• Applications in catalysis & photonics.

[7] T. Ueki and M. Watanabe, Macromolecules, 2008, 41, 3739-3749.

Organic route: Polymers, Acrylamide gels

• Applications in solid state electrolytes and separations

[6]

[7]

21 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

[6] M.-A. Nouze, J. L. Bideau, P. Gaveau, S. Bellayer and A. Vioux, Chem. Mater., 2006, 18, 3931-3936.

Electrochemical biosensing: The road ahead

Ionogel synthesis:

Inorganic route: Oxides, Sol-Gel.

• Applications in catalysis & photonics.

[7] T. Ueki and M. Watanabe, Macromolecules, 2008, 41, 3739-3749.

Organic route: Polymers, Acrylamide gels

• Applications in solid state electrolytes and separations

[6]

[7]

21 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

[6] M.-A. Nouze, J. L. Bideau, P. Gaveau, S. Bellayer and A. Vioux, Chem. Mater., 2006, 18, 3931-3936.

Electrochemical biosensing: The road ahead

Ionogel synthesis:

[7] T. Ueki and M. Watanabe, Macromolecules, 2008, 41, 3739-3749.

21 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

Electrochemical biosensing: The road ahead

Ionogel synthesis: Organic route

Monomer

Crosslinker Ionic liquid

22 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

Electrochemical biosensing: The road ahead

Ionogel synthesis: Organic route

Tea leaves

MilkWater

22 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

Ionogels: Ones we prepared earlier

Sweat Sensing

1-­‐  BROMOPHENOL  BLUE2-­‐  BROMOCRESOL  GREEN3-­‐  BROMOCRESOL  PURPLE4-­‐  BROMOTHYMOL  BLUE  

pH

3.8 5.4

5.2 6.8

6.0 7.6

3.0 4.6

Characteristics:

- Ionogel/dyes

- Image data analysis - Absorbent = passive pump

- Electronics is not required

23 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

Ionogels: Ones we prepared earlier

Sweat Sensing

[P4,4,4,4][dca]

1-­‐  BROMOPHENOL  BLUE2-­‐  BROMOCRESOL  GREEN3-­‐  BROMOCRESOL  PURPLE4-­‐  BROMOTHYMOL  BLUE  

pH

3.8 5.4

5.2 6.8

6.0 7.6

3.0 4.6

23 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

Ionogels: Ones we prepared earlier

Sweat Sensing

1-­‐  BROMOPHENOL  BLUE2-­‐  BROMOCRESOL  GREEN3-­‐  BROMOCRESOL  PURPLE4-­‐  BROMOTHYMOL  BLUE  

pH

3.8 5.4

5.2 6.8

6.0 7.6

3.0 4.6

23 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

Ionogels: Ones we prepared earlier

Sweat Sensing

pH  3 pH  4 pH  5 pH  6

pH  10pH  9pH  8pH  7

Hue“the degree to which a stimulus can be described”

23 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

Electrochemical biosensing: Lactate

• Detection of lactate (deprotonated form of lactic acid) in blood provides abiochemical indicator of anaerobic metabolism in patients with circulatoryfailure. [8]

• Lactate also found in sweat (concentration range between 9 - 23 mM) [9]

Current detection methods

• Lactate concentration increases during physical exercise.

Electro-chemiluminescent

Commercially available : SCOUT (sensilab) system

Carbon nanotubes

[8] M. H. Weil and A. A. Afifi, Circulation, 41, 989-1001 (1970).

[9] J. M. Green, R. C. Pritchett, T. R. Crews, J. R. McLester and D. C. Tucker, European Journal of Applied Physiology, 91, 1-6 (2004).

24 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

Electrochemical biosensing: Lactate

• Hydrophilic IL chosen due to miscibility with water.

• Avoid mixing problems with PBS & analyte solution.

• Mix the RTIL (17 % water) and PBS solution containing LOx enzyme ratio 4:1

• Hydrated Il completely dissolved the protein with no precipitation observed

• 20 uL final solution drop cast over OECT

• UV polymerised for 1 min

25 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

Electrochemical biosensing: Lactate

25 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

• Apply -0.3 V across the Channel

• Trigger the gate electrode at 0.4 V (3 min square wave pulses)

• Introduce 20 uL of PBS solution with desired lactate concentration

Electrochemical biosensing: Lactate

Ion-­‐to-­‐electron  converter

Vd

-+ + + + +- -- -

+-+ +

++- ---

+ +

Vg

- 0.3 V

0.4 VIonogel matrix

26 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

Electrochemical biosensing: Lactate

• Lactic acid is oxidised to pyruvate and cycles back by the Ferriconium ionwhich carries electrons to the gate electrode

• This leads to a decrease in the potential across the gate / ionogel interface andan increase of the potential at the channel / ionogel interface

As a result more cations from the solution enter the dedoped channel and themodulation of the drain current in response to a voltage increases.

}Gate Electrode

} Drain Electrode

27 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

Electrochemical biosensing: Lactate

[10] D. Khodagholy, V. F. Curto, K. J. Fraser, M. Gurfinkel, R. Byrne, D. Diamond, G. G. Malliaras, F. Benito-Lopez and R. M. Owens,J. Mater. Chem., 22, 4440 (2012).

• Modulation in the drain current is much larger than the gate100 nA of current at gate - 11 uA at the Drain

• 10 mins for steady state to be reached after analyte added (diffusion inhibited)

28 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

Electrochemical biosensing: Lactate

[10] D. Khodagholy, V. F. Curto, K. J. Fraser, M. Gurfinkel, R. Byrne, D. Diamond, G. G. Malliaras, F. Benito-Lopez and R. M. Owens,J. Mater. Chem., 22, 4440 (2012).

• Modulation in the drain current is much larger than the gate100 nA of current at gate - 11 uA at the Drain

• 10 mins for steady state to be reached after analyte added (diffusion inhibited)

28 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

Electrochemical biosensing: Lactate

[10] D. Khodagholy, V. F. Curto, K. J. Fraser, M. Gurfinkel, R. Byrne, D. Diamond, G. G. Malliaras, F. Benito-Lopez and R. M. Owens,J. Mater. Chem., 22, 4440 (2012).

• Response from 10 mM - 100 mM• In concentration range of sweat

• Compatible with detection of lactatein blood (1.3 - 24 mM)

28 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

• Detection of lactate in a relevant physiological range (10 - 100 mM)

• Novelty lies in the configuration of the sensor

- Implications for the wearability of the sensor

• Solid State electrolyte on a flexible transistor based biosensor.

Conclusions

29 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

• Incorporate printable formulations onto OECTs for biosensing

Prin'ng  Ionogel

~  625  nl

2  mm

6  mm

150  um  thickness

So whats next?

• Biocompatible Ionogels: pH buffered gels for improved enzymatic shelf life.

• Enzyme stability and reliability of the system needs to be establish

• Incorporate OECT / Ionogel into a wireless communicated microfluidic device.

30 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

Acknowledgments

Vincenzo F. Curto

Prof Dermot DiamondProf George Malliaras

Prof Róisín Owens

Dion Khodagholy

Dr Fernando Benito-Lopez

Dr Robert Byrne

Dr Fabio Cicoira

Dr Sang Yoon Yang

Prof Doug MacFarlaneDr^2 Vijay Ranganathan

31 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

Acknowledgments

Vincenzo F. Curto

Prof Dermot DiamondProf George Malliaras

Prof Róisín Owens

Dion Khodagholy

Dr Fernando Benito-Lopez

Dr Robert Byrne

Dr Fabio Cicoira

Dr Sang Yoon Yang

Prof Doug MacFarlaneDr^2 Vijay Ranganathan

Funding  Agencies

31 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

CLARITY  Centre  &  EcosystemINDUSTRY  COLLABORATORS

SOCIAL/AGENCY  COLLABORATORS

32 of 33

Monday, 2 April 12

UNIVERSITY  COLLEGE  DUBLIN      �      DUBLIN  CITY  UNIVERSITY      �      TYNDALL  NATIONAL  INSTITUTE  

Thanks for your attention

QUESTIONS?Presentation available for download (@Cyrusmekon)

33 of 33

http://tinyurl.com/7pk4gnb

Monday, 2 April 12