inertial navigationelosery/spring_2011/ee570/lectures/... · 11 march 2011 ee 570: location and...

18
Inertial Navigation Inertial Navigation Inertial Navigation The process of “integrating” angular velocity & acceleration to determine One’s position, velocity, and attitude (PVA) Effectively “dead reckoning” To measure the acceleration and angular velocity vectors we need at least 3-gyros and 3-accels Typically configured in an orthogonal triad The “mechanization” can be performed wrt: The ECI frame, The ECEF frame, or The Nav frame. 11 March 2011 EE 570: Location and Navigation: Theory & Practice Lecture 7: Slide 1

Upload: others

Post on 19-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Inertial Navigationelosery/spring_2011/ee570/lectures/... · 11 March 2011 EE 570: Location and Navigation: Theory & Practice Lecture 7: Slide 10 e e e e e g rb ib ie ie eb= −Ω

Inertial NavigationInertial Navigation• Inertial Navigation

The process of “integrating” angular velocity & acceleration to determine One’s position, velocity, and attitude (PVA)

• Effectively “dead reckoning”

To measure the acceleration and angular velocity vectors we need at least 3-gyros and 3-accels

• Typically configured in an orthogonaltriad

The “mechanization” can be performed wrt:

• The ECI frame,

• The ECEF frame, or

• The Nav frame.

11 March 2011 EE 570: Location and Navigation: Theory & Practice Lecture 7: Slide 1

Page 2: Inertial Navigationelosery/spring_2011/ee570/lectures/... · 11 March 2011 EE 570: Location and Navigation: Theory & Practice Lecture 7: Slide 10 e e e e e g rb ib ie ie eb= −Ω

Inertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial Navigation• An Inertial Navigation System (INS)

ISA – Inertial Sensor Assembly

• Typically, 3-gyros + 3-accels + basic electronics (power, …)

IMU – Inertial Measurement Unit

• ISA + Compensation algorithms (i.e. basic processing)

INS – Inertial Navigation System INS – Inertial Navigation System

• IMU + gravity model + “mechanization” algorithms

11 March 2011 EE 570: Location and Navigation: Theory & Practice Lecture 7: Slide 2

IMUIMU

- Basic Processing

ISAISAComp

Algs

Raw sensor

outputs

b

ibf

b

ibω

Mechanization

Equations

Gravity

Model

INSINS

- More Sophisticated Processing

Initialization

Position,

Velocity, and

Attitude (PVA)

Page 3: Inertial Navigationelosery/spring_2011/ee570/lectures/... · 11 March 2011 EE 570: Location and Navigation: Theory & Practice Lecture 7: Slide 10 e e e e e g rb ib ie ie eb= −Ω

Inertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationA Four Step MechanizationA Four Step Mechanization

• Can be generically performed in four steps:1. Attitude Update

• Update the prior attitude (a DCM, say) using the current

angular velocity measurement

2. Transform the specific force measurement2. Transform the specific force measurement

• Typically, using the attitude computed in step 1.

3. Update the velocity

• Essentially integrate the result from step 2. with the use of

a gravity model

4. Update the Position

• Essentially integrate the result from step 3.

11 March 2011 EE 570: Location and Navigation: Theory & Practice Lecture 7: Slide 3

Page 4: Inertial Navigationelosery/spring_2011/ee570/lectures/... · 11 March 2011 EE 570: Location and Navigation: Theory & Practice Lecture 7: Slide 10 e e e e e g rb ib ie ie eb= −Ω

Inertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationA Four Step MechanizationA Four Step Mechanization

2. SF

Transform

b

ibω

Prior

Attitude

b

ibf

GravPrior 3. Velocity

1. Attitude

Update

Pri

or

PV

AIMU Measurements

11 March 2011 EE 570: Location and Navigation: Theory & Practice Lecture 7: Slide 4

3. Position

Update

Grav

Model

Prior

Velocity

Prior

Position

3. Velocity

Update

Updated

Attitude

Updated

Velocity

Updated

Position

Pri

or

PV

A

Updated PVA

Page 5: Inertial Navigationelosery/spring_2011/ee570/lectures/... · 11 March 2011 EE 570: Location and Navigation: Theory & Practice Lecture 7: Slide 10 e e e e e g rb ib ie ie eb= −Ω

Inertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationCase 1: ECI Frame MechanizationCase 1: ECI Frame Mechanization

• Determine our PVA wrt the ECI frame Namely: Position , Velocity, , and attitude

1. Attitude Update: Body orientation frame at time “k” wrt time “k-1”

• ∆t = Time k – Time k-1bω

i

ibv

i

bC

i

ibr

11 March 2011 EE 570: Location and Navigation: Theory & Practice Lecture 7: Slide 5

( 1)b kx

( 1)b ky

( 1)b kz

( )b kx

( )b ky

( )b kz

Body Frame

at time “k-1”

Body Frame

at time “k”

( 1)

( ) ( 1) ( )

i i b k

b k b k b kC C C−

−=

( 1)

( )

bib tb k

b kC eΩ ∆− =

( )( ) ( )

( )

bib ti i

b b

i b

b ib

C C e

C I tω

Ω ∆+ = −

− + × ∆

b

ibω

Page 6: Inertial Navigationelosery/spring_2011/ee570/lectures/... · 11 March 2011 EE 570: Location and Navigation: Theory & Practice Lecture 7: Slide 10 e e e e e g rb ib ie ie eb= −Ω

Inertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationCase 1: ECI Frame MechanizationCase 1: ECI Frame Mechanization

2. Specific Force Transformation Simply coordinatize the specific force

3. Velocity Update Assuming that we are in space (i.e. no centrifugal component)

( )i i

ib i

b

b bf C f= +

Assuming that we are in space (i.e. no centrifugal component)

Thus, by simple numerical integration

4. Position Update By simple numerical integration

11 March 2011 EE 570: Location and Navigation: Theory & Practice Lecture 7: Slide 6

aib i

i i

ib

i

bf γ= −

( ) ( ) aib ib

i

ib

i iv v t+ = − + ∆

2

( ) ( ) ( ) a2

ib ib ib i

i

b

i i i tr r v t

∆+ = − + − ∆ +

Page 7: Inertial Navigationelosery/spring_2011/ee570/lectures/... · 11 March 2011 EE 570: Location and Navigation: Theory & Practice Lecture 7: Slide 10 e e e e e g rb ib ie ie eb= −Ω

Inertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationCase 1: ECI Frame MechanizationCase 1: ECI Frame Mechanization

2. SF

Transform

b

ibω b

ibf

Grav3. Velocity

1. Attitude

Update( )

i

bC −

i

ibf

( )( ) ( )i i b

b b ibC C I tω + = − + × ∆

( )i i

ib i

b

b bf C f= +

11 March 2011 EE 570: Location and Navigation: Theory & Practice Lecture 7: Slide 7

3. Position

Update

Grav

Model

3. Velocity

Update

( )i

bC +

i

ibγ

( )ib

iv −

( )ib

iv +

( )ib

ir +

( )ib

ir −

( ) ( ) aib ib

i

ib

i iv v t+ = − + ∆

2

( ) ( ) ( ) a2

ib ib ib i

i

b

i i i tr r v t

∆+ = − + − ∆ +

a ib i

i i

ib

i

bf γ= −

Page 8: Inertial Navigationelosery/spring_2011/ee570/lectures/... · 11 March 2011 EE 570: Location and Navigation: Theory & Practice Lecture 7: Slide 10 e e e e e g rb ib ie ie eb= −Ω

Inertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationCase 2: ECEF Frame MechanizationCase 2: ECEF Frame Mechanization

• Determine our PVA wrt the ECI frame Namely: Position , Velocity, , and attitude

1. Attitude Update: Start with the angular velocity ? ? ?

ib ie ebω ω ω= +

e

ebv

e

bC

e

ebr

by

bz

ib ie eb

e e eω ω ω= +

11 March 2011 EE 570: Location and Navigation: Theory & Practice Lecture 7: Slide 8

ex

ey

ez

Inertial Frame

ECEF Frame

( )( ) ( )

( )

( ) ( )

eeb te e

b b

e b b i e

b e bib ie

ib i

e b

b be

i e

C e C

I C C t t C

C I t C t

Ω ∆+ = −

+ ∆ − ∆ −

= − + ∆ − − ∆

Ω Ω

Ω Ω

ix

iy

iz

ieω

bx

by

?

ebω

Body Frame

ib ie eb

eb i

e e

b ie

eb ib ie

b i

b

e e b b i

b e

C

C C

ω ω ω

ω ω ω

= +

= −

= Ω Ω−Ω

( ) [ ] TC C Cω ω× = ×

Page 9: Inertial Navigationelosery/spring_2011/ee570/lectures/... · 11 March 2011 EE 570: Location and Navigation: Theory & Practice Lecture 7: Slide 10 e e e e e g rb ib ie ie eb= −Ω

Inertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationCase 2: ECEF Frame MechanizationCase 2: ECEF Frame Mechanization

2. Specific Force Transformation: Simply coordinatize the specific force

3. Velocity Update ECEF & ECI have the same origin

( )e e

ib i

b

b bf C f= +

by

bz

e e

eb eb

e i e i

i ib i ib

e e i e i

ei i ib i ib

v r

C r C r

C r C v

=

= +

= Ω +

ECEF & ECI have the same origin

11 March 2011 EE 570: Location and Navigation: Theory & Practice Lecture 7: Slide 9

ex

ey

ez

Inertial Frame

ECEF Frameix

iy

iz

bx

by

e

ebr

Body Frame

i i i e

ib ie e ebr r C r= +

0e e i

eb i ibr C r⇒ =

e e e i

ie eb i ibr C v= −Ω +

Page 10: Inertial Navigationelosery/spring_2011/ee570/lectures/... · 11 March 2011 EE 570: Location and Navigation: Theory & Practice Lecture 7: Slide 10 e e e e e g rb ib ie ie eb= −Ω

( )a

a

e e e e e i

eb eb ie eb i ib

e e e i e i

ie eb i ib i ib

e e e e i e i

ie eb ei i ib i ib

dv r C v

dt

r C r C v

v C v C

= = −Ω +

= −Ω + +

= −Ω + Ω +

Inertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationCase 2: ECEF Frame MechanizationCase 2: ECEF Frame Mechanization

e i e e e

i ib ie eb ebC v r v= Ω +

? ? ?a

ib ib ibf γ= −

ae e e

ib ib ibf γ= +

ae e e e e e e i

ie eb ie eb ie eb i ibv v r C = −Ω − Ω + Ω +

11 March 2011 EE 570: Location and Navigation: Theory & Practice Lecture 7: Slide 10

e e e e e

b ib ie ie ebg rγ= − Ω Ω

( ) ( ) a

( ) 2 ( )

e e e

eb eb eb

e e e i e

eb ib b ie eb

v v t

v f g v t

+ = − + ∆

= − + + − Ω − ∆

ae e e e e e

ib ib b ie ie ebf g r= + + Ω Ω

2 a

ie eb ie eb ie eb i ib

e e e e e e

ie eb ie ie eb ibv r

= − Ω − Ω Ω +

2i e e e

ie eb ib bv f g= − Ω + +

Page 11: Inertial Navigationelosery/spring_2011/ee570/lectures/... · 11 March 2011 EE 570: Location and Navigation: Theory & Practice Lecture 7: Slide 10 e e e e e g rb ib ie ie eb= −Ω

Inertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationCase 2: ECEF Frame MechanizationCase 2: ECEF Frame Mechanization

4. Position Update By simple numerical integration

2

( ) ( ) ( ) a2

eb eb eb e

e

b

e e e tr r v t

∆+ = − + − ∆ +

11 March 2011 EE 570: Location and Navigation: Theory & Practice Lecture 7: Slide 11

Page 12: Inertial Navigationelosery/spring_2011/ee570/lectures/... · 11 March 2011 EE 570: Location and Navigation: Theory & Practice Lecture 7: Slide 10 e e e e e g rb ib ie ie eb= −Ω

Inertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationCase 2: ECEF Frame MechanizationCase 2: ECEF Frame Mechanization

2. SF

Transform

b

ibω b

ibf

Grav3. Velocity

1. Attitude

Update( )

e

bC −

( )b e

e e

bg r

e

ibf

( ) ( ) ( )ib i

e e b i e

b b e bC C I t C t + = − + ∆ Ω− − ∆ Ω

( )e e

ib i

b

b bf C f= +

11 March 2011 EE 570: Location and Navigation: Theory & Practice Lecture 7: Slide 12

3. Position

Update

Grav

Model

3. Velocity

Update

( )e

bC +

( )b eb

g r( )

eb

ev −

( )eb

ev +

( )eb

er +

( )eb

er −

( )ib ib bf C f= +

( ) ( ) ae e e

eb eb ebv v t+ = − + ∆

2

( ) ( ) ( ) a2

eb eb eb e

e

b

e e e tr r v t

∆+ = − + − ∆ +

a 2 ( )e e e i e

eb ib b ie ebf g v= + − Ω −

Page 13: Inertial Navigationelosery/spring_2011/ee570/lectures/... · 11 March 2011 EE 570: Location and Navigation: Theory & Practice Lecture 7: Slide 10 e e e e e g rb ib ie ie eb= −Ω

Inertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationCase 3: Navigation Frame MechanizationCase 3: Navigation Frame Mechanization

• Determine our PVA wrt the Nav frame Position: Typically described in curvilinear coordinates

Velocity: Typically the velocity of the body wrt

the earth frame described in the navigation

frame coords

[ ], ,b b b

TL hλ

by

bz Body Frame

frame coords

Attitude: Typically the orientation

of the body described in the nav

frame

This unusual choice facilitates

the guidance system function

11 March 2011 EE 570: Location and Navigation: Theory & Practice Lecture 7: Slide 13

n

ebv

n

bC

ex

ey

ez

Inertial Frame

ECEF Framei

x

iy

iz

?

ieω

nx

ny

nz

?

enω

Nav Frame

bx

by?

nbω

Page 14: Inertial Navigationelosery/spring_2011/ee570/lectures/... · 11 March 2011 EE 570: Location and Navigation: Theory & Practice Lecture 7: Slide 10 e e e e e g rb ib ie ie eb= −Ω

Inertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationCase 3: Navigation Frame MechanizationCase 3: Navigation Frame Mechanization

1. Attitude Update: Note that

Now

? ? ? ?

ib ie en nbω ω ω ω= + +

nb ib ie

b

n

b

e

b bω ω ω ω= − −⇒

( )n n b n b b b

b b b

n b

nb ib ie en

ib i

n b n b

b b be en

C C C

C C C

Ω Ω Ω Ω

Ω Ω Ω

= = − −

= − −

11 March 2011 EE 570: Location and Navigation: Theory & Practice Lecture 7: Slide 14

( )ib ib b b

n b n

e en

ib ie be

n n

nb

C C C

C C

Ω Ω Ω

Ω Ω Ω

= − −

= − +

Measured by the gyro

cos( )

cos( ) 0

* * * 0

* * * 0 0

(in in) ( )

n

ie e ie

b

b b b

n e

T

ie

ie

C

L

L s L s L

ω

ω

ω

ω

= =

=

− −

See next slide

Page 15: Inertial Navigationelosery/spring_2011/ee570/lectures/... · 11 March 2011 EE 570: Location and Navigation: Theory & Practice Lecture 7: Slide 10 e e e e e g rb ib ie ie eb= −Ω

Inertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationCase 3: Navigation Frame MechanizationCase 3: Navigation Frame Mechanization

( )en

Te e n n e e

n n n nenC C C CΩ Ω= ⇒ =

en e

n n

nω⇔Ω

Last term:

0 sin( ) -

-sin( ) 0 -cos( )

cos( ) 0

b b b

b b b b

b b b

L L

L L

L L

λ

λ λ

λ

=

Courtesy of Mathematica

,

n

en xω

,

n

en yω

,

n

en zω

cos( )b bL λ

n

v

11 March 2011 EE 570: Location and Navigation: Theory & Practice Lecture 7: Slide 15

cos( )

-

-sin( )

b b

en b

b

n

b

L

L

L

λ

λ

ω

=

( )

( )

,

,

,

Cos( )

n

n

eb N

N b

b

eb E

b

b E b

b

e

n

b D

R hL

L R hh

v

v

v

λ

+ +

=

From Eqn. 16 (Wedeward handout) ⇒

( )

( )

( )

,

,

,

-

tan( )-

eb E

E b

eb N

en

N b

b e

n

b

n

E

n

E

n

b

v

R h

R h

L

R h

v

v

ω

∴ =

+

+

+

( ) ( )( ) ( )

( ) ( )

n n n

b b b

n b n n n

b ib e en bi

C C tC

C I t C t

+ − + ∆

= − + ∆ Ω +Ω− Ω − ∆

Page 16: Inertial Navigationelosery/spring_2011/ee570/lectures/... · 11 March 2011 EE 570: Location and Navigation: Theory & Practice Lecture 7: Slide 10 e e e e e g rb ib ie ie eb= −Ω

Inertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationCase Case 3: 3: NavNav Frame Frame MechanizationMechanization

2. Specific Force Transformation: Simply coordinatize the specific force

3. Velocity Update Recall that

( )n n

ib i

b

b bf C f= +

( ) [ ] [ ] ( )TC C C C C Cω ω ω ω× = × ⇒ × = ×

11 March 2011 EE 570: Location and Navigation: Theory & Practice Lecture 7: Slide 16

n n e

eeb ebv C v=

( )2n n n n n

ib b e ebn ief g v= + − Ω + Ω

eb eb

n n e

eb

n e

e ev C v C v= +

( )2n n e n e e e e

ne e e i ib ebb b eeC v C f g v= Ω + + − Ω

2n n n n n e e

ib b en e ebieebf g v C v= + − Ω − Ω

2n n n n n n e

ib b en ie ebeebf g v C v= + − Ω − Ω

Page 17: Inertial Navigationelosery/spring_2011/ee570/lectures/... · 11 March 2011 EE 570: Location and Navigation: Theory & Practice Lecture 7: Slide 10 e e e e e g rb ib ie ie eb= −Ω

Inertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationCase Case 3: 3: NavNav Frame Frame MechanizationMechanization

Finally

4. Position Update Recalling the relationship between and the curvilinear

coordinates

( )( ) ( ) 2 ( )n n n n n n n

ib beb e ieeb ebnv v t f g v + = − + ∆ + − Ω + Ω −

n

ebv

coordinates

11 March 2011 EE 570: Location and Navigation: Theory & Practice Lecture 7: Slide 17

,( ) ( ) ( )

n

b b eb Dh h t v + = − + ∆ +

,( )

( ) ( )eb

n

b b

N

N

b

vL L t

R h

++ = − + ∆

( ),

( )( ) ( )

cos( )

eb E

n

b

E

b

b b

vt

R h Lλ λ

++ = − + ∆

( )

( )

,

,

,

Cos( )

n

n

eb N

N b

b

eb E

b

b E b

b

e

n

b D

R hL

L R hh

v

v

v

λ

+ +

=

Page 18: Inertial Navigationelosery/spring_2011/ee570/lectures/... · 11 March 2011 EE 570: Location and Navigation: Theory & Practice Lecture 7: Slide 10 e e e e e g rb ib ie ie eb= −Ω

Inertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationInertial NavigationCase 3: Case 3: NavNav Frame MechanizationFrame Mechanization

2. SF

Transform

b

ibω b

ibf

1. Attitude

Update( )

n

bC −

n

ibf

( ) ( )( ) ( ) ( )ib ie

n n b n n n

b b n beC C I t C t+ = − + ∆ − + Ω −Ω ∆Ω

( )n n

ib i

b

b bf C f= +

( )

( ) ( )n n

eb ebv v+ = − +

11 March 2011 EE 570: Location and Navigation: Theory & Practice Lecture 7: Slide 18

3. Position

Update

Grav

Model

3. Velocity

Update

( )n

bC +

n

bg

( )eb

nv −

( )eb

nv +

ibf

( )

( )

( )b

b

b

h

L

λ

( ), ( ), ( )b b bh L λ+ + +

( )2 ( )n n n n n

ib b e ie ebnt f g v ∆ + − Ω + Ω −

,( ) ( ) ( )

n

b b eb Dh h t v + = − + ∆ +

,( )

( ) ( )eb

n

b b

N

N

b

vL L t

R h

++ = − + ∆

( ),

( )( ) ( )

cos( )

eb E

n

b

E

b

b b

vt

R h Lλ λ

++ = − + ∆