integrated nutrient management for improving …

69
ANNUAL TECHNICAL REPORT 2020-21 INTEGRATED NUTRIENT MANAGEMENT for IMPROVING NUTRIENTS BIO -FORTIFIED GRAIN AND PRODUCTIVITY of WHEAT UNDER PRODUCTIVITY ENHANCEMENT of WHEAT PRIME MINISTER AGRICULTURE EMERGENCY PROGRAM GOVT OF PAKISTAN PARC - NATIONAL AGRICULTURAL RESARCH CENTRE LAND RESOURCES RESEARCH INSTITUTE, SOIL & PLANT NURIENT PROGRAM, AUTHORS: AHMAD KHAN, PI/PL/PSO, LRRI DR. RAZA ULLAH KHAN, PSO, LRRI SYED ISHTIAQ HYDER, SSO, LRRI

Upload: others

Post on 18-Dec-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

ANNUAL TECHNICAL REPORT

2020-21

INTEGRATED NUTRIENT MANAGEMENT for IMPROVING

NUTRIENTS BIO -FORTIFIED GRAIN AND

PRODUCTIVITY of WHEAT

UNDER

PRODUCTIVITY ENHANCEMENT of WHEAT

PRIME MINISTER AGRICULTURE EMERGENCY PROGRAM

GOVT OF PAKISTAN

PARC - NATIONAL AGRICULTURAL RESARCH CENTRE

LAND RESOURCES RESEARCH INSTITUTE,

SOIL & PLANT NURIENT PROGRAM,

AUTHORS: AHMAD KHAN, PI/PL/PSO, LRRI DR. RAZA ULLAH KHAN, PSO, LRRI SYED ISHTIAQ HYDER, SSO, LRRI

Page 2: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

Table of Content

Chapter No. 1 ................................................................................................................................ 1 Integrated Nutrients Management-An Introduction ....................................................................... 1 1.1 Background Information ...................................................................................................... 1 1.2 Low Nutrients Use Efficiency and its causes in Pakistan ............................................................ 2 1.2.1 Imbalance Fertilisers use ....................................................................................................... 2 1.2.2 Low Soil Organic Matters (SOM) ............................................................................................ 3 1.3 Solutions and Way Forward .................................................................................................. 3 1.3.1 Integrated Plant Nutrient Management ................................................................................. 4 Chapter No. 2 ................................................................................................................................ 5 Nutrients Indexing Survey and INM based Demonstrations ............................................................ 5 2.1 Soil Nutrients Indexing Survey of Wheat growing areas in Pakistan ........................................ 5 2.1.1 Soil Nutrients Indexing survey of Wheat growing areas in Mardan district, Khyber Pakhtun

Khawa (KPK) ........................................................................................................................ 5 2.1.2 Results and Discussions ........................................................................................................ 6 Descriptive Statistics .................................................................................................................... 9 2.1.3 Nutrients Indexing of Wheat growing area, NARC, Islamabad .............................................. 11 2.2 Integrated Nutrient Management based Demonstrations .................................................... 16 2.2.1 Wheat (Triticum aestivum. L) productivity and soil organic matter (SOM) improvement by integrated nutrient management (INM) under irrigated conditions .............................................. 19 Summary ................................................................................................................................... 21 2.3 Assessment of Macro-nutrients status of wheat landraces in Pakistan ................................. 21 2.3.1 Grain Macronutrients and Protein Concentration ................................................................ 22 2.4 Impact of Foliar application of Zinc at different growth stage for Enhancing crop

productivity and nutritional value....................................................................................... 24 2.5 Publications .......................................................................................................................... 24 2.6 Research and Internee students ............................................................................................. 24 2.7 Way forward ......................................................................................................................... 25 2.7.1 Soil Nutrients Indexing survey of Wheat growing areas in Jaffarabad district, ....................... 25 2.7.2 Demonstrations ................................................................................................................. 25 2.7.3 Farmer Field days ............................................................................................................... 25 Chapter 3 .................................................................................................................................... 26 Pictorial view of INM based Demonstrations ................................................................................ 26 References .................................................................................................................................. 31 APPENDIX I ................................................................................................................................. 33 APPENDIX II ................................................................................................................................ 39 APPENDIX III ............................................................................................................................... 52 APPENDIX IV ............................................................................................................................... 54 APPENDIX V: ............................................................................................................................... 58

Page 3: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

List of Figures Figure 1: World Wheat Production (`000 Million tons); Source: Knoema.com; FAOSTAT, 2020 1 Figure 2: Relative application of Nitrogen, Phosphorus and Potassium fertilizer in Pakistan during last 10 years (2010-2020) 3 Figure 3: Location map of the study area (Mardan) 5 Figure 4: N, P and K concentration of Wheat Grain 8 Figure 5 : Soil Organic matter affected by INM 8 Figure 6: Effect of INM on wheat yield in different location of Punjab 9 Figure 7: Effect of INM on wheat yield in different location of Khyber Pakhtunkhwa 9 Figure 8: Effect of INM on wheat yield in different location of Sindh and Baluchistan 10 Figure 9: Bar Chart Diagram of relative macronutrients density in landraces 10 Figure 10: Correlation among different grain nutrients contents 11 Figure 11: Elevation map of NARC, Islamabad 12

Figure 12: Soil pH status 12 Figure 13: Soil EC status 12 Figure 14: Soil NO3-N status 13 Figure 15: Soil Phosphorus status 13 Figure 16: Soil Potassium status 13 Figure 17: Soil Organic Matter status 13 Figure 18: Correlation matric showing relation between soil chemical properties 14 Figure 19: Soil pH status 15 Figure 20: Soil EC status 15 Figure 21: Soil Nitrogen status 15 Figure 22: Soil Phosphorus status 15 Figure 23: Soil Potassium status 16 Figure 24: Soil Organic Matter status 16 Figure 25: N, P and K concentration of Wheat Grain 18 Figure 26: Soil Organic matter affected by INM 18 Figure 27: Effect of INM on wheat yield in different location of Punjab 20 Figure 28: Effect of INM on wheat yield in different location of Khyber Pakhtunkhwa 20 Figure 29: Effect of INM on wheat yield in different location of Sindh and Baluchistan 20 Figure 30: Bar Chart Diagram of relative macronutrient density in landraces 22 Figure 31: Correlation among different grain nutrients contents 23

Page 4: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

List of Tables Table 1. Soil chemical analysis methods followed following ICARDA manual ................................... 6 Table 2: Descriptive Statistics of Soil Parameter ............................................................................. 7 Table 3: Descriptive Statistics of Soil Parameter ........................................................................... 14 Table 4: Physico-chemical analysis of soil at Kalashakaku, Lahore ................................................. 17 Table 5: Wheat productivity-growth and yield parameters as affected by INM application ............ 17 Table 6 : Soil residual as effected by INM ..................................................................................... 19 Table 7: Descriptive Statistics of Total Nitrogen, Phosphorus, Potassium and Protein .................... 21 Table 8: Impact of Zinc foliar spray on grain N, P and K concentration ........................................... 24

Page 5: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …
Page 6: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

Project Profile Title: Integrated Nutrient Management for Improving Nutrient Bio-fortified Grain and

Productivity of Wheat component-VIII, Land Resources Research Program, NARC

Funding: Productivity Enhancement of Wheat-PSDP under Prime Minister Agricultural Emergency Program, Govt of Pakistan

Background Information: Wheat is the world most important food crop, and second most important crop after rice in developing world. Wheat feed about 2.5 billion poor people (living on <2 $/day). Pakistan is predominately an agricultural country and over 60% of its economy is Agri-based. In Pakistan, 85% wheat area is irrigated, and 15% area is rain-fed. The Average yield of the irrigated area has been assessed around 30-33 minds/acre, whereas average Yield in rain-fed area is around 12-15 minds/acre. The Prime Minister of Pakistan approved agenda and allowed Ministry of National Food Security & Research (M/o NFS&R) to work on increasing productivity and profitability of wheat and develop sustainable mechanism for improved wheat production. Integrated Nutrients Management involved collective use of organic and inorganic fertilisers so that both soil fertility and productivity can be achieved with single shot.

Objectives: Coordinated research to develop climate resilient, high yielding, disease resistant,

heat & drought tolerant wheat varieties as well as innovative resource conserving crop production & protection technologies.

Disseminate/popularize resource conserving, environment friendly good agricultural practice related to mechanized wheat planting, water saving, weed control, pest management and fertilizer application through subsidy and demonstration.

Popularize / disseminate newly developed high yielding and disease resistant wheat varieties through public private partnership to farming community.

Create awareness about wheat productivity improvement through mobilization of multidisciplinary research & extension based scientific resources using print & electronic media, field demonstrations and field days/meetings etc. to improve wheat production.

Research Activities:

Nutrient indexing survey

Field trials/ on farm demonstrations

Capacity building, farmers field days/ training etc.

Page 7: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

Executive Summary

Soil is unique natural resource supporting crop productivity usually it is managed as resources to

get food without keeping care of soil health and productivity as results continuous cultivation

caused decline in soil health and productivity.

To assess soil fertility and health of wheat growing districts such as Mardan in Khyber Pakhtunkhwa

and Jaffarabad in Baluchistan, union council wise soil sample collected. Results shows deficiency

of all important plant nutrients necessary for high crop productivity. Consequently, wheat per acre

yield is found to be low. The approach of Integrated Nutrient Management (INM) primarily aims

at providing all essential plant nutrient using organic and inorganic sources in required amount so

that deficiency of such element can be addressed.

At the backdrop of low wheat productivity, profitability, soil organic matter sustainability, the

Govt. of Pakistan has initiated Prime Minister Agriculture Emergency Program to resolve low

productivity and increase profitability. Under the vision of Prime Minister Agriculture Emergency

Program, the INM based field demonstration were carried out across the country. Showing

encouraging results, it has increased wheat productivity by 15-25%, along with improvement in

zinc biofortification of wheat grain.

This report summarized research finding that would be equally useful among all stakeholders;

farmers, agriculture service providers and researchers.

Page 8: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

1 | P a g e

Chapter No. 1

Integrated Nutrients Management - An Introduction

1.1 Background Information:

Wheat (Triticum aestivum L) is the most widely grown staple food cultivated on one- sixth of total

arable land in world. Production wise Pakistan ranks 8th in top 10 countries (25,200 million tons)

with average national yield of 30 monds/acre, whereas with 93 monds/acre Ireland rank top

globally (Figure 1).

Besides many factors low and imbalance fertiliser use is one of the main factors held responsible

for low wheat productivity. Integrated nutrient management (INM) system may be defined as ‘an

intelligent use of optimum combination of organic, inorganic and biological nutrient sources in a

specific crop rotation or cropping system to achieve and sustain optimum yield without harming

soil ecosystem’. Such a package of plant nutrients formulated must be technically sound,

economically viable, practically feasible, socially acceptable and environmentally safe. Briefly, INM

system is a holistic approach and may be defined as ‘maintenance of soil fertility and plant nutrient

supply to an optimum level for sustaining the crop productivity at desired level’.

Figure 1: World Wheat Production (`000 Million tons); Source: Knoema.com; FAOSTAT, 2020

Integrated nutrient management (INM) system or integrated nutrient supply (INS) system aims at

achieving a harmony in the judicial and efficient use of chemical fertilizers in conjunction with

organic manures, use of well-decomposed crop residues, recyclable waste, green manures,

compost including vermicompost, inserting of legumes in cropping systems, use of bio-fertilizers

Page 9: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

2 | P a g e

and other locally available nutrient sources for sustaining soil health and amelioration of

environment as well as crop productivity on long-term basis (Mahajan and Sharma, 2005).

Six basic principles of sustainable INM system laid out by Dennis Greenland (quoted by Meelu,

1996) include:

i. Nutrients removed by crops must be returned to the soil.

ii. Soil physical conditions should be maintained and upgraded.

iii. Organic carbon levels of soils should be maintained and enhanced.

iv. Build-up of abiotic stress should be minimal.

v. Degradation of land occurring due to soil erosion must be controlled.

vi. Soil quality with respect to soil acidity, salinity and sodicity or toxic elements

vii. build-up must be minimized.

Need for INM arises due to escalating prices of fertilisers, imbalance in the ration of NPK

application, gaps between fertilisers production and consumption, deterioration of soil health,

fertiliser production from non-renewable resources, pollution hazards of chemical fertilisers, loss

of soil productivity.

1.2 Low Nutrients Use Efficiency and its causes in Pakistan

Low nutrients use efficiency particularly in nitrogen in serious issues undermine wheat

productivity in Pakistan. Number of factor can be held responsible briefly described as below.

1.2.1 Imbalance Fertilisers use

The wide gap in the use of nitrogen (N), phosphorus (P) and potassium (K) fertiliser is evident

(Figure 2). It is estimated that the N fertilizer application rates have increased much faster than

for P or K, considered both P and K as expensive (Solaiman and Ahmed, 2006). Since most

agricultural soils in Pakistan are deficient in all three macro-nutrients, the addition of N has

increased yields, but the imbalance uses of fertilizer in terms of NP ratio as 4.15:1 against desirable

2:1 promoted yield gaps (Khan, 2019). It has been reported that Pakistan stands among the top

four in terms of N use but had low mean yields, but with the lowest partial factor productivity

(PFP) and N use efficiency (NUE) and highest N surplus and so the potential to increase NUE lies in

agronomic practices other than increasing N fertilization, such as balanced crop nutrition,

irrigation management, inclusion of legumes in crop rotations, precision in-season N management

and the use of enhanced efficiency fertilizers. To narrow down this NP ratio, the government in

Page 10: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

3 | P a g e

2015 providing a subsidy of 190 million USD on P fertilizers (FAO, 2016) aimed at closing yield gaps

through balance nutrients management.

Figure 2: Relative application of Nitrogen, Phosphorus and Potassium fertilizer in Pakistan during last 10 years (2010-2020)

1.2.2 Low Soil Organic Matters (SOM)

The soils of Pakistan are characteristically low in organic matter <1% (Hassan, 1975; Tahir,1980;

Azam, 1988). Out of 6000 samples analysed for organic matter, 61.8% sites were deficient in

Punjab (malik et al.,1984). Studies on different crops had shown large increase in yields in soils

deficient in organic matter under increasing level of N and P (Khan et al., 1987) and green

manuring (Akram et al., 1982).

1.3 Solutions and Way Forward

Farmyard Manure (FYM) is very useful to improve the physical condition of soils and offset

nutritional problems of the plants (Ghafoor et al., 1990)0 and if it is used continuously, it helps in

lowering soil pH, increase in organic matter, Cation Exchange Capacity (CEC) and exchangeable

cations (Lohia et al., 1980). Bhariguvanshi (1988) observed that long term application of FYM and

fertilizers resulted in improving Water Holding Capacity (WHC) by 25% in sandy loam and 35% in

clay loam soils and not effecting soil pH while use of fertilizers alone increased salt content

(conductivity) of soils.

Page 11: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

4 | P a g e

Soil poor in inorganic nutrients poor rely on the recycling of the nutrients from soil organic to

maintain fertility in many tropical soils (Tiessen et al., 1994) such nutrients are recycled through

the litter in forest soils. The role of organic matter in maintain soil fertility has been known for

hundreds of years (Hargitai, 1993). Syres and Springett, 1984 reported that earthworms play an

important role to redistribute organic materials within the soil, increase the soil penetrability and

under certain conditions, influence ion transport in soils.

The availability of N, P, K and organic contents of the soil at 0 to 15, 15 to 30 and 30 to 45 cm

depths were estimated in a long-term field experiment testing Farmyard Manure (FYM) and

fertilizer N doses in a pearl millet wheat cropping sequence. Application of (FYM) increased

available P, K and organic C content of soil at all depths and doses of fertilizer N (Gupta et al.,

1992).

1.3.1 Integrated Plant Nutrient Management

Integrated Plant Nutrition System (IPNS) aimed at the maintenance and possibly increase of soil

fertility for sustaining increased crop productivity through optimizing of all possible sources,

organic and inorganic, of plant nutrients needed for crop growth and quality in an integrated

manner appropriate to each cropping systems and farming situation within its ecological social

and economic possibilities. The Integrated Plant Nutrient (IPN) Management involved collective

use of organic and inorganic fertilizers not only to increase mutual efficiency but also help in

substitution of costly chemical fertilizers and reduce input cost (Hyder et al., 2016, 2019).

In Pakistan it is estimated that about 21-32% of the total farms apply integrated fertilizer such as

mineral fertilizers as well as organic fertilizer in the form of manure, while most of the farms (29-

46%) rely on mineral fertilizers and very few farm (1-5%) uses depends on manures as source of

their fertilizer (Khan et al., 2019).

Page 12: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

5 | P a g e

Chapter No. 2

Nutrients Indexing Survey and INM based Demonstrations

2.1 Soil Nutrients Indexing Survey of Wheat growing areas in Pakistan

2.1.1 Soil Nutrients Indexing survey of Wheat growing areas in Mardan district, Khyber Pakhtun

Khawa (KPK)

An Overview:

Nutrient Indexing Survey of wheat growing area of Mardan district (Figure 3), Khyber Pakhtun

Khawa (KPK) was carried out. Mardan is bound by mountainous Malakand division in North-West,

Buner district in North-East, Nowshera district in South-East, Swabi district in East and Charsadda

district in South-West. The district lies from 34° 05' to 34° 32' North latitudes and 71°48' to 72° 25'

East longitudes having land cover area of 1,632 square Kilometers. The district can be broadly

divided into two parts, North-Eastern mountainous area and mostly fertile plain with low hills in

Southwestern plain. Out of 1633.7 square km land area of Mardan district has been divided into

three Tehsils namely Mardan (57% area), Takht-e-Bhai (25%) and Katlang (18%). On overall

agriculture share major landform (71.7%), followed by 14.8% as shrub and grassland, 8.5% as

residential, 1.2% water bodies, 1.06% forest land and remain 1-2% by road, railways, graveyard

etc. rest land and remain 1-2% by road, railways, graveyard etc.

Figure 3: Location map of the study area (Mardan)

Page 13: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

6 | P a g e

On average two composite soil samples were collected from 0-15 cm soil and 5-30 cm depths at

each union council level. Soil samples were air dried; ground and sieved to ≤2 mm labeled and

stored for further chemical and physical analysis. Ammonium bicarbonate-DTPA (AB-DTPA)

extractable N03-N, phosphorus (P) and potassium (K) was determined by extracting 10 g soil with

20 ml of extracting solution (AB-DTPA) followed by filtration and subsequently reading for NO3-N

and P by spectrophotometer), and K by flame photometry (Sherwood, 420, UK), Soil organic

matter (SOM) by Walkley and Black method (Table 1).

Table 1. Soil chemical analysis methods by ICARDA manual

S. No Parameter Analysis Method

1 pH Page et al. 1982

2 EC Page et al. 1982

4 ABDTPA-Ext-NO3-N Bremner & Mulvaney, 1982

5 ABDTPA-Ext-P

6 ABDTPA-Ext-K

7 Soil OM Walkley and Black method (Houba, Van der Lee,

Novozamsky, & Walinga, 1989)

8 Texture Kettler et al. 2001

2.1.2 Results and Discussions

Descriptive Statistics

The descriptive statistics (Table 2), show the average values along with standard error of pH, EC,

NO3-N, P, K, OM, Zn, Fe and B were 8±0.02, 0.36±0.06, 1.32±0.07, 4.33±0.23, 141.67±4.52,

1.06±0.04, 0.21±0.01, 0.58±0.02 and 0.51±0.02 respectively. The CV indicated a low to moderate

and strong variability for reported variables in the study area. For soil NO3-N, P, K and OM CV

ranged from 55.92%, 57.51%, 32.26%, and 38.03% respectively. The CV is used to describe the

degree of variation of soil nutrients. A CV < 10% indicated weak variability as observed in case of

soil pH show greater uniformity of this soil property, whereas a CV between 10% and 100%

indicated moderate variability (Zheng et al., 2005) as observed in all variables except EC where it

exceeds 100% indicating strong variability. Soil NO3-N, soil P, soil K indicated moderate variability

(10%-100%) as observed by earlier (Li, and Li, 2014), and (Li et al., 2018).

Page 14: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

7 | P a g e

Table 2. Descriptive Statistics of Soil Parameters

Variable s

Mean

Med.

Mod

Std

Kurtosis

Skew.

Min.

Max.

C V(%)

pH 8.00±0.02 8.00 8.0 0.19 -0.08 0.27 7.59 8.47 2.43

EC 0.36±0.06 0.24 0.2 0.62 58.75 7.24 0.13 5.77 175.11

NO3-N 1.32±0.07 1.09 0.7 0.74 0.49 0.96 0.26 3.94 55.92

P 4.33±0.23 3.57 3.1 2.49 -1.24 0.32 0.36 9.57 57.51

K

141.67±4. 52

134.00

148

45.71

0.15

0.84

72.00

266.00

32.26

OM 1.06±0.04 1.03 0.8 0.40 -0.48 0.23 0.17 1.87 38.03

Zn 0.21±0.01 0.20 0.1 0.08 0.85 0.51 0.02 0.48 36.83

Fe 0.58±0.02 0.58 0.6 0.21 -0.70 -0.09 0.12 0.98 36.97

B 0.51±0.02 0.48 0.3 0.18 1.64 0.91 0.22 1.24 35.34 NO3-N= Nitrate nitrogen, P=Phosphorus, K=Potassium, OM=Organic matter, std=standard deviation, mean±se (standard error)

Soil Texture classes and Spatial Distribution of Nutrients in soil

Relative distribution of different soil texture classes show that Silt loam was the dominant texture

class covering 50% of the soil samples of the study area followed by Silty clay loam (Figure 4).

Spatial distributions of soil pH, EC, NO3-N, P and K were plotted using the ArcGIS 10.2 software,

and the results are shown in Figure 4-8. Soil pH tends to increase as one proceeds from North to

South and East to West of the study area showing soil with maximum pH in extreme south (8.07-

8.47) and lower pH (7.59-7.91) in East and upper center of the district. Earlier work ascribed high

soil pH in the study area soils to the presence of calcite and dolomite in the studied area soil as

these minerals are abundantly present in the sedimentary and mafic-ultramafic rocks exposed in

the catchment areas from where the soils are eroded out (Nida et al., 2014; Hussain et al., 1984;

Rafiq and Jan.,1989).

Eastern half of the study district show some hot spot having higher electrical conductivity (EC)

higher compared to western half of the study area demonstrated the existence of soluble salt

(Figure 5 B).

Page 15: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

8 | P a g e

Figure 4: Relative proportion of Texture classes

Figure 5: Soil pH status (A) and Soil EC status

AB-DTPA extractable NO3-N was found deficient in the study area. It ranges from 0.26 mg/kg to

3.92 kg/ha across the district with very few spots having NO3-N= 2.14 mg/kg-3.92 mg/kg but still

far low and soil of the area is classified as NO3-N deficient (Figure 6 A), it is evident that though

low to higher NO3 contents were found in the center of the study district, earlier research also

confirms that areas with high total nitrogen content are located around urban areas ascribed

greater human factors on land in these areas' vis a vis other part. The AB-DTPA extract P ranges

from very inadequate (0.01 mg/kg) in the outer parts of the district to 9.53 mg/kg (adequate) in

the central and surrounding part of the district (Figure 6 B). The mean P contents of 4.33 mg/kg

Page 16: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

9 | P a g e

show marginal P content as per generalized guidelines for interpretation of soil analysis data

(ICARDA, 2013).

Figure 6: Nitrogen status (A) and Phosphorus status (B)

AB-DTPA extract K show increasing trends from northeast to the southwest (Figure 7 A). The AK

content exhibited an even distribution across the study area, with no significant regional features.

The AK content varied from <1 to 317 mg kg −1, and most of the soil (>90% have AK >95 mg kg−1).

Soil organic matter (SOM) contents in middle part of the study area, Eastern tip and southern part

ranges from 1.3-1.9%, and most part of the district have low SOM ranges from 0.2-1.1% the low

SOM demonstrated that farmers are not using the integrated nutrients management strategy in

wheat production system and rely mostly on urea and to very less extend on diammonium

phosphate (DAP), with no application of Potassium or micronutrient-based fertilizers (Figure 7 B).

It is evident from these findings that frequent human land use activities have destroyed the soil

cultivation layer, resulting in the lack of soil nutrients, especially in the urbanized areas of the

southwest, where the more intense land development and utilization activities, the more obvious.

Figure 7: Potassium status (A) and Soil Organic Matter status (B)

Page 17: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

10 | P a g e

Micronutrients (Zn, Fe and B) were found low to very low across all soil samples in the study area

(Figure 8-9). It shows that almost all (¬100%) soils were deficient in these three micronutrients

(MN). The low MN in soil can be explained by no application of MN bearing fertilizer in the area

which can be ascribed to various factors such as lack of quality product, availability/access, farmers

lack of satisfaction on available product, despite the established benefits of later by showing as

much as 17:1 benefit-cost ratio of increased crop put per addition of input particularly in case of

Zn. Detail of UCs wise soil fertility status can be found in at the end (Appendix-I).

Figure 8: Soil Zinc (A) and Iron status (B)

Figure 9: Soil Boron status

Correlation between soil chemical properties shows that NO3-N with silt and OM yield r2= 0.27

and r2 = 0.22 respectively. P with N (r2=0.26) and K (r2 = 0.22) show low correlation, whereas P

with show medium correlation, and inverse relation with K (r2 = -0.16). Zn show medium

correlation (r2 = 0.35) with P. The soil pH was found to be responsible for variable distribution of

different soil minerals, hence negatively correlated with N, P, K, Zn and B showing r2=0.03, 0.1,

0.14 and 0.27 and 0.16 respectively (Figure 10). Earlier workers also showed that soil Zn, B, P, N,

Page 18: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

11 | P a g e

and OM were negatively correlated with pH, and so could be held responsible for nutrient

deficiency in soil.

Figure 10: Correlation matrix showing relation between soil chemical properties 2.1.3 Nutrients Indexing of Wheat growing area, NARC, Islamabad

Georeferenced soil samples were collected from 184 sites from 2 depths. Soil samples were

analyzed for pH, EC, NO3-N, P and K and organic matter following protocols. Digital maps indicating

differential status were prepared. Based on physio chemical analysis a general elevation map of

NARC is prepared (Figure 11).

Page 19: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

12 | P a g e

Figure 11: Elevation map of NARC, Islamabad

Results and Discussions:

Soil pH ranges from 6.6 to 8.3 across the experimental area of NARC, most of area (61%) show pH

8-8.4 representing highly alkaline soil followed by 37% area having shown pH 7.5-8.0, whereas

small area (1.6%) showing pH 6.6-7.5 (Figure 12). The Electrical conductivity (EC) ranges from 0.01

to 1.47 ds/m (Figure 13).

Figure 12: Soil pH status Figure 13: Soil EC status

AB-DTPA extractable NO3-N were found deficient in 100% soil samples collected from

experimental area of NARC (Figure 14). Plant available phosphorus (P) ranging from 4-7 mg/kg

was found on most part of the area (>98%). Very small part (<1%) have both extremes of P of 4

Page 20: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

13 | P a g e

mg/kg and 7 mg/kg respectively (Figure 15). Soil potassium (K) concentration show that about

68% area have K ranging from 60-120 mg K/kg showing marginal level of K in soil samples and

on third (32%) of the area have adequate level of K like >120 mg/kg (Figure 16). The soil organic

matter (SOM) contents show that up to 1% SOM spread on 53% of the experimental area

whereas, 46% of the area have SOM (Figure 17).

Figure 14: Soil NO3-N status Figure 15: Soil Phosphorus status

Figure 16: Soil Potassium status Figure 17: Soil Organic matter status

Page 21: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

14 | P a g e

Correlation between soil chemical properties shows that NO3-N with sand and OM yield r2= 0.61

and r2 = 0.27, respectively. The P with K (r2=0.31) and OM (r2 = 0.17) show low correlation,

whereas P with show medium correlation, and inverse relation with sand.

The clay contents show positive correlation with OM in these results (Figure 18).

Figure 18: Correlation matrix showing relation between soil chemical properties

Table 3: Descriptive Statistics of Soil Parameter

Mean

SE

Median

Mode

SD Sample

Variance

Kurtosis

Skewness

Range

Min

Max

Sum

Count

EC 0.292 0.01 0.25 0.28 0.192 0.037 12.846 3.114 1.46 0.01 1.47 101.9 349

pH 7.82 0.016 7.89 8.1 0.305 0.093 2.03 -1.323 1.79 6.6 8.39 2729.2 349

NO3- N

1.636

0.062

1.34

0.94

1.154

1.332

0.368

1

4.72

0.03

4.75

571.1

349

P 5.065 0.128 4.73 6.46 2.396 5.739 -0.358 0.457 12.15 0.29 12.44 1767.7 349

K 105.983 2.38 96 76 44.454 1976.149 4.276 1.453 330 44 374 36988 349

OM 0.944 0.025 0.93 1.1 0.471 0.222 0.522 0.596 2.66 0.07 2.73 329.4 349

Soil pH and EC status of subsurface soil (15-30 cm):

Soil pH ranges from 6.65 to 8.38 across the experimental area of NARC, most of area (70%) show

pH 7.5-8.0 representing moderately alkaline soil and 24% area having shown pH 8-8.3 which is

highly alkaline soil, whereas small area (5.89%) showing pH 6.6-7.5 that is neutral (Figure 19).

Electrical conductivity of soil saturated paste across the experimental area of NARC is 0.003 to

2.41 which is suitable for all crops (Figure 20).

Page 22: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

15 | P a g e

Figure 19: Soil pH status Figure 20: Soil EC status

Soil Macronutrients (N, P and K) and organic matter (SOM) status:

All soil samples analyzed were 100% NO3-N deficient (Figure 21), and P (Figure 22). The K from

60-120 mg/kg spread over 68% of the experimental area. While 32% of the area having K up to

120 mg/kg (Figure 23). The SOM up to 1% spread over 53% area. While 1-2% SOM was found on

46% of the experimental area of NARC (Figure 24). Detail fertility status can be found plot wise.

(Appendix–II)

Figure 21: Soil Nitrogen status Figure 22: Soil Phosphorus status

Page 23: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

16 | P a g e

Figure 23: Soil Potassium status Figure 24: Soil Organic matter status

2.2 Integrated Nutrient Management based Demonstrations

2.2.1 Wheat (Triticum aestivum. L) productivity and soil organic matter (SOM) improvement by

integrated nutrient management (INM) under irrigated conditions

Field experiment was conducted to evaluate the Productivity enhancement of Wheat (Faisalabad

2008) by integrated nutrient management (INM) at Kalasha Kaku, Lahore. Physico chemical

properties were determined using ICARDA manual A Rashid and J Ryan (2001) and listed in Table

3. Treatments were assigned randomized complete block design (RCBD) with three replications.

Treatments were control, Farmer Practice (FP), Recommended Dose of Fertilizer (RDF) and

Integrated Nutrient Management (INM). Data were collected on different agronomic parameters.

Plant samples were oven dried at 60 °C ground and digested in nitric diacid: perchloric acid (2:1

1N) mixture to estimate N, P, K and Zn. The data thus collected were subjected to standard

procedures of statistics and means were compared using LSD test at P<0.05.

Wheat yield and SOM were significantly (p≤ 0.05) improved by INM. Wheat grain yield was the

maximum (4.2-ton ha-1) at INM 23% and 11% more than FP and RDF. The INM showed significant

variation in number of tillers and plant height (Table 4) and number of tillers as well. The maximum

of tillers (74 m-2) was recorded by INM, whereby minimum number of tillers (54 m-2) recorded in

control. The interaction of Biozote, Humic Acid and chemical fertilizers was found statistically

significant. The data expressed that number of grains spike-1 had significant values due to INM

wheat crop. The maximum number of grains spike-1 (54). The minimum number of grains spike-1

(39) was recorded in control. These results corroborate the findings of Hyder et al, 2021 who

Page 24: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

17 | P a g e

investigated that yield attributes tiller numbers, grain number and 1000-grain weight increased

with the addition of INM that ultimately improved the productivity of wheat. The data indicated

that INM significantly affected the 1000-grains weight. The maximum 1000 grain weight (45 g) was

registered by INM while a minimum 1000-grains weight (32g) was recorded in control treatment.

These results were completely in lined with results of (Soni et al., 2013; Hyder et al., 2021), who

concluded that the cumulative effects of different organic sources i.e. FYM and phosphorus

solubilizing bacteria (PSB) with rock phosphate significantly enhanced yield parameters. The

maximum straw yield (7.1 t ha-1) as compared to control which was recorded (3.9 t ha-1). Khaliq et

al 2006, reported similar kind of findings, who observed that application of organic matter and

effective microorganisms along with NPK resulted in the highest cotton yield, which was

economically more viable than fertilizer application alone.

Table 4: Physico-chemical analysis of soil at Kalashakaku, Lahore

pH Ece (1:1) OM NO3-N ABDTPA

Ext. P

ABDTPA

Ext. K

Textural

Class

(1:1) d S m-1 % mg kg-1

8.6 0.57 0.9 1.45 2.31 82 Silt Loam

Table 5: Wheat productivity-growth and yield parameters as affected by INM application

Treatment Tillers Plant height

Grain/spike 1000 grain wt Straw yield Grain yield

(cm) (g) (t/ha)

Control 54 d 57 c 39 c 32 d 3.9 d 2.4 d

FP 62 c 66 bc 46 b 38 c 5.5 c 3.4 c

RDF 68 b 74 b 49 ab 41 b 6.2 b 3.8 b

INM 74 a 85 a 54 a 45 a 7.1 a 4.2 a

LSD 5.03 9.51 5.80 2.38 0.48 0.38 Means followed by different letter are significantly different at p<0.5 , FP=Farmer’s practice, RDF=Recommended dose of fertilizers, INM=Integrated nutrients management.

Figure 25 showed by the data of NPK (%) in wheat grain have significantly improved by the

application of Biozote, humic acid and chemical fertilizers including micronutrients (Zn and B). The

maximum NPK (%) in wheat grain (3.67: 0.59: 1.65) were registered with, humic Acid and RDF

including micronutrients (Zn and B) application as compared to farmer practice (2.01:0.38:1.27).

The NPK concentration indicated that to what extent the amount of the Biozote, humic acid and

INM fertilizer were efficiently utilized in different plant parts. The residual SOM was enhanced by

Page 25: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

18 | P a g e

0.1% and it was 11% more than control (Fig 26). The results were in the consonance of the findings

of (Dixit et al; 2000 Hyder et al 2021). Similarly (Shafique, 2000) reported that NPK concentration

in wheat grain increased with application of NPK fertilizers along with biofertilizers. This might be

due to (i) increased supply of all essential nutrients directly through organic and inorganic source

to crop, (ii) by increasing in the nutrient use efficiency.

4

3.5

3

2.5

2

1.5

1

0.5

0

Control FP RDF INM

Figure 25: N, P and K concentration of Wheat Grain

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Control FP RDF INM

Figure 26 : Soil Organic matter affected by INM

These are in confirmation with findings of (Chishti et al; 2013, Yadav et al; 2018). The interaction

effect of fertilizer NPK and bio-fertilizers was found to be significant. There is significant increase

N P K 3.67

3.01

2.01

1.69 1.65

1.27 1.38

1.09

0.51 0.59

0.29 0.38

SOM

(%)

Wh

eat

gra

in N

PK

(%)

Page 26: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

19 | P a g e

residual NO3, P, K and Zn status of the soil with the application of fertilizer NPK in conjunction with

Bio-fertilizers as compared to fertilizer NP alone (Table 4). Highest availability of SOM, NO3, P, K

and Zn were found by INM treatment as compared to rest of the treatments confirmed by earlier

researchers (Nehra et al; 1999, Hyder et al; 2021). The increase in soil P may be attributed to the

influence of organic matter increasing available P in soil through complexion of cations (Vasanthi

et al; 1999, Tolanur et al; 2003)

Table 6 : Soil residual Nutrients as effected by INM

Treatments P K Zn B NO3

(mg/kg)

Control 2.1 82 2.1 0.25 1.08 FP 2.71 85 2.8 0.28 1.24

RDF 3.05 93 3.1 0.32 1.78

INM 3.97 104 3.82 0.39 2.01

The amount of micronutrients (Zn) was progressively higher with the crop growth period

suggesting a buildup of this micronutrient in soil resulting from the adoption of Integrated Nutrient

Management systems. Such buildup of (Zn) in soil might be partly owing to release of native soil

micronutrients resulting from the dissolution action of bio-Fertilizers. The results of the present

study are similar to that of (Singh, 1999). These results show that integration of inorganic fertilizers

with bio-fertilizers will not only help increase the crop productivity but also will be effective in

hastening the nutrient- use efficiency (Verma et al; 2006).

Summary The INM comprising nutrients (N:P: K=120:90:60 kg ha-1, Zn:B=5:1 kg ha-1) along with Biozote and

humic acid were applied to eleven (11) demonstrations sites on farmers’ field across the country

(Appendix-III). Detail Soil fertility status is given (Appendix-VI). Economic analysis is given

(Appendix-IV). Summarized results indicated an average increase of 15% to 25% in wheat yield

over farmer practice (FP) (N:P = 80:60 kg ha-1) (Figure 27-29)

Page 27: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

20 | P a g e

Figure 27: Effect of INM on wheat yield in different location of Punjab

Figure 28: Effect of INM on wheat yield in different location of Khyber Pakhtunkhwa

5

Farmer Practice INM

4.5

4

3.5

3

Khanka Dogran Sheikhupura Kalashakaku Lodhran Bahawalpur NARC

5 Farmer Practice INM

4.6

4.2

3.8

3.4

Peshawar Charsadda Mardan

Gra

in Y

ield

(t/

ha

) G

rain

Yie

ld (

t/h

a)

Page 28: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

21 | P a g e

Figure 29: Effect of INM on wheat yield in different location of Sindh and Baluchistan

2.3 Assessment of Macro-nutrients status of wheat landraces in Pakistan

Ninety-seven (97) seed of bread wheat (Triticum aestivum L) were selected from broad landrace

and part of National Uniform Yield Trial (NUYT) conducted across the country. The exercise

primarily aims at comparing crop cultivars and providing information to growers, breeders and

researchers. Such trials are usually organized with optimum management practices mainly

focusing on yield parameters. The lines were sown in the field at the National Agricultural Research

Institute of Pakistan Agricultural Research Council (PARC), Islamabad during 2021. Each line was

sown in two replicate plots of 5 m long with six rows spaced at a distance of 20 cm and 2 m wide.

Fertilizer practice involved optimum fertilizer application such as 2 bags (50 kg urea) and 1 bag (50

kg) of DAP (diammonium phosphate) per Arce.

Wheat grain was harvested at crop maturity and grain yield determined. Grain samples from the

two replicate plots were combined. Milling was carried out cyclotech Laboratory Mill. Kjeldahl

method was used to determine percent nitrogen (%N) as described by American Association of

Cereal Chemists (AACC, 1995). The calculated %N was multiplied 5.70 to get grain protein contents

(GPC).

Table 7 provides a summary of nutrients density for three (03) nutrients and GPC, giving mean

with standard error, standard deviation, median, maximum and minimum values for the whole

5

Farmer Practice INM

4.7

4.6

4.2

4

3.8 3.8

3.4

3.2

3

Sakrand Jaffarabad

Gra

in Y

ield

t/h

a

Page 29: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

22 | P a g e

data set of lines. Distribution of grain nitrogen concentration (GNC) showed mean N concentration

of 1.79 with 0.03 standard error, maximum (2.34), and minimum (0.69) %N concentration. Grain

phosphorus concentration (GPC) show mean with standard error (0.28±0.01), 0.05, 0.11 and 0.48

for standard deviation, minimum and maximum respectively. The grain potassium concentration

(GPC) show mean with standard error 0.66±0.02, min (0.24) ad maximum (1.0) across all lines.

Grain protein content (GPC) show mean with standard error as 10.22±1.91, and 1.83, 3.93, 13.34

as standard deviation, minimum and maximum respectively.

Table 7: Descriptive Statistics of Total Nitrogen, Phosphorus, Potassium and Protein contents

Variable N Mean Median SD Min. Max.

TN (%) 95 1.79±0.03 1.83 0.32 0.69 2.34

TP (%) 95 0.28±0.01 0.27 0.05 0.11 0.48 TK (%) 95 0.66±0.02 0.62 0.15 0.24 1.00 GPC (%) 95 10.22±1.91 10.46 1.83 3.93 13.34

Mean±se. TN=Total Nitrogen, TP=total phosphorus, TK=Total potassium, GPC=gain protein

concentration

2.3.1 Grain Macronutrients and Protein Concentration

Percent Nitrogen (%N) ranging from as low as 0.68% to 2.74% in this study (Figure 28). Highest %N

(2.74%) was found in NR 499 followed by 2.34% and 2.33% in NR 571 and NR 548 respectively.

Whereas lowest % N of 0.68% was found in 2nd NESWYT B6. Similarly, percent Phosphorus (%P)

ranging from as low as 0.10% to 0.48% (Figure 28). Highest % P (0.48%) was found in NR 499

followed by 0.43% and 0.42% in NR 571 and NR 548 respectively. Whereas lowest %P (0.10%) was

found in 2nd NESWYT B6. For percent Potassium (% K) there was a range of 0.24-1.0%, showing

maximum %K as 1.0% in NR 499% followed by 0.96% each in NR 571 and NR 548 whereas lowest

(0.24%) was found in 2nd NESWYT B6 (Figure 30).

Grain protein contents (GPC) have been observed ranging from 3.9 to 15.6% in all landraces. The

highest GPC of 15.6% was observed in NR 499 followed by over 13.3% each in NR 548, NR 578 and

NR 547 respectively. Whereas lowest GPC of 3.9% was found in 2nd NESWYT B6.

Depending on genetic make-up and external factors GPC of wheat varies between 8% and 17%

showing that values fall within range in this study. Ikhtiar et al., (2007) reported GPC of 11.2%

protein in variety Bakhtawar-92 followed by 11% each in Tatara, Watan, Bhakkar-01, Wafaq-01,

Gandam-2002 and Chaudry-97. The lowest was found to be 9.0% in Saleem-2000 wheat variety.

Correlation between soil TN, TP, TK & Protein contents shows that TN was directly correlated with

grain protein (Figure 31).

Page 30: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

23 | P a g e

Figure 30: Bar Chart Diagram of relative macronutrients density in landraces

Figure 31: Correlation among different grain nutrients contents

It can be concluded that macronutrients densities are different among cultivars. For reliable

nutrients removal, it is important to carry out grain P and K analysis of the above landrace at

different locations so that some value can be developed for the nutrients for that location.

Page 31: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

24 | P a g e

2.4 Impact of Foliar application of Zinc at different growth stage for Enhancing crop productivity

and nutritional value

Providing Zinc (Zn) to plants (for example, by applying Zn-fertilizers to soil and/or to foliar) appears

to be important to ensure success of breeding efforts for increasing Zn concentration in grain.

Studies are available on the role of soil and foliar applied Zn fertilizers in correction of Zn deficiency

and increasing plant growth and yield (Martens and Westermann 1991; Mortvedt and Gilkes 1993;

Rengel et al. 1999). Zinc can be directly applied to soil as both organic and inorganic compounds.

Zinc sulfate (ZnSO4) is the most widely applied inorganic source of Zn due to its high solubility and

low cost. Zinc can also be applied to soils in the form of ZnO, ZnEDTA and Zn-oxysulfate.

Convincing evidence about the role of Zn fertilizer strategy in improving grain Zn concentration in

wheat (e.g., agronomic biofortification) has been obtained in field trials in Turkey. Applying Zn

fertilizers to wheat grown in fields in Central Anatolia improved not only productivity, but also

grain Zn concentration (Yilmaz et al., 1997). The soil+foliar application method that resulted in

about 3.5-fold increase in the grain Zn concentration.

This study aims at seeing the impact of foliar applied Zn on macronutrients status in wheat grain.

Results show that foliar applied Zn increased total N, P and K in wheat grain (Table 7).

Table 8: Impact of Zinc foliar spray on grain N, P and K concentration

Growth Stage Total N Total P Total K (%)

Control 2.11 0.22 1.15

Tillering 2.14 0.18 1.03

Stem elongation 2.13 0.23 1.21

Booting stage 2.12 0.21 1.12

Milking 2.13 0.27 1.2

Dough Stage 2.15 0.23 1.15

2.5 Publications:

durU in MIN no eruchorB .1 “ہفاضا یں مراوادیپ اردیئاپ

یک مدگن ےعیرذ ےک ںدواھک طوبرم راو نزاوتم.”

2. Published research article “Productivity Enhancement of Wheat (Triticum aestivum L) by

Integrated Nutrient Management under Salt Affected Soils”.

2.6 Research and Internee students:

Two MSc (Hons.), and one BSc (Hons.) from Agricultural University Peshawar completed

their experiments and analytical work.

Page 32: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

25 | P a g e

Eighteen (18) BSc (Hons.) students from Arid university Rawalpindi, university of

Agriculture Faisalabad, university of Swabi, Islamic university Islamabad, and university of

Poonch Rawlakot, AJK completed their completed their internship.

2.7 Way forward

Based on our experiences during interaction with farming community, and as assigned in PC-I

following research activities will be carried out.

2.7.1 Soil Nutrients Indexing survey of Wheat growing areas in Jaffarabad district,

Baluchistan

Soil samples will be collected at tehsil level of Naseerabad division, Baluchistan for Physico-

chemical analysis and subsequent mapping will be carried out.

2.7.2 Demonstrations

Integrated nutrients-based demonstration sites will be established on farmer ‘field at different

locations.

2.7.3 Farmer Field days

Farmer field days will be organized at specified locations.

2.7.4 Capacity Building

Students from different universities will be imparted trainings.

Page 33: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

26 | P a g e

Chapter 3

Pictorial view of INM based Demonstrations

Image 1: Aerial view of demonstration site Islamabad by drone camera

Image 2: Demonstration site, Mardan

Image 3: Comparison of FP and INM (Bahawalpur, Punjab)

Image 4: Comparison of FP and INM (Lodhran, Punjab)

Image 5: Comparison of FP and INM (NARC, Islamabad and Mardan)

Page 34: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

27 | P a g e

Image 6: Kalashakaku, Lahore, Punjab

Image 7: AZRI, Bahawalpur, Punjab

Page 35: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

28 | P a g e

Image 8: AZRI, Bahawalpur, Punjab

Image 9: Lodhran, Punjab

Page 36: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

29 | P a g e

Image 10: Lodhran, Punjab

FP INM

FP INM

Page 37: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

30 | P a g e

Image 11: Peshawar, KPK

Image 12: Mardan , KPK

Image 13: NARC, Islamabad

Image 14 Sakrand, Sindh

Page 38: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

31 | P a g e

Image 15: Jaffarabad, Balochistan

Image 16: Fertilizer Band Placement Drill

Page 39: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

32 | P a g e

References

Akram, M., M.A. Rajput, R.S. Iltaf and C.M. Shafi, 1982. Effect of different level of fertilization on the yield of wheat under green manure condition. J. Agric. Res., 20: 84.

Aslam, M. 2016. Agricultural productivity current scenario, constraints and prospects in Pakistan. Sarhad Journal of Agriculture, 32(4): 289-303.

Azam, F., 1988. Studies on organic matter fractions of some agricultural soils of Pakistan. Sarhad J. Agric., 4: 355-365.

Bhariguvanshi, S.R., 1988. Long term effect of high doses of farmyard manure on soil properties and crop yield. J. Indian Soc. Soil., 36: 784-786.

Brady, N.C. and R.R. Weil, 1996. The Nature and Properties of Soils. Prentice Hall International Inc., London, pp: 740.

Chaudhary, M.R., M. Iqbal and K.M. Subbani, 2001. Management of Breakish water impact on soil and crops. Pak. J. Soil Sci., 20: 33-38. GOP., 1993. Agricultural statistics of Pakistan. Ministry of Food Agriculture and Livestock, Economic Wing, Islamabad, pp: 270.

Chesti MH., et al. 2013. “Effect of integrated nutrient management on yield of and nutrient uptake by wheat (Triticum aestivum) and soil properties under intermediate Zone of Jammu and Kashmir”. Journal of the Indian Society of Soil Science 61: 1-6.

Dixit KG and Gupta B R, 2000. Effect of farm yard manure, chemical and biofertilizers on yield and quality of rice and soil properties”. Journal of the Indian Society of Soil Science 48.4 : 773-780.

Ghafoor, A., S. Muhammad, N. Ahmed and M.A. Mian, 1990. Making salt effected soils and water productive. I. Gypsum for the reclamation of sodic and saline sodic soil. Pak. J. Sci., 41: 23-27.

Gomez K A and Gomez AA 1984. Statistical Procedures for Agriculture Research. 2nd edition, John Wiley and Sons Inc., New York, USA..

GOP (Government of Pakistan). Agricultural Statistics of Pakistan, Ministry of Food and Agriculture (Pakistan Economic Survey 2017-18) (2018).

Gupta, A.P., R.P. Narwal, R.S. Antil and S. Dev, 1992. Sustaining soil fertility with organic-C, N, P and K by using farmyard manure and fertilizer-N in a semiarid zone: A long-term study. Arid Land Res. Manage., 6: 243-251.

Hargitai, L., 1993. The role of organic matter content and humus quality in the maintenance of soil fertility and in environmental protection. Landscape Urban Plann., 27: 161-167.

Hassan, S.S., 1975. Country report Pakistan. Proceedings of International Conference Water Logging and Salinity, October 13-17, 1975, University of Engineering and Technology, Lahore, Pakistan, pp: 93-102.

Hyder SI., et al. “Optimizing yield and nutrients content in peas by integrated use of bio-organic and

chemical fertilizers”. Natural Resources 6 (2016): 457-464.

Hyder SI., et al. “Physiological traits and ions content of olive as affected by bio- organic fertilizers under

saline conditions”. Acta Scientific Agriculture 3.8 (2019): 2581-365.

Khaliq A., et al. “Effects of integrated use of organic and inorganic nutrient sources with

effective microorganisms (EM) on seed cotton yield in Pakistan”. Bioresource Technology 97

(2006): 967-972.

Khan. R.U, 2019. Integrated Plant Nutrition System Modules for Major Crops and Cropping Systems in Pakistan Gyeltshen, K. and Sharma, S. Eds. 2019. Integrated Plant Nutrition System Modulesfor Major Crops and Cropping Systems in South Asia. SAARC Agriculture Centre, SAARC, Dhaka, Bangladesh, 176 p

Nehra NN., et al. “China aster cultivation using vermicompost as organic amendment”. Crop Research 17.2 (1999): 209-215.

Omotayo OE and Chukwuka KS. “Soil fertility restoration techniques in Sub-sahran Africa using organic resources”. African Journal of Agricultural Research 4.3 (2009): 144-150.

Page 40: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

33 | P a g e

Rhoades JD. “Cation Exchange Capacity”. In: Methods of Soil Anal- ysis. Part 2. Chemical and Microbiological Properties. A.L. Page (Ed.). American Society of Agronomy, Madison, Wisconsin, USA (1982).

Ryan J., et al. Soil and plant analysis laboratory manual. Jointly published by the international Center for agricultural research in dry areas (ICARDA), Aleppo, Syria and National Agricultural Re- search Centre (NARC), Islamabad (2001).

Saiyad MM. “Effect of liquid biofertilizers on yield attributes of brinjal (Solanum melongena L.)”. Trends in Biosciences 7.22 (2014): 3754-3756.

Satyanarayana V., et al. “Influence of integrated use of farm yard manure and ignoring fertilizers on yield and yield components on irrigated lowland rice. Journal of Plant Nutrition 25.10 (2002): 2081-2090.

Shafique M. “Residual effect of different organic sources on growth of wheat”. M.Sc. Thesis. Department of Soil Science, University of Agriculture, Faisalabad (2000).

Singh N P. “Effect of decade long fertilizer and manure application on soil fertility and productivity of rice-wheat system in a mollisol”. Journal of the Indian Society of Soil Science 47.1 (1999): 72-80.

Soni P., et al. “Agronomic effectiveness of high-grade rock phosphate with organic sources and phosphate solubilizing bacteria on wheat (Triticum aestivum L.) Phosphate rich organic manure: an alternate to phosphatic fertilizers”. (2004): 168-172.

Tiessen, H., E. Cuevas and P. Chacon, 1994. The role of soil organic matter in sustaining soil fertility. Nature, 371: 783-785.

Tolanur SI and Badanur VP. “Effect of integrated use of organic manure, green manure and fertilizer nitrogen on sustaining productivity of rabi sorghum-chickpea system and fertility of a vertisol”. Jour- nal of Indian Society Soil Science 51.1 (2003): 41-44.

Vasanthi D and Kumarswamy K. “Efficacy of vermicompost to im- prove soil fertility and rice yield”. Journal of Indian Society Soil Science 42.2 (1999): 268-272.

Verma A., et al. “Effect of integrated nutrient supply on growth, yield and nutrient uptake by maize (Zea mays) - wheat (Triticum aestivum. L) cropping system”. Indian Journal of Agronomy 51.1 (2006): 3-6.

Yadav KK., et al, 2018. “Effect of Integrated Nutrient Management on Soil Fertility and Productivity on Wheat Crop”. Journal of Experimental Agriculture International 24(2) : 1-9.

Page 41: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

34 | P a g e

Appendix-I UC Latitude Longitude pH EC N P K B Zn Fe OM Texture Sand Clay Silt

Bazar-I 34.35346 72.29789 8.00 0.89 1.11 8.11 148 0.22 0.28 0.61 1.73 Silt Loam 40.0 18.0 42.0

Bazar-II 34.35239 72.29226 8.22 0.20 1.13 3.13 124 0.26 0.20 0.25 1.21 Silt Loam 36.0 16.0 48.0

Mangha I 34.20848 71.91112 8.14 0.26 1.04 3.13 132 0.44 0.12 0.47 1.07 Silt Loam 6.0 24.0 70.0

Mangha II 34.17653 71.93039 8.17 0.21 1.58 1.16 108 0.38 0.15 0.66 1.21 Silt Loam 14.0 26.0 60.0

Mangha III 34.19066 71.91681 8.03 0.25 1.77 2.28 148 0.22 0.30 0.50 0.97 Silt Loam 14.0 26.0 60.0

Gujrat-I 34.29131 72.17005 8.11 0.68 2.94 1.72 110 0.44 0.20 0.92 0.86 Silt Loam 22.0 24.0 54.0

Gujrat-II 34.29937 72.18517 7.90 0.25 1.72 1.13 100 0.38 0.31 0.88 1.86 Silt Loam 24.0 20.0 56.0

Machai-I 34.30915 72.28744 7.97 0.24 1.57 1.09 96 0.40 0.23 0.82 0.69 Silt Loam 10.0 26.0 64.0

Machai-II 34.31163 72.27788 8.09 0.16 2.29 3.02 94 0.51 0.15 0.48 0.86 Silt Loam 28.0 14.0 58.0

Kot Ismail zai-I 34.19748 72.13887 8.01 0.27 1.77 3.39 86 0.42 0.17 0.55 1.79 Silt Loam 20.0 20.0 60.0

Kot Ismail zai-II 34.16033 72.14498 8.46 2.29 2.15 4.36 88 0.55 0.17 0.73 1.76 Silt Loam 11.2 16.8 72.0

Kot Ismail zai-III 34.1688 72.17597 8.32 0.26 1.52 3.28 82 0.61 0.17 0.96 1.69 Silt Loam 7.2 18.8 74.0

Kandar-I 34.16378 72.16911 8.26 0.23 1.32 6.18 136 0.53 0.21 0.48 1.21 Silt Loam 7.2 20.8 72.0

Kandar-II 34.1661 72.15908 8.30 0.28 1.88 2.24 84 0.57 0.14 0.56 1.19 Silty Clay Loam 20.0 38.0 42.0

Kata Khat-I 34.30224 72.18523 8.06 0.33 2.02 8.44 94 0.38 0.27 0.65 1.14 Silty Clay Loam 17.0 38.0 45.0

Kata Khat-II 34.30826 72.18631 8.10 0.20 2.77 7.74 114 0.32 0.14 0.67 1.65 Silty Clay Loam 10.0 39.0 51.0

Fatima-I 34.25902 72.07562 8.23 0.17 1.29 5.33 72 0.44 0.11 0.98 1.79 Silty Clay Loam 11.2 28.8 60.0

Fatima-II 34.25979 72.08343 8.29 0.29 2.05 7.75 100 0.51 0.10 0.51 1.87 Silty Clay Loam 13.2 28.8 58.0

Page 42: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

35 | P a g e

Khazana Dheri-I 34.20882 71.96216 7.97 0.24 1.98 6.06 160 0.53 0.14 0.96 1.48 Silt Loam 6.0 20.0 74.0

Khazana Dheri-II 34.19568 71.96383 7.72 0.19 2.82 3.38 92 0.40 0.15 0.45 0.97 Silt Loam 8.0 25.0 67.0

Gharyala-I 34.28457 72.22243 7.61 2.58 1.00 3.75 82 0.73 0.13 0.45 1.87 Clay Loam 23.0 35.0 42.0

Gharyala-II 34.27915 72.21685 8.04 0.18 1.15 1.88 96 0.75 0.19 0.64 0.35 Silt Loam 21.2 19.2 59.6

Bakhshali I 34.27469 72.14557 7.70 0.39 1.99 3.13 108 0.69 0.16 0.90 1.07 Silt Loam 6.0 18.0 76.0

Bakhshali II 34.27855 72.14739 8.02 0.22 1.84 4.74 140 0.79 0.15 0.63 0.72 Silt Loam 24.0 22.4 53.6

Chamtar-I 34.18725 71.99017 7.76 0.26 1.99 1.62 130 0.84 0.18 0.44 1.21 Silty Clay Loam 9.0 27.0 64.0

Chamtar-II 34.17549 71.98579 7.90 0.20 0.76 7.20 148 0.79 0.11 0.46 0.97 Silt Loam 22.0 19.2 58.8

Toru-I 34.13219 72.09306 8.00 0.32 0.74 2.25 114 0.57 0.31 0.44 1.31 Silty Clay Loam 14.0 29.2 56.8

Toru-II 34.13231 72.0766 8.10 0.27 0.80 7.24 174 0.63 0.12 0.68 1.41 Silt Loam 20.0 17.2 62.8

Babiani-I 34.23909 72.08686 8.14 0.19 0.62 1.26 106 0.57 0.18 0.64 0.97 Silty Clay Loam 14.0 29.2 56.8

Babiani-II 34.24062 72.05022 7.96 0.24 0.56 2.76 78 0.96 0.10 0.71 1.14 Silty Clay Loam 13.0 35.0 52.0

Gujjar Garhi-I 34.22951 71.99627 7.87 0.30 0.62 3.09 124 0.24 0.25 0.44 1.03 Silty Clay Loam 17.6 30.0 52.4

Gujjar Garhi-II 34.2295 71.99643 7.91 0.25 0.87 7.93 202 0.38 0.31 0.64 1.21 Silty Clay Loam 13.6 30.0 56.4

Jahingir abad-I 34.24813 72.02035 7.91 0.16 0.26 2.72 94 0.47 0.18 0.84 0.83 Silty Clay Loam 11.6 34.0 56.4

Jahingir abad-II 34.2484 72.00312 8.03 0.18 0.33 2.83 108 0.59 0.10 0.47 0.84 Silty Clay Loam 14.0 37.0 49.0

Parhoti-I 34.21658 72.07166 8.30 0.24 0.36 2.76 132 0.36 0.12 0.39 0.72 Silt Loam 5.0 23.0 72.0

Parhoti-II 34.21717 72.07465 8.24 0.29 0.87 4.15 248 0.34 0.37 0.17 0.69 Silty Clay Loam 13.6 30.0 56.4

Parhoti-III 34.22913 72.08326 8.02 0.23 1.01 6.03 168 0.36 0.27 0.23 0.79 Silty Clay 10.0 48.0 42.0

Mayar-I 34.17803 72.11084 7.70 0.53 0.99 1.18 254 0.88 0.17 0.56 1.00 Silty Clay Loam 3.6 36.0 60.4

Mayar-II 34.16552 72.11424 7.71 0.45 1.66 6.26 210 0.63 0.23 0.38 0.86 Silty Clay Loam 7.0 36.0 57.0

Page 43: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

36 | P a g e

Maho Dheri-I 34.16823 71.96869 7.72 0.34 0.91 4.40 216 0.57 0.18 0.49 1.24 Silt Loam 19.0 23.0 58.0

Maho Dheri-II 34.16688 71.96884 8.05 5.77 0.64 2.20 166 0.53 0.24 0.62 0.93 Silt Loam 12.0 22.0 66.0

Bala Garhi I 34.22694 72.13306 7.89 0.60 0.74 3.23 84 0.67 0.24 0.27 0.76 Silty Clay Loam 15.0 39.0 46.0

Bala Garhi II 34.22766 72.13314 7.89 0.33 0.91 7.80 78 0.61 0.18 0.27 0.89 Silty Clay Loam 12.0 37.0 51.0

Palo Dheri-I 34.34498 72.18095 7.86 0.23 0.85 9.08 124 0.73 0.20 0.84 1.10 Silty Clay Loam 4.4 32.0 63.6

Palo Dheri-II 34.34609 72.18227 7.71 0.28 0.85 3.81 136 0.71 0.17 0.70 0.95 Silt Loam 11.0 18.0 71.0

Mardan rural-I 34.18536 72.00713 7.82 0.22 1.42 2.68 220 0.34 0.14 0.75 0.93 Silt Loam 19.0 22.0 59.0

Mardan rural-II 34.18505 72.00662 8.08 0.27 1.06 7.40 236 0.44 0.26 0.68 0.69 Loam 33.0 22.0 45.0

Gumbat-I 34.15557 72.18651 7.88 0.18 0.72 7.36 170 0.44 0.20 0.32 0.72 Sandy Clay Loam 53.0 26.0 21.0

Charguli-I 34.3124 72.22774 7.94 0.16 2.04 4.83 190 0.71 0.35 0.31 0.52 Sandy Loam 58.0 18.0 24.0

Rustam-I 34.33399 72.29852 7.96 0.16 0.54 7.87 134 0.24 0.29 0.48 0.17 Silt Loam 14.0 22.0 64.0

Rustam-II 34.33365 72.29832 7.81 0.14 0.70 1.62 120 0.42 0.25 0.47 0.34 Silt Loam 13.2 22.0 65.0

Ghalla Dher-I 34.12735 72.05956 7.96 0.23 1.99 4.87 154 0.59 0.02 0.69 0.69 Silt Loam 18.4 23.2 58.4

Ghalla Dher-II 34.12751 72.05935 8.32 0.28 0.54 1.29 154 0.28 0.08 0.42 0.86 Silt Loam 30.4 18.0 51.6

Muhib banda I 34.20029 72.10955 8.08 0.21 0.51 6.55 84 0.38 0.19 0.84 0.90 Silty Clay Loam 20.0 39.0 41.0

Shambatpur I 34.15584 72.11613 8.14 0.40 1.88 6.66 160 0.40 0.13 0.27 1.79 Silt Loam 12.4 26.0 61.6

Shambatpur II 34.15777 72.11021 8.03 0.34 2.66 7.07 162 0.22 0.28 0.21 1.38 Silt Loam 10.4 22.0 68.0

Katlang-1-I 34.34453 72.04369 7.90 0.33 1.59 6.74 140 0.67 0.36 0.58 1.79 Silt Loam 21.0 13.0 66.0

Katlang I-II 34.36694 72.04174 8.06 0.21 1.36 2.40 144 0.31 0.21 0.73 1.73 Silt Loam 13.2 24.8 62.0

Katlang-2-I 34.34149 72.0614 7.79 0.36 1.51 6.23 120 0.79 0.33 0.40 1.73 Silt Loam 3.2 16.8 80.0

Kharki I 34.47539 72.00246 7.90 0.23 2.57 7.15 134 0.48 0.22 0.60 1.14 Silt Loam 19.2 12.8 68.0

Page 44: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

37 | P a g e

Lund Khur I 34.38157 72.00175 7.93 0.26 1.40 1.30 96 0.66 0.18 0.68 1.41 Silt Loam 13.2 12.8 74.0

Lund Khur II 34.39154 71.99436 7.97 0.22 2.65 3.98 98 0.56 0.19 0.41 1.41 Silt Loam 8.0 20.0 72.0

Aloo I 34.42798 72.04599 7.88 0.21 1.30 6.01 102 0.31 0.26 0.88 1.07 Silty Clay Loam 18.0 33.0 49.0

Aloo II 34.43021 72.05055 8.14 0.22 2.39 2.29 148 0.48 0.18 0.78 0.69 Silt Loam 9.2 18.8 72.0

Qasmi I 34.26427 72.22051 8.10 0.24 1.23 6.15 118 0.51 0.25 0.98 1.48 Silt Loam 15.2 24.0 60.8

Qasmi II 34.2652 72.22901 7.92 0.24 1.35 6.74 178 0.48 0.26 0.72 1.03 Silt Loam 11.2 24.0 64.8

Kati Garhi I 34.32768 72.03955 7.98 0.24 3.94 9.57 266 0.57 0.48 0.49 0.72 Silt Loam 5.2 24.0 70.8

Kati Garhi II 34.36022 72.02958 7.81 0.23 2.93 5.93 154 0.54 0.27 0.90 1.38 Silt Loam 14.4 26.4 59.2

Jamal garhi I 34.30672 72.0823 7.99 0.21 1.36 4.61 174 0.47 0.25 0.86 1.20 Silt Loam 14.4 26.4 59.2

Jamal garhi II 34.32718 72.04954 7.74 0.28 2.73 6.04 248 0.76 0.24 0.76 1.50 Silt Loam 4.4 34.4 61.2

Mian Issa I 34.40003 71.99381 7.86 0.22 1.44 8.62 196 0.37 0.29 0.92 1.20 Silty Clay Loam 8.0 27.0 65.0

Mian Issa II 34.42688 71.93569 7.70 0.25 2.13 6.96 164 0.56 0.21 0.58 0.51 Silty Clay Loam 4.4 28.4 67.2

Sawal dher I 34.18165 72.09326 7.77 0.29 2.47 1.76 168 0.57 0.23 0.40 0.86 Silty Clay Loam 0.4 38.4 61.2

Pir saddo I 34.33247 71.86571 8.47 0.19 2.46 9.34 192 0.45 0.25 0.21 0.86 Silty Clay Loam 6.4 30.8 62.8

Pir saddo II 34.32981 71.86663 8.32 0.29 0.54 2.16 116 0.31 0.26 0.52 0.96 Silty Clay Loam 12.0 37.0 51.0

Takar I 34.2894 71.91958 8.19 0.23 1.11 2.73 122 0.36 0.22 0.72 0.89 Silt Loam 8.0 23.0 69.0

Takar II 34.28518 71.89384 8.14 0.24 1.06 2.04 106 0.31 0.26 0.86 0.41 Silt Loam 10.4 26.8 62.8

Takar III 34.29318 71.88779 7.96 0.33 1.01 1.76 212 0.34 0.21 0.12 0.37 Silt Loam 14.4 24.8 60.8

Siri Behlol I 34.26711 71.94463 8.10 0.24 1.61 5.03 90 0.52 0.23 0.16 1.17 Silty Clay Loam 17.2 30.0 52.8

Siri Behlol II 34.26755 71.94223 8.00 0.26 0.87 6.92 224 0.29 0.27 0.71 1.51 Silty Clay Loam 7.2 38.0 54.8

Jalala I 34.36765 71.90087 8.00 0.24 0.74 5.43 112 0.51 0.26 0.74 1.17 Silty Clay Loam 13.2 36.0 50.8

Page 45: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

38 | P a g e

Jalala II 34.36501 71.90268 7.94 0.26 0.56 8.21 144 0.45 0.20 0.50 1.03 Silty Clay Loam 7.2 36.0 56.8

Sher garh I 34.3926 71.89901 7.91 0.27 0.71 5.63 146 0.38 0.38 0.78 1.06 Silty Clay Loam 11.2 34.0 54.8

Sher garh II 34.37168 71.89838 7.88 0.22 0.67 6.60 142 0.42 0.24 0.74 0.85 Clay Loam 23.2 28.0 48.8

Maddy baba I 34.32716 71.90392 8.30 0.27 0.68 2.49 164 0.62 0.16 0.68 1.79 Silty Clay Loam 15.2 34.0 50.8

Maddy baba II 34.32531 71.88799 8.26 0.19 0.46 0.67 150 0.40 0.28 0.70 0.34 Silty Clay Loam 11.2 34.8 54.0

Parkho dheri I 34.34288 71.93713 8.09 0.23 1.01 2.36 254 0.46 0.24 0.57 0.72 Silty Clay Loam 11.2 36.8 52.0

Parkho dheri II 34.33295 71.94821 7.84 0.20 0.95 7.54 176 0.42 0.35 0.38 0.41 Silty Clay Loam 18.0 39.0 43.0

Hattian I 34.37527 71.92477 7.65 0.22 0.68 1.82 150 0.31 0.15 0.38 0.44 Silty Clay Loam 17.2 28.8 54.0

Hattian II 34.39533 71.91334 7.60 0.18 0.59 3.12 110 0.31 0.19 0.50 0.62 Silty Clay Loam 9.0 39.0 52.0

Hattian III 34.39484 71.91432 7.59 0.13 0.66 2.31 110 0.56 0.18 0.36 0.82 Silty Clay Loam 15.2 28.8 56.0

T.K Urban I 34.28958 71.92068 7.96 0.28 1.50 2.31 134 0.50 0.14 0.13 1.00 Silty Clay Loam 11.2 38.8 50.0

T.K Urban II 34.28883 71.92034 7.83 0.22 0.89 1.50 148 0.28 0.20 0.37 0.51 Silty Clay Loam 7.2 34.8 58.0

Mohib banda I 34.32716 71.90392 8.41 0.29 0.99 2.72 132 0.51 0.10 0.70 1.13 Silt Loam 17.2 24.8 58.0

Kot jongarh I 34.29501 71.93472 8.46 0.18 0.64 2.76 126 0.70 0.20 0.34 1.24 Silt Loam 11.0 22.0 67.0

Makori I 34.37423 71.98307 8.03 0.22 0.74 1.30 220 0.79 0.20 0.39 1.62 Silty Clay Loam 12.4 28.8 58.8

Makori II 34.36239 71.92985 8.08 0.20 0.82 1.09 148 1.24 0.08 0.29 1.24 Silty Clay Loam 20.0 39.0 41.0

Saru shah I 34.25459 71.92558 8.07 0.21 0.60 1.30 110 0.42 0.08 0.53 0.82 Silt Loam 8.0 21.0 71.0

Saru shah II 34.25414 71.92522 8.03 0.26 0.68 0.36 164 0.51 0.09 0.59 1.38 Silty Clay Loam 10.4 38.8 50.8

Saru shah III 34.21796 71.95964 8.04 0.23 0.87 1.99 142 0.72 0.12 0.70 0.67 Silty Clay Loam 6.4 34.8 58.8

Narai I 34.24532 71.8944 7.80 0.35 0.66 7.67 220 0.73 0.18 0.54 1.10 Silty Clay Loam 12.0 33.0 55.0

Narai II 34.25126 71.86045 8.00 0.23 0.44 1.26 114 0.72 0.16 0.75 0.65 Silt Loam 15.0 10.0 75.0

Page 46: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

39 | P a g e

Kharki iii 34.486 71.961 7.90 0.23 2.57 7.15 134 0.48 0.22 0.60 1.14 Silt Loam 14.0 11.0 75.0

Kohi Barmol 34.529 72.134 7.88 0.21 1.30 6.01 102 0.31 0.26 0.88 1.07 Silty Clay Loam 12.4 28.8 58.8

Page 47: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

40 | P a g e

APPENDIX II: Soil Analysis

Sample ID Coordinates EC pH NO3-N P K Boron OM CaCO3 Texture

Longitude x Lattitude y dS/m 1:01 mg/kg % Sand% Clay% Silt% Class

1A (0-15cm) 73.1272 33.6675 0.521 7.26 1.70 7.94 178 0.973 1.73 2.50 38.8 26.4 34.8 loam

2B (15-30cm) 0.219 7.63 1.49 1.90 132 0.800 1.10 3.40 34.8 30.4 34.8 clay loam

3A 73.12698 33.6651 0.224 7.57 1.38 2.38 138 0.487 1.41 1.90 28.8 30.4 40.8 clay loam

4B 0.108 7.92 1.26 1.66 110 0.417 1.21 1.00 30.8 30.4 38.8 clay loam

5A 73.12598 33.66627 0.230 7.84 1.51 6.02 158 0.695 1.93 1.20 20.8 36.4 42.8 clay loam

6B 0.229 7.89 1.58 3.87 126 0.521 1.59 5.40 26.8 38.4 34.8 clay loam

7A 73.12762 33.66685 0.204 7.84 1.47 9.76 196 1.356 2.24 4.00 20.8 28.4 50.8 clay loam

8B 0.220 7.84 1.52 5.54 168 1.008 1.76 0.70 32.8 32.4 34.8 clay loam

9A 73.1282 33.66628 0.012 7.93 1.52 1.43 136 1.147 1.24 0.30 38.8 20.4 40.8 loam

10B 0.009 8.00 1.34 0.23 114 0.973 1.04 0.90 20.8 26.4 52.8 silt loam

11A 73.12819 33.66526 0.124 7.73 1.66 7.22 302 0.452 2.73 1.80 16.8 30.4 52.8 silty clay loam

12B 0.249 7.75 1.41 5.26 270 0.209 1.64 5.00 18.8 28.4 52.8 clay loam

13A 73.12867 33.66527 0.024 7.74 1.41 6.64 180 0.939 1.52 4.80 24.8 32.4 42.8 clay loam

14B 0.144 7.72 1.25 2.14 144 0.869 0.91 2.70 20.8 32.4 46.8 clay loam

15A 73.12962 33.66676 0.136 7.89 1.40 1.81 146 0.973 1.78 3.20 32.8 22.4 44.8 loam

16B 0.003 8.01 1.47 1.66 130 0.730 1.22 4.80 24.8 28.4 46.8 clay loam

17A 73.12941 33.66712 0.178 7.95 1.42 3.20 152 0.417 2.24 0.80 26.8 26.4 46.8 loam

18B 0.045 7.95 1.49 1.66 132 0.174 1.76 0.60 24.8 26.4 48.8 loam

19A 73.13003 33.66738 0.068 7.97 1.56 10.86 186 0.661 2.05 1.10 26.8 28.4 44.8 clay loam

20B 0.003 7.72 1.63 10.81 170 0.348 1.02 0.50 32.8 28.4 38.8 clay loam

21A 73.13059 33.66597 0.163 7.79 1.81 11.10 212 0.765 2.38 3.40 39.6 24.4 36 loam

22B 0.233 7.88 1.74 8.22 222 0.521 2.04 1.30 35.6 26.4 38 loam

23A 73.1307 33.66549 0.319 7.64 1.84 12.44 374 0.382 2.10 5.20 25.6 30.4 44 clay loam

24B 0.188 7.80 1.65 9.61 226 0.243 1.33 4.60 19.6 34.4 46 silty clay loam

Page 48: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

41 | P a g e

25A 73.12859 33.66489 0.183 7.71 1.66 8.99 152 0.973 2.59 4.90 19.6 34.4 46 silty clay

loam

26B 0.182 7.71 1.37 5.11 118 0.904 2.17 5.00 19.6 40.4 40 silty clay

27A 73.12897 33.66435 0.109 7.90 1.60 2.24 88 1.182 0.79 4.10 11.6 28.4 60 silty clay loam

28B 0.212 7.78 1.29 1.19 72 1.113 0.28 4.80 23.6 26.4 50 silt loam

29A 73.12887 33.66406 0.005 7.69 1.30 1.66 90 1.043 0.76 3.30 21.6 30.4 48 clay loam

30B 0.041 7.72 1.20 1.90 88 0.869 0.54 2.80 21.6 30.4 48 clay loam

31A 73.12999 33.66123 0.216 7.60 1.47 3.63 88 0.695 1.14 3.70 13.6 30.4 56 silty clay loam

32B 0.169 7.83 1.22 2.43 106 0.452 0.69 3.30 11.6 32.4 56 silty clay loam

33A 73.13023 33.6609 0.164 7.83 1.45 4.30 104 0.556 1.14 3.90 15.6 26.4 58 silt loam

34B 0.245 7.90 1.45 2.24 98 0.313 0.72 5.00 19.6 28.4 52 silty clay loam

35A 73.13181 33.66126 0.205 7.69 1.31 6.93 86 1.286 2.24 4.00 15.6 32.4 52 silty clay loam

36B 0.243 7.71 1.38 8.13 108 0.973 1.87 2.00 15.6 32.4 52 silty clay loam

37A 73.13142 33.66261 0.018 7.61 1.29 1.95 90 1.043 1.04 3.60 25.6 28.4 46 clay loam

38B 0.480 7.30 1.17 1.81 92 0.904 0.72 5.70 25.6 28.4 46 clay loam

39A 73.13104 33.66353 0.205 7.95 1.62 4.15 100 0.800 1.14 4.80 23.6 24.4 52 silt loam

40B 0.237 7.72 1.31 6.26 102 0.521 0.66 4.00 33.6 24.4 42 loam

41A 73.1306 33.66487 0.210 7.79 1.48 1.66 108 0.591 1.24 2.30 28.4 27.6 44 clay loam

42B 0.223 7.63 1.62 1.14 118 0.417 0.90 2.90 18.4 31.6 50 slty clay loam

43A 73.13045 33.6655 0.362 7.69 1.44 6.50 164 0.348 1.55 3.70 16.4 29.6 54 silty clay loam

44B 0.403 7.60 1.54 4.78 166 0.209 1.28 3.40 20.4 31.6 48 clay loam

45A 73.13198 33.66565 0.334 7.52 1.87 10.38 170 0.278 0.84 5.00 30.4 25.6 44 loam

46B 0.487 7.49 1.76 7.74 166 0.174 0.75 2.60 30.4 21.6 48 loam

47A 73.13198 33.66432 0.230 7.64 1.24 2.57 82 0.730 1.04 2.70 20.4 31.6 48 clay loam

48B 0.216 7.54 1.15 3.10 110 0.661 0.86 0.90 20.4 37.6 42 clay loam

49A 73.13193 33.66289 0.495 7.53 1.30 3.87 118 1.252 1.28 1.70 22.4 29.6 48 clay loam

50B 0.323 7.56 1.33 3.77 118 1.182 1.24 1.90 20.4 27.6 52 clay loam

Page 49: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

42 | P a g e

51A 73.13197 33.66605 0.922 7.94 2.18 5.99 244 1.425 1.14 2.00 25.6 22.4 52 silt loam

52B 0.650 7.65 2.37 6.88 218 1.321 1.07 1.10 19.6 24.4 56 silt loam

53A 73.1319 33.66738 0.273 7.96 1.53 6.45 104 1.147 0.72 0.70 21.6 24.4 54 silt loam

54B 0.319 7.85 1.55 5.69 100 0.973 0.69 0.40 23.6 28.4 48 clay loam

55A 73.13046 33.66675 0.274 7.83 1.61 5.50 82 1.008 0.59 5.20 25.6 32.4 42 clay loam

56B 0.286 7.84 1.57 4.55 94 0.834 0.83 4.50 25.6 30.4 44 clay loam

57A 73.13082 33.66565 0.223 7.86 1.82 2.53 88 0.904 0.90 3.80 29.6 20.4 50 silt loam

58B 0.954 7.59 1.78 2.26 268 0.834 0.79 6.40 37.6 22.4 40 slt loam

59A 73.13936 33.67521 0.431 7.85 1.94 6.58 142 1.043 0.62 3.30 19.6 34.4 46 silty clay loam

60B 0.544 7.82 1.92 2.88 98 0.834 2.07 2.70 21.6 24.4 54 silt loam

61A 73.13966 33.67488 1.266 7.79 1.76 4.80 126 1.008 0.72 1.50 9.6 30.4 60 silty clay loam

62B 0.425 8.02 2.47 2.93 112 0.904 0.83 3.30 9.6 32.4 58 silty clay loam

63A 73.13924 33.67487 0.281 8.05 2.64 9.15 108 0.487 0.72 2.40 29.6 24.4 46 loam

64B 0.357 7.97 2.14 7.26 148 0.313 0.55 0.46 29.6 28.4 42 clay loam

65A 73.13906 33.6752 0.400 7.98 2.27 10.10 102 0.765 0.17 0.76 23.6 30.4 46 clay loam

66B 0.479 7.98 2.04 6.88 130 0.556 0.38 0.60 19.6 34.4 46 silty clay loam

67A 73.13732 33.67486 0.292 8.05 1.88 7.56 118 1.356 0.35 0.30 17.6 24.4 58 silt loam

68B 0.699 7.75 2.53 6.26 250 1.286 0.93 1.43 21.6 24.4 54 silt loam

69A 73.13788 33.67355 0.915 7.95 2.56 6.34 138 0.904 0.14 1.67 19.6 18.4 62 silt loam

70B 0.481 7.77 1.94 5.88 104 0.661 0.24 1.34 27.6 26.4 46 loam

71A 73.13696 33.67331 0.247 7.86 1.69 5.07 96 0.869 0.62 2.46 14.8 25.6 59.6 silt loam

72B 0.323 7.80 1.61 4.31 94 0.521 0.55 2.47 18.8 27.6 53.6 silty clay loam

73A 73.1359 33.67387 0.508 7.60 1.91 8.72 116 0.834 0.93 1.29 8.8 21.6 69.6 silt loam

74B 0.410 7.63 1.70 5.93 98 0.591 0.14 1.50 12.8 23.6 63.6 silt loam

75A 73.13537 33.67512 0.394 7.67 2.06 8.77 130 0.452 0.62 1.23 4.8 33.6 61.6 sity clay loam

76B 0.466 7.73 1.99 5.61 120 0.417 0.28 5.61 8.8 29.6 61.6 silty clay loam

Page 50: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

43 | P a g e

77A 73.13527 33.67565 0.905 7.58 1.63 9.94 216 1.182 0.72 5.34 12.8 31.6 55.6 silty clay

loam

78B 0.578 7.77 1.87 7.31 122 1.147 0.14 1.67 18.8 25.6 55.6 silt loam

79A 73.13643 33.67693 0.603 7.64 1.87 10.23 134 1.008 0.66 1.56 10.8 27.6 61.6 silty clay loam

80B 0.714 7.55 1.83 8.21 108 0.973 0.24 2.46 10.8 23.6 65.6 silt loam

81A 73.13666 33.67676 0.447 7.98 1.68 8.26 142 0.695 1.41 1.34 20.8 23.6 55.6 silt loam

82B 2.414 7.65 2.10 6.61 164 0.661 1.01 0.34 22.8 21.6 55.6 silt loam

83A 73.13854 33.67612 0.217 8.11 1.81 4.64 64 0.487 0.35 0.37 14.8 19.6 65.6 silt loam

84B 0.225 8.10 1.85 7.48 126 0.452 0.41 0.86 24.8 21.6 53.6 silt loam

85A 73.13708 33.67782 0.252 7.99 1.74 8.40 118 0.313 0.48 1.30 16.8 17.6 65.6 silt loam

86B 0.267 7.97 1.65 6.69 90 0.278 0.45 8.40 20.8 19.6 59.6 silt loam

87A 73.13582 33.67698 1.010 8.26 0.78 5.83 168 0.626 1.14 7.30 18.8 6 75.2 silt loam

88B 0.276 8.08 0.57 2.69 132 0.591 0.62 4.60 12.8 8 79.2 silt loam

89A 73.13673 33.67758 0.248 8.07 1.70 3.61 154 1.217 1.38 1.80 12.8 10 77.2 silt loam

90B 0.254 8.09 0.86 2.65 146 1.113 0.59 2.60 8.8 16 75.2 silt loam

91A 73.13361 33.67612 0.554 7.92 0.66 5.08 182 0.765 0.35 3.60 14.8 14 71.2 silt loam

92B 0.293 8.05 0.40 2.86 148 0.695 0.76 3.50 12.8 16 71.2 silt loam

93A 73.13219 33.67648 0.453 7.88 2.50 4.66 208 0.939 0.83 4.50 14.8 18 67.2 silt loam

94B 0.507 7.87 0.86 4.49 186 0.904 0.66 4.50 14.8 14 71.2 silt loam

95A 73.13199 33.67702 0.698 8.13 1.81 7.56 152 0.834 1.83 0.30 8.4 14 77.6 silt loam

96B 0.384 8.01 0.59 7.10 146 0.626 1.59 5.62 12.4 10 77.6 silt loam

97A 73.13364 33.67737 0.275 7.91 0.63 3.66 124 0.348 1.76 4.25 20.4 14 65.6 silt loam

98B 0.264 7.92 0.57 3.39 104 0.209 0.76 4.37 16.4 22 61.6 silt loam

99A 73.13501 33.67777 0.338 7.89 0.64 5.72 184 0.382 0.72 1.73 2.4 22 75.6 silt loam

100B 0.518 7.79 0.56 2.47 128 0.348 0.62 1.38 2.4 24 73.6 silt loam

101A 73.13666 33.67817 0.231 7.94 1.29 7.10 152 0.149 0.69 1.69 16.4 6 77.6 silt loam

102B 0.224 7.99 1.01 5.10 138 0.174 0.35 1.38 14.4 20 65.6 silt loam

103A 73.1357 33.67933 0.232 7.90 0.97 2.96 130 0.313 0.93 2.38 18.4 16 65.6 silt loam

104B 0.242 7.92 0.59 2.47 126 0.243 0.59 3.90 18.4 20 61.6 silt loam

Page 51: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

44 | P a g e

105A 73.13446 33.67988 0.212 7.88 0.86 3.34 108 0.598 0.76 4.60 2.4 18 79.6 silt loam

106B 0.244 7.85 0.80 2.39 92 0.591 0.17 4.90 0.4 20 79.6 silt loam

107A 73.13444 33.67846 0.273 7.89 1.32 3.23 98 0.904 0.35 0.90 10.4 24 65.6 silt loam

108B 0.364 7.81 0.84 1.90 88 0.869 0.52 0.81 4.4 16 79.6 silt loam

109A 73.13099 33.68442 0.385 7.82 1.73 7.31 86 0.939 1.10 4.63 20.4 14 65.6 silt loam

110B 0.372 7.79 0.83 6.50 162 0.730 0.59 7.70 16.4 12 71.6 silt loam

111A 73.13043 33.68436 0.324 7.79 0.82 7.34 136 0.236 2.14 7.80 12.4 24 63.6 silt loam

112B 0.242 7.87 0.68 5.75 118 0.177 1.04 4.60 8.4 14 77.6 silt loam

113A 73.13004 33.68408 0.268 7.87 0.99 2.85 76 0.666 0.24 8.30 10.4 16 73.6 silt loam

114B 0.269 7.92 0.65 2.63 72 0.509 0.07 5.21 8.4 18 73.6 silt loam

115A 73.12832 33.68316 1.044 8.15 0.57 6.99 132 0.294 1.10 6.40 17.2 24.8 58 silt loam

116B 0.313 7.86 0.31 4.91 126 0.138 0.84 0.70 21.2 36.8 42 clay loam

117A 73.12701 33.68286 0.318 7.90 0.45 10.26 122 0.275 0.90 1.63 15.2 32.8 52 silty clay loam

118B 0.302 7.92 0.37 7.96 120 0.236 0.76 1.08 11.2 30.8 58 silty clay loam

119A 73.12746 33.68155 0.335 7.94 0.48 4.91 146 0.705 1.31 1.37 13.2 36.8 50 silty clay loam

120B 0.330 7.99 0.44 4.07 140 0.529 1.04 1.12 5.2 38.8 56 silty clay loam

121A 73.12745 33.68086 0.265 7.99 0.45 8.48 122 0.960 0.31 0.96 11.2 36.8 52 silty clay loam

122B 0.268 8.01 0.40 7.99 116 0.823 0.07 1.10 17.2 34.8 48 silty clay loam

123A 73.12897 33.68065 0.334 7.89 0.63 8.42 112 0.823 0.31 0.94 25.2 26.8 48 loam

124B 0.399 7.94 1.02 7.34 106 0.412 0.24 0.72 23.2 22.8 54 silt loam

125A 73.12973 33.68054 0.280 7.93 0.40 4.61 128 0.725 1.21 0.24 9.2 18.8 72 silt loam

126B 0.306 8.38 0.31 4.42 114 0.705 0.35 0.34 13.2 24.8 62 silt loam

127A 73.13037 33.68185 0.528 7.88 0.95 3.88 116 0.294 0.24 2.37 9.2 20.8 70 silt loam

128B 0.455 8.12 0.91 1.71 108 0.138 0.24 1.35 15.2 30.8 54 sity clay loam

129A 73.12906 33.68201 0.300 8.26 0.83 5.31 136 0.901 1.07 1.38 5.2 38.8 56 silty clay loam

130B 0.255 7.96 0.80 3.31 118 0.607 0.21 1.27 3.2 32.8 64 silty clay loam

Page 52: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

45 | P a g e

131A 73.12929 33.68101 0.349 8.13 0.75 9.32 122 0.686 1.00 9.40 15.2 30.8 54 silty clay

loam

132B 0.259 7.92 0.41 8.59 104 0.529 0.93 8.37 13.2 28.8 58 silty clay loam

133A 73.13153 33.67719 0.391 7.79 0.76 7.58 220 0.901 1.07 2.34 3.2 36.8 60 silty clay loam

134B 0.376 7.81 0.63 7.26 204 0.646 0.55 1.80 6 34.8 59.2 silty clay loam

135A 73.13101 33.67851 0.299 7.79 0.57 9.78 176 0.549 0.86 4.60 12 30.8 57.2 silty clay loam

136B 0.315 8.10 0.60 9.67 104 0.314 0.59 2.70 12 34.8 53.2 silty clay loam

137A 73.13064 33.67967 0.226 8.15 0.63 8.72 156 0.529 0.79 0.39 12 42.8 45.2 silty clay

138B 0.284 7.80 0.33 8.29 156 0.216 1.00 0.44 11.2 36.8 52 silty clay loam

139A 73.13036 33.68046 0.201 8.13 0.35 4.74 128 0.881 1.07 0.53 7.2 32.8 60 silty clay loam

140B 0.237 7.85 0.23 2.58 128 0.764 1.28 1.38 5.2 28.8 66 silty clayloam

141A 73.13139 33.68074 0.310 7.80 0.60 4.18 114 0.138 0.59 1.43 9.2 28.8 62 silty clay loam

142B 0.247 7.90 0.50 3.77 132 0.099 0.35 3.67 9.2 30.8 60 silty clay loam

143A 73.13173 33.67935 0.233 8.00 0.38 7.56 122 0.431 1.17 3.11 7.2 26.8 66 silt loam

144B 1.419 8.15 0.21 5.66 166 0.333 0.35 2.46 3.6 27.6 68.8 silty clay loam

145A 73.1322 33.67812 0.258 8.20 0.06 2.01 88 0.705 0.67 0.68 13.6 21.6 64.8 silt loam

146B 0.260 8.17 0.29 6.75 98 0.588 0.42 0.38 11.6 25.6 62.8 silt loam

147A 73.13226 33.6774 1.159 8.19 0.19 5.64 90 0.862 1.04 6.60 25.6 17.6 56.8 silt loam

148B 0.343 8.01 0.16 7.37 90 0.627 0.45 4.00 9.6 23.6 66.8 silt loam

149A 73.12939 33.67658 0.290 8.08 0.73 5.50 84 0.294 0.93 3.70 21.6 15.6 62.8 silt loam

150B 0.445 7.99 0.57 2.88 186 0.138 0.55 1.60 23.6 21.6 54.8 silt loam

151A 73.12867 33.67651 0.277 8.04 0.68 4.61 164 0.372 0.86 3.40 49.6 17.6 32.8 loam

152B 0.251 8.08 0.42 3.18 102 0.314 0.55 5.20 31.6 13.6 54.8 silt loam

153A 73.12808 33.67774 0.282 8.06 0.49 4.34 102 0.803 0.62 2.20 29.6 29.6 40.8 clay loam

154B 0.398 7.09 0.34 3.45 100 0.686 0.14 0.82 31.6 23.6 44.8 loam

155A 73.12783 33.67877 0.207 8.14 2.13 2.17 140 0.529 0.72 0.24 19.6 21.6 58.8 silt loam

Page 53: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

46 | P a g e

156B 0.192 8.38 1.86 1.47 132 0.372 0.62 0.61 34.4 20 45.6 loam

157A 73.12985 33.67914 0.196 8.33 0.04 1.74 180 0.177 1.14 1.60 24.4 28 47.6 clay loam

158B 0.586 8.09 0.02 1.69 130 0.118 0.59 5.80 22.4 24 53.6 silt loam

159A 73.13264 33.67568 0.407 8.04 0.35 9.10 182 0.549 0.72 8.31 50.4 20 29.6 loam

160B 0.288 8.12 0.12 8.88 148 0.333 0.83 4.67 58.4 12 29.6 sandy loam

161A 73.13023 33.67518 0.259 8.13 0.69 6.72 174 0.823 1.24 2.67 32.4 22 45.6 loam

162B 0.239 8.10 0.45 3.80 172 0.607 0.93 0.68 28.4 20 51.6 silt loam

163A 73.12964 33.67507 0.230 8.10 0.80 3.20 114 0.412 0.52 1.31 50.4 22 27.6 sandy clay loam

164B 0.212 8.25 0.59 2.23 52 0.372 0.45 0.72 58.4 16 25.6 sandy loam

165A 73.1286 33.67295 0.389 8.10 0.12 5.53 132 0.705 1.04 0.90 20.4 24.8 54.8 silt loam

166B 0.401 8.28 0.06 4.07 132 0.529 0.55 1.06 24.4 22.8 52.8 silt loam

167A 73.13017 33.67322 1.107 8.39 0.10 4.96 186 0.901 0.97 3.68 14.4 20.8 64.8 silt loam

168B 0.408 8.22 0.19 3.74 182 0.862 0.52 0.43 12.4 32.8 54.8 silty clay loam

169A 73.13299 33.67391 0.228 8.14 0.15 2.39 182 0.470 0.90 0.37 16.4 34.8 48.8 silty clay loam

170B 0.219 8.13 0.08 1.88 158 0.372 0.86 1.35 8.4 40.8 50.8 silty clay

171A 73.13479 33.6717 0.154 8.02 0.35 1.39 162 0.725 0.97 1.20 4.4 24.8 70.8 silt loam

172B 0.184 7.77 0.19 1.01 132 0.979 0.62 0.26 12.4 26.8 60.8 silt loam

173A 73.13331 33.67219 0.212 7.99 0.54 1.47 130 0.803 0.62 1.60 8.4 38.8 52.8 silty clay loam

174B 0.255 8.01 0.30 1.42 96 1.292 0.45 0.80 18.4 46.8 34.8 clay

175A 73.13081 33.67163 0.244 7.89 0.27 3.96 152 1.057 0.83 4.53 14.4 22.8 62.8 silt loam

176B 0.197 7.58 0.22 2.69 116 0.881 0.45 1.42 38.4 22.8 38.8 loam

177A 73.12914 33.6709 0.011 7.84 0.67 4.72 138 0.725 0.73 1.37 32.4 24.8 42.8 loam

178B 0.169 8.12 0.42 3.85 114 0.705 0.52 2.68 12.4 28.8 58.8 silty clay loam

179A 73.12906 33.67084 0.157 8.09 0.04 4.74 150 0.529 0.84 2.64 12.4 32.8 54.8 silty clay loam

180B 0.079 8.08 0.03 2.26 102 0.333 0.48 2.92 16.4 28.8 54.8 silty clay loam

181A 73.13192 33.6691 0.134 8.05 0.10 9.94 152 0.862 1.17 1.11 2.4 42.8 54.8 silty clay

Page 54: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

47 | P a g e

182B 0.274 7.92 0.14 4.66 136 0.725 0.76 1.12 10.4 36.8 52.8 silty clay

loam

183A 73.13303 33.67081 0.508 7.71 0.22 5.77 178 0.705 1.28 1.38 10.4 30.8 58.8 silty clay loam

184B 0.454 7.76 0.07 2.74 150 0.666 0.93 3.64 14.4 20.8 64.8 silt loam

185A 73.12554 33.67411 0.334 7.79 0.15 5.07 140 0.353 0.69 0.88 12.4 24.8 62.8 silt loam

186B 0.331 8.03 0.12 3.88 104 0.314 0.55 0.49 22.4 18 59.6 silt loam

187A 73.12632 33.67198 0.249 8.18 0.45 6.15 124 0.529 0.72 5.32 18.4 18 63.6 silt loam

188B 0.321 8.08 0.15 3.58 120 0.451 0.21 1.95 20.4 22 57.6 silt loam

189A 73.12704 33.66992 0.198 7.92 0.21 4.99 186 0.666 0.69 2.90 12.4 24 63.6 silt loam

190B 0.231 7.89 0.27 4.26 168 0.470 0.52 0.73 10.4 26 63.6 silty clay loam

191A 73.12764 33.66783 0.248 8.09 0.35 3.66 154 0.607 1 1.44 6.4 36 57.6 silty clay loam

192B 0.264 8.05 0.22 2.96 128 0.333 0.47 0.06 10.4 36 53.6 silty clay loam

193A 73.12542 33.66727 0.243 8.06 0.34 4.04 98 0.705 0.38 1.22 23 30 47 clay loam

194B 0.243 8.07 0.12 3.80 88 0.627 0.1 1.40 22.4 16 61.6 silt loam

195A 73.12445 33.66922 0.275 8.06 0.21 4.26 106 0.412 0.86 1.02 7.2 18 74.8 silt loam

196B 0.243 7.78 0.10 3.55 88 0.216 0.35 0.21 6.4 22 71.6 silt loam

197A 73.12379 33.67115 0.250 8.04 0.23 5.01 174 0.490 1 1.33 28.4 18 53.6 silt loam

198B 0.279 8.04 0.21 3.31 118 0.372 0.66 1.64 32.4 22 45.6 loam

199A 73.12329 33.67333 0.257 8.02 0.12 8.56 84 0.529 0.24 3.20 30.4 18 51.6 silt loam

200B 0.230 8.08 0.06 5.91 84 0.509 0.13 4.50 12.4 20 67.6 silt loam

201A 73.12096 33.67306 0.200 8.11 0.85 6.81 44 0.470 0.41 1.00 16.4 20 63.6 silt loam

202B 0.198 8.13 0.81 4.95 56 0.353 0.28 1.30 22.4 24 53.6 silt loam

203A 73.1219 33.67039 0.592 8.30 0.92 3.29 52 1.116 0.52 2.10 30.4 16 53.6 silt loam

204B 0.174 8.30 0.88 2.76 54 1.057 0.35 2.50 22.4 20 57.6 silt loam

205A 73.12317 33.66895 0.214 8.10 1.76 6.46 74 0.842 0.31 3.30 10.4 24 65.6 silt loam

206B 0.234 7.98 1.07 5.86 68 0.783 0.07 3.40 12.4 22 65.6 silt loam

207A 73.11877 33.67249 0.199 8.10 2.39 4.35 82 0.314 0.69 0.50 38.4 16 45.6 loam

208B 0.198 8.04 1.06 3.18 68 0.275 0.24 5.00 38.4 16 45.6 loam

Page 55: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

48 | P a g e

209A 73.11674 33.67203 0.216 8.06 1.14 7.06 62 0.255 0.59 5.30 58.4 8 33.6 sandy

loam

210B 0.210 7.90 1.08 5.44 48 0.157 0.21 5.70 48.4 12 39.6 loam

211A 73.1175 33.67036 0.214 8.06 1.34 5.05 56 0.588 0.31 1.90 24.4 16 59.6 silt loam

212B 0.221 8.07 1.02 5.02 68 0.529 0.07 2.00 38.4 22 39.6 loam

213A 73.12004 33.67089 0.202 8.03 0.96 3.99 60 0.294 0.31 7.00 38.4 18 43.6 loam

214B 0.206 8.05 0.92 2.80 52 0.138 0.17 7.30 20.4 16 63.6 silt loam

215A 73.12085 33.66885 0.183 8.08 2.35 3.29 124 0.725 1.21 4.52 8.4 26 65.6 silt loam

216B 0.271 7.96 1.59 2.44 60 0.666 0.52 4.13 12.4 20 67.6 silt loam

217A 73.11857 33.66817 0.275 7.97 2.49 1.42 112 0.764 0.83 4.30 16.4 30 53.6 silty clay loam

218B 0.238 8.01 1.82 1.60 104 0.372 0.59 5.00 4.4 26 69.6 silt loam

219A 73.11645 33.66753 0.246 7.92 0.89 3.71 118 0.333 0.62 3.25 14.4 24 61.6 silt loam

220B 0.165 7.95 0.85 2.30 100 0.236 0.41 1.24 20.4 26 53.6 silt loam

221A 73.11689 33.66579 0.210 7.99 1.06 6.95 78 0.372 0.69 1.36 24.4 20 55.6 silt loam

222B 0.310 7.88 1.02 2.51 70 0.294 0.55 1.34 22.4 18 59.6 silt loam

223A 73.11911 33.66641 0.673 7.57 2.63 9.84 112 0.920 0.90 0.64 30.4 26 43.6 loam

224B 0.746 7.47 1.24 4.59 98 0.862 0.59 6.30 24.4 20 55.6 silt loam

227A 73.11432 33.366356 0.235 7.83 1.00 1.88 58 0.842 0.35 2.30 12.4 16 71.6 silt loam

228B 0.211 7.84 0.90 1.60 56 0.803 0.31 1.20 16.4 18 65.6 silt loam

229A 73.11672 33.366387 0.277 7.89 0.98 4.73 68 0.666 0.45 1.54 26.4 16 57.6 silt loam

230B 0.203 7.96 0.94 3.99 66 0.646 0.28 1.03 30.4 16 53.6 silt loam

231A 73.11744 33.66162 0.178 8.10 1.22 1.03 76 0.392 0.48 1.09 58.4 14 27.6 sandy loam

232B 0.154 7.92 1.08 0.29 56 0.353 0.28 9.70 62.4 12 25.6 sandy loam

233A 73.11481 33.66139 0.187 8.12 0.94 1.56 52 0.979 0.69 1.12 32.4 16 51.6 silt loam

234B 0.205 8.02 0.87 0.79 60 0.803 0.45 0.63 38.4 14 47.6 loam

235A 73.11226 33.66119 0.285 8.10 1.32 4.91 102 0.901 0.48 1.32 60.4 16 23.6 sandy loam

236B 0.289 8.03 1.13 4.03 92 0.823 0.35 5.23 62.4 12 25.6 sandy loam

237A 73.1105 33.66073 0.169 8.16 1.38 5.51 68 0.646 0.59 4.36 56.4 10 33.6 sandy loam

Page 56: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

49 | P a g e

238B 0.163 8.25 0.97 3.36 72 0.607 0.31 4.22 62.4 10 27.6 sandy

loam

239A 73.10995 33.6593 0.222 8.18 0.98 1.49 60 0.314 0.59 1.26 68.4 6 25.6 sandy loam

240B 0.205 8.20 0.88 1.39 60 0.294 0.28 1.38 58.4 6 35.6 sandy loam

241A 73.11227 33.65885 0.278 8.12 0.95 4.35 54 0.764 0.55 0.40 78.4 10 11.6 sandy loam

242B 0.266 8.15 0.87 3.92 72 0.588 0.45 1.50 50.4 10 39.6 loam

243A 73.11479 33.65927 0.272 8.08 2.52 4.73 64 0.509 0.66 1.30 52.4 8 39.6 sandy loam

244B 0.328 8.03 1.39 3.29 98 0.392 0.59 1.80 20.4 24 55.6 silt loam

245A 73.11735 33.65951 0.261 8.00 1.01 4.31 96 0.177 0.86 5.30 2.8 16.8 80.4 silt loam

246B 0.240 7.90 0.98 3.04 90 0.079 0.21 4.80 8.8 18.8 72.4 silt loam

247A 73.1201 33.66205 0.245 7.94 1.28 3.71 54 0.431 1.10 5.40 12.8 18.8 68.4 silt loam

248B 0.233 7.84 0.92 2.90 48 0.353 0.72 5.60 18.8 20.8 60.4 silt loam

249A 73.12039 33.66309 0.273 7.90 2.50 3.71 58 0.138 1.07 1.30 14.8 22.8 62.4 silt loam

250B 0.255 8.02 1.68 2.80 270 0.099 1.10 1.08 10.8 22.8 66.4 silt loam

251A 73.12091 33.66062 0.281 8.04 1.48 2.83 80 0.294 1.00 1.08 12.8 20.8 66.4 silt loam

252B 0.288 8.01 1.19 2.37 78 0.196 0.93 1.33 16.8 22.8 60.4 silt loam

253A 73.12106 33.66036 0.267 7.96 2.33 4.59 90 0.333 1.07 0.87 7.8 26.8 65.4 silt loam

254B 0.258 8.01 1.60 2.30 100 0.118 0.66 0.64 8.8 28.8 62.4 silty clay loam

255A 73.121925 33.65986 0.306 8.10 2.29 3.25 106 0.236 1.41 0.38 10.8 26.8 62.4 silt loam

256B 0.251 8.03 1.34 3.08 172 0.177 1.10 4.60 6.8 22.8 70.4 silt loam

257A 73.12203 33.66072 0.162 8.02 1.51 1.46 168 0.764 1.38 2.80 10.8 22.8 66.4 silt loam

258B 0.150 7.94 1.14 1.21 76 0.646 1.28 2.70 10.8 26.8 62.4 silt loam

259A 73.12309 33.66233 0.196 7.82 1.80 5.37 80 0.588 1.24 5.60 18.8 24.8 56.4 silt loam

260B 0.196 7.77 1.10 4.31 86 0.412 0.86 5.22 24.8 22.8 52.4 silt loam

261A 73.12247 33.66365 0.238 7.90 1.65 1.21 76 0.783 1.38 2.33 44.4 18 37.6 loam

262B 0.255 7.95 1.18 0.86 68 0.744 1.14 5.00 40.4 22 37.6 loam

263A 73.12209 33.66419 0.229 8.00 2.12 1.81 66 0.392 1.38 1.64 42.4 16 41.6 loam

264B 0.231 7.80 1.49 1.14 78 0.216 1.21 1.10 62.4 16 21.6 sandy loam

Page 57: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

50 | P a g e

265A 73.12365 33.6644 0.149 7.83 1.06 2.83 72 0.686 1.17 1.30 11.2 22 66.8 silt loam

266B 0.200 7.72 1.31 1.63 94 0.588 0.52 8.60 13.2 26 60.8 silt loam

267A 73.12394 33.66427 0.270 7.75 1.71 5.86 78 0.412 1.14 10.30 43.2 20 36.8 loam

268B 0.248 7.83 0.94 4.80 96 0.118 0.97 8.60 47.2 18 34.8 loam

269A 73.12551 33.66429 0.265 7.83 3.18 6.57 80 0.275 1.17 5.70 49.2 18 32.8 loam

270B 0.252 7.85 4.04 2.69 102 0.236 0.76 4.90 39.2 22 38.8 loam

271A 73.12564 33.66395 0.222 7.93 3.42 4.42 98 0.607 1.59 3.20 17.2 18 64.8 silt loam

272B 0.312 7.86 2.08 3.08 80 0.588 1.52 4.10 15.2 16 68.8 ssilt loam

273A 73.12547 33.66387 0.179 7.59 1.37 3.01 76 0.862 1.38 0.63 19.2 18 62.8 silt loam

274B 0.113 7.57 1.14 2.23 64 0.744 1.14 0.81 15.2 22 62.8 silt loam

275A 73.12688 33.66365 0.282 7.73 1.77 8.72 76 0.353 0.83 1.00 9.2 24 66.8 silt loam

276B 0.239 7.88 1.44 8.68 70 0.275 0.48 1.42 13.2 22 64.8 silt loam

277A 73.1267 33.66276 0.127 7.81 1.60 8.84 56 0.294 1.38 4.00 19.2 18 62.8 silt loam

278B 0.164 7.73 1.41 5.05 58 0.118 0.66 6.50 21.2 20 58.8 silt loam

279A 73.12594 33.66156 0.168 7.75 0.94 2.50 48 0.686 1.59 6.20 11.2 16 72.8 silt loam

280B 0.208 7.84 0.83 1.14 76 0.627 1.24 4.33 29.2 18 52.8 silt loam

281A 73.12574 33.6629 0.275 7.83 1.96 3.99 78 1.018 1.10 1.38 27.2 16 56.8 silt loam

282B 0.267 7.76 0.98 3.10 60 0.960 0.35 1.64 11.2 28 60.8 silty clay loam

283A 73.13165 33.66001 0.234 8.14 2.51 7.61 92 0.509 0.79 2.46 25.2 24 50.8 silt loam

284B 0.556 7.86 0.94 4.12 82 0.412 0.45 8.23 19.2 18 62.8 silt loam

285A 73.13152 33.65881 0.110 7.69 1.11 6.93 78 0.470 0.83 7.36 7.2 26 66.8 silt loam

286B 0.160 7.62 0.97 4.25 72 0.372 0.69 2.00 13.2 24 62.8 silt loam

287A 73.13145 33.6574 0.112 7.61 1.08 5.52 64 0.255 0.79 0.74 5.2 32 62.8 silty clay loam

288B 0.120 7.45 1.09 3.14 70 0.568 0.76 1.30 5.2 34 60.8 silty clay loam

289A 73.13144 33.65625 0.260 8.08 2.32 3.39 112 0.549 1.86 1.22 15.2 24 60.8 silt loam

290B 0.159 7.48 1.00 2.63 88 0.470 1.52 4.36 17.2 26 56.8 silt loam

291A 73.13303 33.65602 1.474 8.02 1.08 5.22 74 0.392 1.04 4.30 9.2 26 64.8 silt loam

292B 0.217 7.95 1.07 2.16 64 0.138 1.00 5.40 15.2 22 62.8 silt loam

Page 58: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

51 | P a g e

293A 73.13458 33.65594 0.388 7.97 2.63 7.06 154 0.040 1.07 3.20 7.2 28 64.8 silty clay

loam

294B 0.378 7.87 1.15 4.54 98 0.236 0.83 1.90 9.2 20 70.8 silt loam

295A 73.13578 33.65587 0.118 8.10 3.66 7.35 126 0.196 1.00 4.00 21.2 26 52.8 silt loam

296B 0.311 7.95 3.36 5.65 102 0.333 0.76 2.90 25.2 20 54.8 silt loam

297A 73.13572 33.65463 0.369 7.85 1.89 4.46 50 0.275 1.52 7.20 9.2 20 70.8 silt loam

298B 0.360 7.78 1.16 3.61 52 0.588 1.14 4.00 13.2 18 68.8 silt loam

299A 73.13452 33.65478 0.369 7.43 1.35 5.74 106 0.294 1.83 4.00 19.2 16 64.8 silt loam

300B 0.423 7.26 0.98 4.88 66 0.079 1.73 2.06 23.2 20 56.8 silt loam

301A 73.13285 33.65503 0.185 7.76 3.47 7.82 90 0.686 1.59 4.08 17.2 22 60.8 silt loam

302B 0.351 7.29 0.96 5.10 70 0.588 1.21 3.90 21.2 14 64.8 silt loam

303A 73.13106 33.65507 0.119 7.72 3.37 3.05 84 0.666 1.41 4.00 15.2 24 60.8 silt loam

304B 0.360 7.50 1.51 2.67 58 0.412 1.04 4.20 17.2 18 64.8 silt loam

305A 73.12943 33.65522 0.164 7.41 1.91 4.84 82 0.999 1.41 2.50 20.8 23.2 56 silt loam

306B 0.281 7.30 1.00 3.05 80 0.588 1.00 2.70 13.2 26 60.8 silt loam

307A 73.12968 33.65644 0.341 6.94 1.33 5.05 62 0.881 1.10 5.30 21.2 16 62.8 silt loam

308B 0.201 7.10 1.56 3.44 56 0.607 0.79 4.60 19.2 18 62.8 silt loam

309A 73.12988 33.6576 0.199 7.07 0.94 5.91 56 0.764 1.17 5.70 14.8 21.2 64 silt loam

310B 0.257 6.99 1.11 2.67 52 0.627 0.93 1.54 8.8 27.2 64 silty clay loam

311A 73.13017 33.65899 0.310 7.14 4.62 4.07 80 0.607 1.66 5.00 29.2 12 58.8 silt loam

312B 0.321 7.32 2.99 3.35 76 0.529 1.62 5.10 25.2 16 58.8 silt loam

313A 73.1278 33.65552 0.903 6.89 4.75 6.54 102 0.686 1.48 5.40 16.8 15.2 68 silt loam

314B 0.402 6.65 2.82 4.54 60 0.549 1.35 10.20 13.2 22 64.8 silt loam

315A 73.12737 33.65555 0.320 8.03 3.88 9.74 86 0.490 1.04 1.04 15.2 28 56.8 silty clay loam

316B 0.368 7.04 2.82 8.20 76 0.372 0.90 1.40 9.2 18 72.8 silt loam

317A 73.12739 33.65557 0.487 6.60 3.79 4.59 88 0.353 1.21 1.80 15.2 22 62.8 sillt loam

318B 0.489 7.27 4.74 3.35 66 0.157 1.52 0.50 21.2 14 64.8 silt loam

319A 73.12582 33.6557 0.281 7.50 4.27 10.67 58 0.901 1.14 0.78 13.2 8 78.8 silt loam

320B 0.216 7.67 1.49 8.29 68 0.842 0.86 3.40 30.8 9.2 60 silt loam

Page 59: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

52 | P a g e

321A 73.12577 33.65547 0.591 7.85 2.31 9.78 124 0.744 1.83 4.10 15.2 18 66.8 silt loam

322B 0.231 7.72 1.10 7.35 116 0.803 1.35 4.60 17.2 20 62.8 silt loam

323A 73.1246 33.65525 0.188 7.60 3.22 6.50 68 0.588 1.10 5.00 4.8 25.2 70 silt loam

324B 0.184 7.69 1.09 5.44 62 0.412 0.31 5.10 15.2 10 74.8 silt loam

325A 73.12479 33.65496 0.159 7.70 4.26 6.88 82 0.764 1.41 3.40 17.2 20 62.8 silt loam

326B 0.385 7.36 1.22 4.71 66 0.666 1.10 1.30 15.2 20 64.8 silt loam

327A 73.12494 33.65513 0.343 7.35 2.31 6.88 90 0.275 1.41 4.60 7.2 28 64.8 silty clay loam

328B 0.307 7.39 1.09 6.50 70 0.216 0.76 5.00 11.2 32 56.8 silty clay loam

329A 73.12543 33.65517 0.190 7.40 4.74 7.48 116 0.940 1.48 5.20 25.2 28 46.8 clay loam

330B 0.209 7.54 1.76 4.50 124 0.940 1.21 4.30 33.2 32 34.8 clay loam

331A 73.12528 33.65483 0.112 7.60 4.69 7.61 152 0.783 1.52 3.90 15.2 14 70.8 silt loam

332B 0.403 7.25 3.05 3.22 122 0.686 0.79 2.60 13.2 16 70.8 silt loam

333A 73.12552 33.65465 0.180 7.72 3.14 8.03 160 0.392 1.38 5.40 26.4 24 49.6 loam

334B 0.208 7.66 1.51 5.18 72 0.353 1.31 4.10 32.4 20 47.6 loam

335A 73.12675 33.65463 0.459 7.82 4.24 8.12 132 0.412 1.21 2.00 24.4 22 53.6 silt loam

336B 0.285 7.29 1.52 9.69 126 0.333 1.04 1.30 42.4 18 39.6 loam

337A 73.12707 33.65653 0.113 7.29 4.49 6.46 122 0.529 1.10 3.60 11.2 14 74.8 silt loam

338B 0.229 7.16 1.12 4.76 102 0.490 1.00 4.80 25.2 8 66.8 silt loam

339A 73.12723 33.65696 0.590 7.01 4.24 6.46 148 0.216 0.86 2.80 5.2 26 68.8 silt loam

340B 0.254 7.50 3.41 4.29 118 0.059 0.45 2.60 13.2 18 68.8 silt loam

341A 73.12923 33.65403 0.279 7.31 4.14 4.54 160 0.372 1.45 4.80 25.2 26 48.8 loam

342B 0.342 7.62 1.37 2.97 94 0.236 0.59 7.60 21.2 22 56.8 silt loam

343A 73.13078 33.65375 0.278 7.83 1.74 8.25 180 0.920 0.41 6.80 26.4 20 53.6 silt loam

344B 0.222 7.45 3.33 4.76 102 0.842 0.21 5.30 58.4 12 29.6 sandy loam

357A 73.1307 33.65253 0.275 7.98 3.56 5.86 92 0.333 0.48 1.30 28.4 26 45.6 loam

358B 0.277 7.73 3.11 4.67 124 0.294 0.14 0.98 22.4 18 59.6 silt loam

359A 73.13043 33.65113 0.279 7.65 3.88 6.84 134 0.607 1.17 0.35 17.2 24 58.8 silt loam

360B 0.149 7.37 3.58 4.97 102 0.568 1.00 0.67 21.2 20 58.8 silt loam

Page 60: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

53 | P a g e

365A 73.13548 33.65097 0.320 7.41 3.23 3.78 128 0.412 0.93 0.47 17.2 16 66.8 silt loam

366B 0.174 7.74 1.23 1.73 92 0.255 0.45 4.61 19.2 22 58.8 silt loam

367A 73.12885 33.65112 0.242 7.41 3.30 8.25 184 0.803 0.48 1.13 21.2 18 60.8 silt loam

368B 0.405 7.70 1.11 6.50 134 0.646 0.28 4.31 17.2 20 62.8 silt loam

Page 61: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

54 | P a g e

APPENDIX III: S.No. Farmers’ Name Location Demonstration/ Experiment - Treatments

Punjab

1 Yaseen Aswa Bhattian, Khanka Dogra Variety: Akbar 2019 Farmer Practice (FP): 1 trolley FYM Integrated Nutrient Management (INM): 75 kg Urea, 75 kg DAP,50 kg SOP, 10 kg ZnSo4, 03 Borax, 02 Packet Biozote, 15 Litre/acre Humic Acid

2 Ghulam Rasool Hiran Minar, Sheikhupura Variety: Faisalabad 2008 FP: 11kg Urea, 11kg DAP INM: 75 kg Urea, 75 kg DAP,50 kg SOP, 10 kg ZnSo4, 03 Borax, 02 Packet Biozote, 15 Litre/acre Humic Acid

3 Qazi Bashir AZRI, Bahawalpur Variety: Faisalabad 2008 F.P: 25kg Urea, 25kg DAP INM: 75 kg Urea, 75 kg DAP,50 kg SOP, 10 kg ZnSo4, 03 Borax, 02 Packet Biozote, 15 Litre/acre Humic Acid

4 Ibrahim Mizari Baghwala, Lodhran Variety: Faisalabad 2008 F.P: 25 kg Urea, 25 kg DAP INM: 75 kg Urea, 75 kg DAP,50 kg SOP, 10 kg ZnSo4, 03 Borax, 02 Packet Biozote, 15 Litre/acre Humic Acid

5 Saeed Ahmed Kalashakaku, Sheikhupura Variety: Faisalabad 2008 F.P: 25 kg Urea, 25 kg DAP INM: 75 kg Urea, 75 kg DAP,50 kg SOP, 10 kg ZnSo4, 03 Borax, 02 Packet Biozote, 15 Litre/acre Humic Acid

KPK

6 Sarrer Ullah Charsadda Variety: Faisalabad 2008 FP: 7 kg Urea, 7kg DAP INM: 38 kg Urea, 38kg DAP, 25kg SOP, 3 kg ZnSo4, 1 kg Borax, 1 Packet Biozote, 10 Litre Humic Acid

7 Hamid Hassan Near CPEC Yarik, D.I.Khan Variety: Marwat 591 FP: 0 INM: 75 kg Urea, 75 kg DAP,50 kg SOP, 10 kg ZnSo4, 03 Borax, 02 Packet Biozote, 15 Litre/acre Humic Acid

8 Ibrahim c/o Fazli Karim Mardan Variety: Borlaug 2016 FP: 0 INM: 75 kg Urea, 75 kg DAP,50 kg SOP, 10 kg ZnSo4, 03 Borax, 02 Packet Biozote, 15 Litre/acre Humic Acid

9 Shahabuddin Masha Mansoor, Lakki Marwat Variety: Marwat 591 FP: 0 INM: 75 kg Urea, 75 kg DAP,50 kg SOP, 10 kg ZnSo4, 03 Borax, 02 Packet Biozote, 15 Litre/acre Humic Acid

10 Farm Manager AZRC, D.I.Khan Variety: AZRC 2020 FP: 0 INM: 75 kg Urea, 75 kg DAP,50 kg SOP, 10 kg ZnSo4, 03 Borax, 02 Packet Biozote, 15 Litre/acre Humic Acid

11 Prof. Arif Peshawar Variety: Khaista T1- Control, T2 - FP (80:60 kg ha-1), T3 - NPK (120:90:60 kg ha-1), T4 - NPK + Zn (5 kg ha-1) T5 - NPK + Boron (1 kg ha-1) T6 - NPK + Biozote

Page 62: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

55 | P a g e

T7 - Coated NPK + Zn + B + Biozote

T8 - NPK+ Zn + B + Biozote.

12 Prof. Arif Peshawar Variety: Khaista FP: 0 INM: 75 kg Urea, 75 kg DAP,50 kg SOP, 10 kg ZnSo4, 03 Borax, 02 Packet Biozote, 15 Litre/acre Humic Acid

Baluchistan

13 Agriculture Development Institute

Usta Muhammad, Jaffarabad Variety: TD-I FP: 50 kg DAP, 50 kg Urea INM: 75 kg Urea, 75 kg DAP, 50 kg SOP, 10 kg ZnSo4, 03 Borax, 02 Packet Biozote, 15 Litre/acre Humic Acid

Sindh

14 Khalid Ansari Sakrand Variety: TD-I FP: 50 kg DAP, 50 kg Urea INM: 75 kg Urea, 75 kg DAP, 50 kg SOP, 10 kg ZnSo4, 03 Borax, 02 Packet Biozote, 15 Litre/acre Humic Acid

Islamabad

15 Wheat Program (PEW- VIII, LRRI)

NARC, Islamabad In collaboration with Wheat program. Variety: Pakistan 2013 FP: 50 kg DAP, 50 kg Urea INM: 75 kg Urea, 75 kg DAP, 50 kg SOP, 10 kg ZnSo4, 03 Borax, 02 Packet Biozote, 15 Litre/acre Humic Acid

Page 63: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

56 | P a g e

APPENDIX IV: Soil samples before Sowing of Wheat (Punjab)

Parameter Unit Rice Research Farm Jalalpur Khanka Dogran Bahawalpur Sheikhupura Khanka Dogran NARC

0-15 cm

EC dS/m 0.537 0.412 0.722 0.538 0.552 0.597 0.47

pH 1:01 8.673 8.088 8.342 8.224 8.448 8.234 7.58

NO3-N mg/kg 1.45 1.53 1.16 1.53 3.00 1.70 1.6

P 2.31 2.73 4.28 3.40 6.00 7.30 5.11

K 140 120 398 200 176 186 152

B 0.49 0.42 0.53 0.55 0.28 0.26

OM % 1.31 1.90 2.31 1.73 1.73 2.24 1.33

Texture silt loam silt loam sandy loam sandy clay loam clay loam silt loam silty clay loam

15-30 cm

EC dS/m 0.655 0.414 0.512 0.542 0.613 0.513 0.75

pH 1:01 8.877 8.082 8.497 8.233 8.491 8.36 7.83

NO3-N mg/kg 1.03 0.86 0.66 1.49 1.32 1.58 1.37

P 1.81 1.52 3.91 1.85 3.40 5.37 2.25

K 114 72 394 190 164 100 118

B 0.38 0.34 0.4 0.38 0.2 0.1

OM % 0.90 1.83 2.24 1.35 0.86 2.24 0.76

Texture silt loam silt loam sandy loam sandy clay loam clay loam silt loam silty clay loam

Page 64: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

57 | P a g e

Post-harvest soil samples (Punjab)

Parameter Unit Sheikhupura (Hiran Minar)

Khanka Dogran Kalashakaku Bahawalpur Lodhran NARC

FP INM % Change

FP INM % Change

FP INM % Change

FP INM % Change FP INM % Change

FP INM % Change

0-15 cm

EC dS/m 0.56 0.75 25.58 0.84 0.80 -5.26 0.56 0.62 10.27 0.56 0.74 24.53 0.43 0.69 37.19 0.23 0.23 1.74

pH 1:01 8.34 8.55 2.40 8.53 8.04 -6.09 8.43 8.11 -3.95 8.46 8.41 -0.59 8.35 8.45 1.18 8.25 8.36 1.28

NO3-N mg/k g 1.16 3.60 67.90 1.78 3.04 41.29 1.12 1.74 36.00 0.86 3.12 72.33 2.58 3.75 31.23 1.16 1.73 33.07

P 4.32 6.07 28.78 4.45 7.25 38.69 4.07 6.82 40.26 4.13 10.49 60.61 7.13 8.81 19.11 6.03 8.37 28.05

K 148 228 35.09 180 222 18.92 70 96 27.08 130 166 21.69 90 142 36.62 81 114 29.07

B 0.26 0.45 42.20 0.41 0.65 36.53 0.50 0.82 39.42 0.35 0.68 48.03 0.38 0.88 56.85

OM % 0.66 1.17 44.12 1.07 1.24 13.89 0.72 1.59 54.35 0.59 0.76 22.73 0.79 0.93 14.81 0.98 1.10 11.46

15-30 cm

EC dS/m 0.47 0.64 25.86 0.73 0.72 -2.10 0.49 0.47 -3.38 0.57 0.71 19.66 0.43 0.72 39.69

pH 1:01 8.64 8.10 -6.67 8.69 8.59 -1.16 8.42 8.55 1.52 8.68 8.54 -1.64 8.49 8.43 -0.71

NO3-N mg/k g 0.91 3.08 70.59 1.12 3.04 63.31 0.86 1.24 30.34 0.66 3.00 78.14 2.62 3.37 22.32

P 3.57 5.76 37.92 4.07 6.44 36.79 2.39 4.88 51.08 2.64 8.62 69.41 6.50 8.44 22.91

K 126 208 39.42 168 204 17.65 54 80 32.50 108 136 20.59 84 120 30.00

B 0.20 0.25 17.85 0.29 0.56 47.61 0.20 0.65 68.49 0.26 0.44 40.26 0.14 0.59 75.37

OM

% 0.55 0.81 31.91 0.83 0.69 -20.00 0.35 0.93 62.96 0.28 0.62 55.56 0.66 0.90 26.92

Page 65: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

58 | P a g e

Soil samples before Sowing of Wheat (Khyber Pakhtun Khwa)

Parameters Units Karak Peshawar Peshawar uni. Charsadda Mardan

0-15 cm

EC dS/m 0.185 0.314 0.303 0.316 0.339

pH 1:01 7.52 8.006 8.022 8.89 7.854

NO3-N mg/kg 1.90 1.40 1.54 1.38 1.43

P 5.95 6.34 5.83 5.42 6.64

K 74 60 62 118 146

B 0.38 0.47 0.42 0.47 0.28

OM % 0.59 0.93 0.24 0.69 1.31

Texture Sandy clay loam Silty clay loam Silt loam Silty clay loam Silt loam

15-30 cm

EC dS/m 0.134 0.329 0.390 0.328 0.320

pH 1:01 7.8 7.999 7.897 7.989 7.855

NO3-N mg/kg 1.84 1.59 1.49 1.33 1.31

P 5.14 6.56 5.45 5.20 4.96

K 70 62 76 118 166

B 0.32 0.4 0.38 0.22 0.18

OM % 0.38 0.17 0.17 0.21 0.72

Texture Sandy clay loam Silty clay loam Silt loam Silty clay loam Silt loam

Page 66: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

59 | P a g e

Post-harvest soil samples (Khyber Pakhtun KHAwa)

Parameters Units Peshawar Charsadda Mardan

FP INM % Change FP INM % Change FP INM % Change

0-15 cm

EC dS/m 0.31 0.32 2.50 0.32 0.31 -2.24 0.26 0.37 27.87

pH 1:01 8.32 8.32 0.00 8.17 8.26 1.09 7.97 7.99 0.25

NO3-N mg/kg 0.91 1.91 52.56 2.62 4.34 39.55 2.71 3.83 29.46

P 3.57 5.07 29.52 4.51 8.50 46.95 5.32 6.38 16.62

K 86 96 10.42 80 168 52.38 172 220 21.82

B 0.44 0.94 53.29 0.53 0.82 35.84 0.53 1.00 47.19

OM % 0.38 0.90 57.69 0.62 1.14 45.45 0.31 1.00 68.97

15-30 cm

EC dS/m 0.32 0.31 -2.26 0.31 0.37 18.18 0.40 0.38 -5.26

pH 1:01 8.38 8.39 0.12 8.29 8.12 -2.09 8.11 7.94 -2.14

NO3-N mg/kg 0.82 1.53 46.37 1.95 3.58 45.53 2.20 3.50 37.05

P 3.20 4.94 35.31 3.39 8.06 58.00 4.38 6.44 31.95

K 84 92 8.70 74 128 42.19 146 196 25.51

B 0.26 0.85 69.20 0.44 0.59 25.12 0.35 0.68 48.03

OM % 0.35 0.69 50.00 0.52 0.79 34.78 0.24 0.83 70.83

Page 67: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

60 | P a g e

APPENDIX V:

Wheat Business Plan (INM)

Area to be planted Expected Production Expected income Remarks

Acres

A. Funds for inputs

Input Name Quantity Price (Rs.) Total

DAP Fertilizer 1.5 Bag 4400 6600

Urea Fertilizer 1.5 Bag 2400 3600

SOP Fertilizer 1 Bag 5300 5300

Biozote 2 Pkts 100 200

Humic Acid 30 Liters 20 600

Herbicide 1 Bottle 1000 1000

Insecticide/Fungicide 1 Bottle 1000 1000

Seed packing bags 1 Bag 1500 1500

DPL 2 persons 675 1350

Total

16395 21150

B. Funds for Farm Machinery Services

Tractor/implements/harvester maintenance and Misc. 1600

Total Income Average Yield 44 munds

79200

Expenditure (A + B)

22750

Net Income:

56450

Page 68: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

61 | P a g e

Wheat Business Plan (FP)

Area to be planted Expected Production Expected income Remarks

Acres

A. Funds for inputs

Input Name Quantity Price (Rs.) Total

DAP Fertilizer 1.0 Bag 4400 4400

Urea Fertilizer 1.0 Bag 2400 2400

SoP Fertilizer

Biozote

Humic Acid

Herbicide

Insecticide/Fungicide

Seed packing bags 1500 1500

DPL

Total 8300 8300

B. Funds for Farm Machinery Services

Tractor/implements/harvester maintenance and Misc. 1600

Total Income Average Yield 28 munds 50400

Expenditure (A + B) 9900

Net Income: 40,500

Net Income of INM 56,450

Net income of FP 40,500

Difference of Income 15,950

Page 69: INTEGRATED NUTRIENT MANAGEMENT for IMPROVING …

CONTRIBUTING AUTHORS : -

Dr. Muhammad Yaqoob, National Project Director, PEWheat

Dr. Shahid Maqsood Gill, Director LRRI, NARC

Muhammad Asad Hameed, Research Fellow, PEW-VIII, LRRI

Huma Aziz, Research Fellow, PEW-VIII, LRRI

Zubair Afzal, Compiler

Muhammad Abbas, Lab Analyst

Pakistan Agricultural Research Council, National Agricultural Research Centre, Park Road, Islamabad, Pakistan - 45500