in vivo evaluation of the effectiveness of biocellulose ... · • lbm: a total of 20 subjects...

11
J Cosmet Dermatol. 2019;00:1–11. | 1 wileyonlinelibrary.com/journal/jocd Received: 26 April 2019 | Revised: 22 May 2019 | Accepted: 24 May 2019 DOI: 10.1111/jocd.13051 ORIGINAL CONTRIBUTION In vivo evaluation of the effectiveness of biocellulose facial masks as active delivery systems to skin Paola Perugini PhD 1,2 | Mariella Bleve PhD 2 | Renato Redondi PhD 3 | Fabiola Cortinovis 4 | Antonio Colpani PhD 5 This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. © 2019 The Authors. Journal of Cosmetic Dermatology Published by Wiley Periodicals, Inc. 1 Department of Drug Sciences, University of Pavia, Pavia, Italy 2 Etichub s.r.l, Academic spin‐off of Pavia University, Pavia, Italy 3 Department of Management, Information and Production Engineering, University of Bergamo, Bergamo, Italy 4 ASST (Azienda Socio Sanitaria Territoriale) Papa Giovanni XXIII, Bergamo, Italy 5 iBeauty, Brembate di sopra, Italy Correspondence Paola Perugini, Department of Drug Sciences, University of Pavia, Pavia, Italy. Email: [email protected] Abstract Background: In recent years, bacterial cellulose (BC), or biocellulose, a natural poly‐ mer synthesized by certain bacteria, has attracted great interest in dermatology and cosmetic applications. Several bioactive ingredients are currently loaded into BC masks. However, only a few studies have reported the effectiveness of such delivery systems. Aim: The aim of this study was to evaluate the effect on skin parameters of three biocellulose masks formulated to have different cosmetic effects (anti‐aging, lifting, and cell renewal). In particular, skin moisturizing, skin color, skin viscoelastic proper‐ ties, skin surface smoothness, wrinkle reduction, dermal homogeneity, and stratum corneum renewal were evaluated. Materials and methods: The study involved 69 healthy Caucasian female volunteers between 25 and 64 years, who were divided into three different studies. Biocellulose facial masks were applied using the split‐face method three times a week for 4‐8 weeks depending on the study. Results: The results obtained from this work highlight that biocellulose masks are very well tolerated. A significant decrease in skin roughness and wrinkle breadth, and an improvement in dermal homogeneity and firmness, was observed after 2 months of treatment with “anti‐aging” masks. A significant improvement in skin firmness and elasticity was observed after 1 month of treatment with “lifting” masks. Furthermore, a 1‐month treatment with “cell renewal” masks promoted the production of new skin cells through a mild exfoliating action. Conclusions: This study highlights that biocellulose masks are effective delivery sys‐ tems to successfully release into the skin several types of active compounds exerting many beneficial effects. KEYWORDS bacterial cellulose, cosmetic facial mask, efficacy evaluation, in vivo study, tolerability evaluation

Upload: others

Post on 17-May-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: In vivo evaluation of the effectiveness of biocellulose ... · • LBM: A total of 20 subjects between 38 and 57 years old with facial skin sagging were enrolled in a 1‐month study

J Cosmet Dermatol. 2019;00:1–11.  | 1wileyonlinelibrary.com/journal/jocd

Received:26April2019  |  Revised:22May2019  |  Accepted:24May2019DOI: 10.1111/jocd.13051

O R I G I N A L C O N T R I B U T I O N

In vivo evaluation of the effectiveness of biocellulose facial masks as active delivery systems to skin

Paola Perugini PhD1,2  | Mariella Bleve PhD2 | Renato Redondi PhD3 | Fabiola Cortinovis4 | Antonio Colpani PhD5

ThisisanopenaccessarticleunderthetermsoftheCreativeCommonsAttribution‐NonCommercial‐NoDerivsLicense,whichpermitsuseanddistributioninanymedium,providedtheoriginalworkisproperlycited,theuseisnon‐commercialandnomodificationsoradaptationsaremade.©2019TheAuthors.Journal of Cosmetic DermatologyPublishedbyWileyPeriodicals,Inc.

1DepartmentofDrugSciences,UniversityofPavia,Pavia,Italy2Etichubs.r.l,Academicspin‐offofPaviaUniversity,Pavia,Italy3DepartmentofManagement,InformationandProductionEngineering,UniversityofBergamo,Bergamo,Italy4ASST(AziendaSocioSanitariaTerritoriale)PapaGiovanniXXIII,Bergamo,Italy5iBeauty,Brembatedisopra,Italy

CorrespondencePaolaPerugini,DepartmentofDrugSciences,UniversityofPavia,Pavia,Italy.Email:[email protected]

AbstractBackground: Inrecentyears,bacterialcellulose(BC),orbiocellulose,anaturalpoly‐mersynthesizedbycertainbacteria,hasattractedgreatinterestindermatologyandcosmeticapplications.Severalbioactive ingredientsarecurrently loaded intoBCmasks.However,onlyafewstudieshavereportedtheeffectivenessofsuchdeliverysystems.Aim: Theaimofthisstudywastoevaluatetheeffectonskinparametersofthreebiocellulosemasksformulatedtohavedifferentcosmeticeffects(anti‐aging,lifting,andcellrenewal).Inparticular,skinmoisturizing,skincolor,skinviscoelasticproper‐ties,skinsurfacesmoothness,wrinklereduction,dermalhomogeneity,andstratumcorneumrenewalwereevaluated.Materials and methods: Thestudyinvolved69healthyCaucasianfemalevolunteersbetween25and64years,whoweredividedintothreedifferentstudies.Biocellulosefacial masks were applied using the split‐face method three times a week for4‐8weeksdependingonthestudy.Results: The resultsobtained from thisworkhighlight thatbiocellulosemasksareverywelltolerated.Asignificantdecreaseinskinroughnessandwrinklebreadth,andanimprovementindermalhomogeneityandfirmness,wasobservedafter2monthsoftreatmentwith“anti‐aging”masks.Asignificantimprovementinskinfirmnessandelasticitywasobservedafter1monthoftreatmentwith“lifting”masks.Furthermore,a1‐monthtreatmentwith“cellrenewal”maskspromotedtheproductionofnewskincellsthroughamildexfoliatingaction.Conclusions: Thisstudyhighlightsthatbiocellulosemasksareeffectivedeliverysys‐temstosuccessfullyreleaseintotheskinseveraltypesofactivecompoundsexertingmanybeneficialeffects.

K E Y W O R D S

bacterialcellulose,cosmeticfacialmask,efficacyevaluation,invivostudy,tolerabilityevaluation

Page 2: In vivo evaluation of the effectiveness of biocellulose ... · • LBM: A total of 20 subjects between 38 and 57 years old with facial skin sagging were enrolled in a 1‐month study

2  |     PERUGINI Et al.

1  | INTRODUC TION

Facialmasksaretraditionalcosmetictreatmentsandhaverecentlyundergonemodifications,withnewaspects,ingredients,andvehi‐clesofferingnewperspectivesforskincare.Facialmasksareverypromising cosmetic formulations as they are effective and easyand quick to apply. Furthermore, they are accessible, being for‐mulatedasagel,cream,sheet,orpaste,andshowinstanteffectsontheskin.1

Among several types of face‐mask formulations, sheetmasks have some distinctive traits. They are face‐shaped fabricsheetssoakedinactivesolution,aregenerallyusedonce,andareindividuallypackaged,makingthemfast,convenient,andeasytouse.Furthermore,theycanpreventquickevaporationofthewaterphase, thus allowing the ingredients to penetrate deep into theskin.

Althoughalargenumberofsyntheticmaterialshavebeendevel‐opedforuseinfacemasks,therehasbeengrowinginterestinthedevelopmentofmaterialsbasedonnaturalpolymers,mainlyduetotheirnaturalbiocompatibilityandbiodegradability,butalsototheirrenewable character and specific properties.Amongnatural poly‐mers,cellulosefibershavefoundextensiveapplicationsinthefieldsofbiomedicineandcosmetics.2‐8

Bacterial cellulose (BC) is produced by several species of bac‐teria, such as those belonging to the genera Gluconacetobacter (formerly Acetobacter), Aerobacter, Agrobacterium, Azotobacter,Achromobacter,Alcaligenes,Rhizobium,Pseudomonas,Salmonella,andSarcina.9,10Amongthesespecies,Gluconacetobacter xylinus can pro‐ducearelativelyhighlevelofBCandhasbeenwidelystudiedasamodelBC‐producingmicroorganism.

ThematerialpropertiesofBCcanbetailoredbyusingvariousinsitu techniques, suchas theadditionofvarioussubstances, thechangeofculturingconditions,andtheuseofgeneticallymodifiedstrains,aswellasexsitustrategies,suchasphysicalandchemicalmodification,specializeddryingconditions,andexposuretoelectro‐magneticirradiation.11,12

Bacterialcelluloseisanalternativecellulosicsubstrateforfacialmasks,mainlydueto itsultrafinenetworkstructure.Bacterialcel‐lulosedisplaysuniquephysicochemicalproperties, includingahighYoung's modulus, water‐holding capability, crystallinity, porosity,transparency,water‐retentioncapability, tensile strength, andbio‐compatibility,aswellasanultrafinefibernetwork.13

Like all celluloses, BC is a polymer of glucose, in which thepyranose rings are joined together by b‐1,4 bonds, giving rise tomacromolecules.Bacterialcelluloseisanaturalandtotallybiocom‐patiblepolymer.14,15AlthoughBCandplantcellulosepossessasim‐ilarchemicalstructure,theself‐assemblingnanofibrousstructureofBCisdifferenttothatofplantcellulose.Despitethemanypositiveeffectsofbiocellulose, it isessential toextensivelycheckallstepsofface‐maskproductioninordertomeetthelegalrequirementsofqualityandsafetyspecifiedforcosmeticproducts.16

Bioactiveingredients,includingthosefoundinmoisturizers,ex‐foliants,andskin‐lighteningcosmetics,aswellasherbalingredients,

vitamins, proteins, minerals, and more unusual ingredients suchas pearl, snail extract, and seaweed, are currently loaded intoBCmasks.However,thereareveryfewstudiestosupporttheeffective‐nessoftheseingredients.17‐20

Themainaimof thiswork is topresentascientificprotocol inordertoevaluatetheefficacyoftopicaltreatmentsbasedonaninvivouseofbiocellulosemasks(BM)withdifferentclaimedeffects,namelyanti‐agingBM(ABM),liftingBM(LBM),andpurifyingandre‐generatingBM(PRBM).Theobjectiveoftheseexperimentalstudieswastotesttheeffectsofcellulosesheetmasksloadedwithdifferentactiveingredientsonskinmoisturization,skincolor,skinviscoelasticproperties,skinsurfacesmoothness,thepresenceofwrinkles,der‐malhomogeneity,andcellrenewal.

2  | MATERIAL S AND METHODS

2.1 | Materials

BacterialcellulosewasobtainedbytheincubationofG xylinus in a sterilebrothat30°Cforaperiodofupto120hoursatapHof6.5‐7.0instaticconditions.Afterpartiallyde‐wateringthegel,theBCsheetsweredie‐cuttoobtainamaskshapewithholesfortheeyes,nose,andmouth.Then,BCsheets (BCS)weresupplied instackssoakedwithapreservedwatersolution(phenoxyethanol—0.075%,iodopro‐pynylbutylcarbamate—0.0015%).

2.2 | Preparation of face masks

Activebiocellulosemasks (ABM,LBM,PRBM)andplacebobiocel‐lulosemasks (PLBM)were prepared, starting fromBCS thatwerefolded and embeddedwith 20mL of active solution and placebosolution,respectively.Thefoldedmaskswereinsertedintopolyeth‐yleneterephthalate(PET)/aluminum/polyethylene(PE)sachetsandthenthermosealed.

Theplacebosolutioncontained95.7%water,3%butyleneglycol,0.9% phenoxyethanol, 0.1% ethylhexylglycerin, and 0.3% xanthangum.

Thesolutionsfortheactivemaskscontainedthefollowingactiveingredients:

• Anti‐agingmask:Adansonia digitatafruitextract,Hibiscus sabdar-iffa flower extract, acetyl decapeptide‐3, Coffea arabica seed‐cakeextract,hydrolyzedhyaluronicacid,palmitoyltripeptide‐38,Kigelia africana fruit extract, Acacia senegal gum, dimethylami‐noethanoltartrate,andCrocus chrysanthusbulbextract;

• Lifting mask: hydrolyzedChenopodium quinoa seed, hydrolyzedhyaluronicacid,andacetyldecapeptide‐3;

• Purifyingandregenerativemask:Portulaca oleracea flower/leaf/stemextract,sodiumhyaluronatecross‐polymer,Chlorella vulgaris extract,kaolin,andmagnesiumsulfate.

Inparticular,fruitextractofA digitata and H sabdariffaflowerextractwerechosenbecauseof thehighconcentrationofcompoundswith

Page 3: In vivo evaluation of the effectiveness of biocellulose ... · • LBM: A total of 20 subjects between 38 and 57 years old with facial skin sagging were enrolled in a 1‐month study

     |  3PERUGINI Et al.

antioxidantefficacythatarepresentinbothofthem,hydrolyzedhyal‐uronicacidactsimprovinghydrationandskinelasticity.Furthermore,peptideswerechosenbecauseoftheirbiomimeticaction,contributingto theactivationof regenerationprocessesand initiationofmecha‐nismsthatpreventaging.21‐25

AllmaskswereproducedfollowingGoodManufacturingPractices(GMP)guidelinesandwerecheckedforquality,microbialcontent,andtheeffectivenessofthepreservativesystemthroughtheChallengetest,andforallmasks,aconfirmationoftolerabilitywasperformedthroughaninvivotest(PatchTest)inordertoensureasafeandhigh‐qualityproductsuitabletobeappliedtovolunteers.16,26

2.3 | In vivo study design

The study was carried out according to the Helsinki declaration(EthicalPrinciplesforMedicalResearchInvolvingHumanSubjects).27 Atotalof69healthyfemalevolunteersbetween25and64yearsoldwererecruitedaccordingtothefollowinggeneralinclusionandex‐clusioncriteria.

Generalinclusioncriteria:

• Goodgeneralhealth.• Absenceofcutaneousdiseases.• Absenceofcutaneouslesionsorotherlesionsintheareaofinter‐estthatcouldinterferewiththestudyevaluation.

• Nohistoryofhypersensitivitytothecommoncomponentsofthecosmeticformulations.

• Notpregnantorbreastfeeding.• Subjectsagreednottoundergoothertreatments inthetreatedareafortheentiredurationofthetest.

• Subjectssignedtheinformedconsentform.

Generalexclusioncriteria:

• Subjectsthatdidnotmeettheinclusioncriteriaabove.• Subjectsundergoingpharmacologicaltherapy.• Subjectsthathadparticipatedinasimilarstudylessthan60dayspriortothestartofthepresentstudy.

• Subjectswithknownallergies.

Volunteers selectedaccording to the specific inclusioncriteriaweredividedintothreedifferentstudies:

• ABM:a totalof24 subjectsbetween42and64yearsoldwithfacialskinaging (lines,wrinkles, thinskin,and lossofskintone)wereenrolledina2‐monthstudyofthecontinuoususeofABMandPLBM;

• LBM:A totalof20subjectsbetween38and57yearsoldwithfacialskinsaggingwereenrolledina1‐monthstudyofthecontin‐uoususeofLBMandPLBM;

• PRBM:Atotalof25subjectsbetween25and40yearsoldwithdullfacialskinwereenrolledina1‐monthstudyofthecontinuoususeofPRBMandPLBM.

Ineachstudy,subjectsweretrainedtoapply,bythesplit‐facemethodinaself‐controlledstudy, theplacebomaskononesideoftheface,andtheactivemask(ABM,LBM,orPRBM)ontheotherside.Inthisway,acomparisonwasmadebetweentheactiveandplacebomasksonthesamesubjectsoastoremoveorreduceasmuchaspossibletheeffectofunintentionalfactorsotherthantreatmentonthesubjectresponse.Eachsubjectthereforeservedasherowncontrol,therebygivinggreaterstatisticalpowertothestudy.

Maskswereappliedatspecifiedintervalsthreetimesaweekfor4or8weeksdependingon thestudydesign.The twohalfmaskswereplacedon the faceaftermildcleansingand lefton forup to20minutes.Thespecificfacesidestowhichtheactiveandplacebomaskswereappliedwererandomizedamongvolunteers.

2.4 | Instrumental efficacy evaluation

Assessmentswereperformedat thebeginningof each study (T0)andatpredeterminedsubsequenttimes(T1orT2)dependingontheaimofthestudy.Theinvestigatedareasweretheforeheadonbothsidesoftheface,theforeheadfoldforwrinkleinvestigation,andthecheekbonefortheinvestigationoftheskinrenewaleffect.

Allmeasurementsweremade in an air‐conditioned roomwithcontrolled temperature and humidity (T = 22°C, relative humidity[RH]=70±5%).Subjectswerepreconditioned in the roomforatleast15minutesbeforethemeasurementsweremade.

The instruments used in the evaluation of skin parameters in‐volvecontactbetweentheskinandaseriesofprobesthatdonotcausediscomfort,pain,ordamagetheskin.

2.5 | Evaluation of tolerability and moisturizing effect

AssessmentsofthetolerabilityandmoisturizingeffectsofthefacialmaskswereperformedatT0andatT1(after12applications).Theinvestigatedareawastheforeheadonbothsidesoftheface.

The tolerability of themaskswas assessed bymeasurementof the erythema index (EI) using a reflectance spectrophotome‐ter(MexameterMX18,Courage&Khazaka),whichmeasureslev‐els ofmelanin andhemoglobin (erythema), the two componentsthataremainlyresponsibleforthecoloroftheskin.Tomakethemeasurement,aprobewithadiameterof5mmemitsthreewave‐lengthsof light (568,660, and870nm) inorder toquantify theamountof theselectedbiochromophores (melanin,hemoglobin),thusprovidinganarbitrarymelaninindex(MI;range=0‐999)andEI(range=0‐999).

Thestratumcorneumwatercontent(SCWC),whichreflectsthehydratingeffectofthefacemask,wasevaluatedbyaCM825cor‐neometer(cutometerMPA580,Courage&Khazaka).Corneometryisatechniqueusedtoassessthehydrationoftheouterlayeroftheepidermis,whichisknownasthestratumcorneum.28Sinceskinisadielectricmedium,allvariationsinhydrationresultinacorrespond‐ingchangeintheskin'selectricalcapacity.29Thedeviceusedinourtrialwasequippedwitha49mm2surfaceprobethatallowsprecise

Page 4: In vivo evaluation of the effectiveness of biocellulose ... · • LBM: A total of 20 subjects between 38 and 57 years old with facial skin sagging were enrolled in a 1‐month study

4  |     PERUGINI Et al.

measurementin1secondwithinadepthrangeof10‐20μminthestratumcorneum.Theparameterswereexpressedusinganarbitraryscorescale(0‐100AU).

The assessment of skin barrier integrity and the possible oc‐clusive or irritant effect of the facial masks used in this studywereperformedbythemeasurementoftransepidermalwaterloss(TEWL)usingaTM300Tewameter(cutometerMPA580,Courage&Khazaka).30TEWLwasquantifieding/m2hbyaskinevaporimetermadeofa small cylindricalopenchamber (1cm indiameter,2cminheight)withtwohygrometricsensorsconnectedtoamicropro‐cessorpluggedintoacomputerworkstation.ThedeviceallowstherecordingofTEWLvalues(rangingfrom0to90g/m2h)aswellastherelativehumidity(rangingfrom0%to100%)andprobetemperature.

2.6 | Biocellulose mask specific activity

2.6.1 | Anti‐aging effect (ABM)

AssessmentswereperformedatT0,after12applications(T1),andattheendoftreatmentafter24applications(T2).Theinvestigatedareasweretheforeheadonbothsidesofthefaceandtheforeheadfoldforwrinkleinvestigation.

Skin surface roughness

Skin surface roughnesswas evaluated using a PRIMOSpico instru‐ment(GFM),whichallowstheacquisitionofa3Dimageoftheskinsurface by an optical analysis system and its transformation usingdedicatedsoftware.The3Dimageacquiredwiththeinstrumentcanbe transformedusingspecific software intoacolor image inwhicheachshadeofcolor(frombluetoyellow)isrelatedtoaheight;thus,thepresenceofagroovewillbeindicatedbyacolorgradientthatcantransitionfrombluetogreenaccordingtoitsdepth.Parameterschar‐acterizingskinmicro‐reliefswhichcanbemeasuredataglancethankstothis3Dtopographicrepresentationoftheskinarethefollowing:

Rarepresentstheaverageskinroughness.Itistheintegralofthefunctiondescribingtheskinroughnessprofilecurve;thehigherthevalueofRa,thehighertheskinroughness.

Rmaxrepresentsthemaximalskinroughness.Singleroughnessdepths are first determined by measuring the peak‐to‐valley dis‐tancewithineachevaluatedsampling length.Rmax isthegreatestpeak‐to‐valleydistancewithinanysinglesampling length,which isdefinedastheverticaldistancebetweenthetopofthehighestpeakandthebottomofthelowestvalley.

Dermis homogeneity

Ultrasound images were produced and further processed by a22MHzDUBsystem(tpmTabernapromedicumGmbH),whichal‐lowstheacquisitionofanultrasoundimageoftheskinandthemeas‐urement of skin tissue thickness inμm (A‐scan andB‐scanmode,respectively), thuspermitting the visualizationof structures up to8mm in depth. The dermis is echogenic, with echoes originatingfromthefibernetworkcomprisedofcollagenandelasticfibers;fatandedemaareecho‐poorareas.

2.6.2 | Lifting effect (LBM)

Assessments were performed at T0 and at the end of treatmentafter12applications (T1).The investigatedareawas the foreheadonbothsidesoftheface.

Viscoelastic properties of the skin

Theeffectoftheproductsonskinmechanicalpropertieswaseval‐uated using anMPA580 cutometer (Courage& Khazaka). In thistechnique, theskin isevaluatedthroughthemeasurementof theverticaldeformationoftheskininducedbyvacuumaspirationwithanegativepressureof450mbar,which isapplied to theskin forbetween1and3secondsthroughaprobewithadiameterof2mm.Eachaspirationisfollowedbyareleasetime,allowingtheskintoreturntoitsrestingconditions.Theconsideredparameterswere:

• R0:Skinfirmness.Thisparametermeasuresthemaximumampli‐tudethattheskinreachesfollowingtheapplicationofsuctionbythecutometerandrepresentsthepassiveresponseoftheskintoappliedforce.R0representstheratiobetweenskinloosenessandskintightness;thelowerR0is,thehigherthefirmnessoftheskin.

• R2:Anindexrepresentingthecapabilityoftheskintoreturntoitsrestconditionafterbeingexposedtomechanicalstress,thatis,itisanindexofthetotalelasticityoftheskin.ThecloserR2isto1,themoreelastictheskinis.

• R5: The ratio between the skin's immediate recovery and itsimmediate deformation. Therefore, it is a measure of the netelasticity.

• R7:Theportionoftheskinelasticitycomparedtothecompleteskindeformationcurve.ThecloserR7isto1,themoreelastictheskinis.

2.6.3 | Purifying and renewal effect (PRBM)

Assessments were performed at T0 and at the end of treatmentafter 12 applications (T1). To study the stratum corneum renewaleffect,theinvestigatedareawasthecheekbone.

Stratum corneum renewal effect

Thestratumcorneumrenewaleffectwasinvestigatedbytheuseoftapestripping,whichisoneofthemostfrequentlyusedapproachestosamplethestratumcorneum.31Thismethodinvolvestheapplica‐tionofadhesive tapewithadiameterof14mm (D101D‐SquameStrippingDiscs,Cuderm)totheskin,anditssubsequentremovaltostripoffalayerofstratumcorneum.Aconstantpressureof225g/cm2 is impressed on the disk surface. The infrared densitometry(IRD)techniquewasusedtoquantifytheabsoluteamountofstra‐tumcorneumremovedbyeachtapestrip.

Inparticular,aSquameScan™device(CuDerm)wasusedtomea‐sure theproteincontent (PC)of thestratumcorneumsamples re‐moved by tape stripping. This apparatus has a diodewhich emitslightatapeakwavelengthof850nmthatshinesthroughthetape

Page 5: In vivo evaluation of the effectiveness of biocellulose ... · • LBM: A total of 20 subjects between 38 and 57 years old with facial skin sagging were enrolled in a 1‐month study

     |  5PERUGINI Et al.

stripontoadevicewhichmeasurestheamountoftransmittedlight.TheresultsareexpressedasPCinµg/cm2.

2.7 | Statistical analysis

Data were processed both for descriptive statistical analysis andstatisticalanalysiswithcomparisontestsforparametricdata.Inpar‐ticular,intheself‐controlledstudymethodologyusedinthiswork,apaired ttestwasapplied.Foreachparameteranalyzedintheclinicalstudies, a comparisonwasmadebetween thevaluesmeasuredattimeTi (4or8weeks)with respect to the initial value at timeT0andanevaluationofthenetactive‐placeboeffect,forbothactiveandplacebomasks.Foreachdataseriescomparedusingthettest,normal distributionwas verified by theKolmogorov‐Smirnov test.Asignificancelevelof5%waschosen,sochangeswereconsideredstatisticallysignificantforP < 0.05.

3  | RESULTS

Allvolunteersusedanactivemaskononehalfofthefaceandapla‐cebomaskontheotherhalfofthefacefortheentiredurationofthetest.Arandomizedapplicationprocedurewasapplied.

3.1 | Tolerability and moisturizing effect of biocellulose masks

The instrumental evaluation of the EI can give information aboutmasktolerability.

Figure1reportsthemainresultsfromtheerythemaanalysisatT0 and after 12 applications in the facial area for treatmentwithactivemasks(ABM,LBM,PRBM)andPLBM.

ThevariationoftheEI(erythemaindex)after4weeksofappli‐cationwasfoundtobestatisticallysignificantonlyintheABMtest,

inwhichanincreaseof4.45%wasobserved.IntheABMstudy,thefinalobservationwasmadeatT2(after8weeks).Atthistime,thevariation in erythemawith respect to T0was 3.71% andwas notstatisticallysignificant(P=0.1677).Theseresultshighlightthatthetestedproductswereverywelltolerated.

SCWC and TEWL were investigated since they are relevantparameters for the evaluation of skin‐moisturizing effectiveness.Furthermore,asignificantreductionintheTEWLmaybesymptom‐aticofanocclusiveeffectoftheformulationinuse,whileanincreasecanhighlightaspecificalterationreactionoftheskinbarriercausedbytheuseoftheproduct.Therefore,TEWLisconsideredtobeanimportantmeasureofepidermalbarrierfunction.

Figure 2 reports the main results for SCWC and TEWL after12applicationsintheareastreatedwithactivemasks(ABM,LBM,PRBM)andintheareatreatedwithaPLBM.

F I G U R E 1  Comparisonofthevariationoftheerythemaindexintheareastreatedwithanti‐agingbiocellulosemasks(ABM),liftingbiocellulosemasks(LBM),purifyingandregeneratingbiocellulosemasks(PRBM),andplacebobiocellulosemasks(PLBM).*,P<0.05issignificant;**,P<0.01isstronglysignificant;***,P<0.001isverystronglysignificant

F I G U R E 2  Comparisonofthevariationinstratumcorneumwatercontent(SCWC)andtransepidermalwaterloss(TEWL)intheareastreatedwithABM,LBM,PRBM,andPLBM.*,P<0.05issignificant;**,P<0.01isstronglysignificant;***,P<0.001isverystronglysignificant

F I G U R E 3  Confidenceintervalsofthenetactive‐placeboeffect.Theareabetweenthelowerandupperboundscorrespondstotheregionoftheacceptanceofthenullhypothesis,thatis,thatthereisnodifferencebetweentheactiveandplacebomasks

Page 6: In vivo evaluation of the effectiveness of biocellulose ... · • LBM: A total of 20 subjects between 38 and 57 years old with facial skin sagging were enrolled in a 1‐month study

6  |     PERUGINI Et al.

The results show that, after 12 applications, all active masks,namely ABM, LBM, and PRBM, led to statistically significant in‐creasesoftheSCWC,of9.1%(P=0.006),11.54%(P=0.0045),and10%(P=0.0001),respectively.TheincrementoftheSCWCparam‐eterintheplaceboareawasstatisticallysignificant(P=0.0324)only

for PRBM,with an increase of 5.24%. Variations in TEWL valueswerestatisticallysignificantbothintheLBMandinthePRBMtestsforbothactiveandplacebomasks(Figure2).Inanycase,TEWLval‐uesremainedwithintherangeofhealthyskin,confirmingthehightolerabilityoftheproducts.

Thenetactive‐placeboeffectforallstudiesisshowninFigure3.Thenetactive‐placeboeffectfortheSCWCparameterwasalwaysstatistically significant andwasmore than 10% for the ABM andLBMandlessthan5%forthePRBM.Nostatisticallysignificantdif‐ferencesinthenetactive‐placeboeffectwerefoundforTEWLorEI.

3.2 | Specific activity of biocellulose masks

3.2.1 | Anti‐aging effect

Inordertoevaluatetheanti‐agingeffectofABM,24subjectsbe‐tween42and64yearsoldwithsignsoffacialskinagingwereen‐rolledtousetheactivemaskandaplacebomaskthreetimesaweekfor2monthsusingthesplit‐facemethod.

Skin texture improvement and wrinkle‐reduction effect

The invivoevaluationof thesurfacetopographyofhumanskin isof great interest for dermatological research, as such topographyrepresents the3Dorganizationof the dermis and the subcutane‐oustissue.Thesurfacetopographycanbeconsideredtoreflectthe

TA B L E 1  Meanvalues,variation,neteffect,andstatisticalsignificanceofaverageskinroughness(Ra;µm)andmaximalskinroughness(Rmax;µm)obtainedforallsubjectsintheareastreatedwithanti‐agingbiocellulosemasks(ABM)andplacebobiocellulosemasks(PLBM)after4wk(T1)and8wk(T2)oftreatment

Parameter Study

Mean T1‐T0 T2‐T0

T0 T1 T2 Variation Variation (%) P‐value Variation Variation (%) P‐value

Ra ABM 31.13 29.46 27.63 −1.667 −5.13 0.0101 −3.500 −10.99 0.0000

PLBM 29.79 29.25 29.08 −0.542 −1.29 0.2965 −0.708 −1.92 0.5461

NetEffect 1.33 0.21 −1.46 −1.125 −3.84 0.1180 −2.792 −9.07 0.0000

Rmax ABM 217.88 209.04 194.46 −8.833 −3.62 0.1253 −23.417 −10.33 0.0000

PLBM 201.33 200.46 201.25 −0.875 0.75 0.8678 −0.083 0.72 0.9891

NetEffect 16.54 8.58 −6.79 −7.958 −4.37 0.1846 −23.333 −11.04 0.0007

F I G U R E 4  Variationandstatisticalsignificanceofaverageskinroughness(Ra)andmaximalskinroughness(Rmax)intheareastreatedwithABMandPLBM.*,P<0.05issignificant;**,P<0.01isstronglysignificant;***,P<0.001isverystronglysignificant

F I G U R E 5  3Dskinimagesofaforeheadbeforetreatment(left)andafter2mooftreatmentwithABM(right)

Page 7: In vivo evaluation of the effectiveness of biocellulose ... · • LBM: A total of 20 subjects between 38 and 57 years old with facial skin sagging were enrolled in a 1‐month study

     |  7PERUGINI Et al.

functionalstatusoftheskin;itisanexpressionoftheabilityoftheskin to respond to mechanical stimuli and threats. Various treat‐mentsexisttoreverseoratleastdecreasechangesinskintexture.Inordertoassessthesuccessofananti‐agingtreatment,wrinklesandthevariationinmicro‐reliefdepthneedtobemeasuredbeforeandaftertheapplicationofthecosmeticproduct.

The 3D system permitted the evaluation, bymatching, of thesameskinareainthethreesubsequentanalyses.TheparametersRa(theaverageskinroughnesscorrelatedtosensoryperception)andRmax(thegreatestpeak‐to‐valleydistanceinasinglewrinkle)weremeasured.ThegreaterthevaluesofRaandRmax,thegreatertheskinroughnesscausedbyskintexture,lines,andwrinkles.

TheresultsobtainedarereportedinTable1.Theresultsshowthat theapplicationof theABMledtoasig‐

nificantdecreaseintheskinroughnessof5.13%(P=0.0101)after12applications,andasignificantdecreaseof10.99%(P=0.0000)after2monthsoftreatment.ThevariationofthisparameterintheplaceboareawasnotsignificantatT1oratT2 (Figure4).ThenetABM‐PLBMeffectshowedatrendofdecreasingskinroughnessthatwasnotstatisticallysignificantatT1(P=0.1180)butwasstatisticallysignificant at T2,when a decrease of about 9% (P = 0.0000)wasobserved,asshowninFigure5.

Atthesametime,asignificantdecreaseinthebreadthofwrin‐klesof10.33%(P=0.0000)wasdetectedafter2monthsoftreat‐ment. The variation of this parameter in the PLBM area was notstatisticallysignificantatT1orT2(Figure4).

Theseeffectscouldbeduetothepresenceofvariousactive in‐gredients in theABM.Fruit extractofA digitata, alsoknownas thebaobab tree, contains a high concentration of vitamin C—seventimesmore thanorange fruit—and flavonoid compounds showing ahigh antioxidant efficacy.21 Hibiscus sabdariffa flower extract is richinphenolicacids, flavonoids, andanthocyanins,whichexertprotec‐tiveeffects againstoxidative stress.22 Furthermore, acetyldecapep‐tide‐3andpalmitoyl tripeptide‐38arebiomimeticpeptides identicaltoaminoacidsequencessynthesizedbyhumansandsocouldinteractwithgrowthfactorreceptorsandprovideclinicalanti‐agingeffects.23

The3DimagesshowninFigure5,whichwerecreatedusingthesoftware, clearly show the reduction inwrinkle breadth following2monthsoftreatmentwithABM.

Improvement in dermis homogeneity and thickness

Theevaluationscarriedoutbyultrasoundpermittedthetotalthick‐ness of the epidermis and dermis to be visualized andmeasured.

F I G U R E 6  B‐modeultrasoundimagesofskinatT0(A),after12applicationsofABM(B),andattheendofthestudyafter24applicationsofABM(C).Theepidermisanddermisarevisibleasecho‐rich(green)areas

(A) (B) (C)

F I G U R E 7  VariationandstatisticalsignificanceofdermisthicknessobtainedforallsubjectsintheareastreatedwithABMandPLBMafter4wk(T1)and8wkoftreatment(T2).*,P<0.05issignificant;**,P<0.01isstronglysignificant;***,P<0.001isverystronglysignificant

F I G U R E 8  Confidenceintervalsoftheactive‐placeboneteffect.Theareabetweenthelowerandupperboundscorrespondstotheregionofacceptanceofthenullhypothesis,thatis,thatthereisnodifferencebetweentheactiveandplacebomasks

Page 8: In vivo evaluation of the effectiveness of biocellulose ... · • LBM: A total of 20 subjects between 38 and 57 years old with facial skin sagging were enrolled in a 1‐month study

8  |     PERUGINI Et al.

MeasurementsofskinthicknesswereperformedusingtheA‐scanmodeonallsubjectsatbaselineandafter12and24applications.

Figure6showsexamplesofultrasoundimagesofskinatbaselineandafter12and24applicationsofABMtreatment.

Thecomparisonofultrasoundimagesbeforeandaftertreatmentclearlyshowsadifferenceintheorganizationofthetissuebelowtheepidermisresultinginanimprovementofdermishomogeneityandfirmness.Theseresultswereconfirmedbymeasurementsofdermisthickness.

The ABM led to an average reduction in dermis thickness ofmorethan3%(P=0.0001)after12applicationsandofmorethan4%(P=0.0000)after24applications.Intheareastreatedwiththeplacebo,nosignificantdifferenceswereobservedatT1,whileasig‐nificantreductionofdermisthicknessofmorethan1%(P=0.0117)wasobservedatT2(Figure7).

ThenetABM‐PLBMeffectsforRa,Rmax,anddermisthicknessareshowninFigure8.ThetrendofdecreaseinwrinklebreadthwasnotstatisticallysignificantatT1;however,itwasstatisticallysignif‐icant at T2,when a decrease of about 11% (P = 0.0007)was ob‐served.TheneteffectABM‐PLBMshowedastatisticallysignificantreductioninthedermisthicknessatT1ofabout3.25%(P=0.0000).

3.2.2 | Lifting effect

InordertoevaluatetheliftingeffectofLBM,20subjectsbetween38and57yearsoldwithfacialskinsaggingwereenrolledtousethismaskandaplacebomaskthreetimesaweekfor1monthusingasplit‐facemethod.

Parameter Study

Mean T1‐T0

T0 T1 Variation Variation (%) P‐value

R0 LBM 0.262 0.198 −0.0634 −24.22 0.0000

PLBM 0.247 0.222 −0.0252 −10.63 0.0064

Neteffect 0.014 −0.024 −0.0381 −13.59 0.0002

R2 LBM 0.561 0.621 0.0594 10.78 0.0004

PLBM 0.593 0.633 0.0399 7.29 0.0553

Neteffect −0.031 −0.012 0.0195 3.49 0.4905

R5 LBM 0.426 0.498 0.0724 18.21 0.0103

PLBM 0.473 0.476 0.0034 4.68 0.9072

Neteffect −0.047 0.022 0.0691 13.53 0.0963

R7 LBM 0.252 0.280 0.0279 11.42 0.0050

PLBM 0.275 0.278 0.0029 2.67 0.8302

Neteffect −0.023 0.002 0.0250 8.75 0.1509

Note: R0=skinfirmness;R2=grossskinelasticityindex;R5=netelasticity;R7=viscoelasticityindex.

TA B L E 2  Values,variation,neteffect,andstatisticalsignificanceofskinelasticityobtainedforallsubjectstreatedwithLBMandPLBM

F I G U R E 9  VariationandstatisticalsignificanceofskinelasticityintheareastreatedwithLBMandPLBM.*,P<0.05issignificant;**,P<0.01isstronglysignificant;***,P<0.001isverystronglysignificant

F I G U R E 1 0  Confidenceintervalsofthenetactive‐placeboeffect.Theareabetweenthelowerandupperboundscorrespondstotheregionofacceptanceofthenullhypothesis,thatis,thatthereisnodifferencebetweentheactiveandplacebomasks

Page 9: In vivo evaluation of the effectiveness of biocellulose ... · • LBM: A total of 20 subjects between 38 and 57 years old with facial skin sagging were enrolled in a 1‐month study

     |  9PERUGINI Et al.

Severalelasticityparameterswereevaluated.Table2showsthemeanvalues,variation,neteffect,andstatisticalsignificanceofskinelasticityobtainedforallsubjectsintheareastreatedwithLBMandPLBMafter4weeksoftreatment(T1).

TheresultsshowthattheapplicationofLBMledtoanimprove‐mentinskinfirmness,withasignificantdecreaseintheR0param‐eterof24.22%(P=0.0000)observedafter1monthof treatment(Figure9).Thevariationofthisparameter intheplaceboareawassignificant (P=0.0064),andthenetactive‐placeboeffectshoweda statistically significant decrease of about 13.59% (P = 0.0002;Figure10).

The application of LBM led to a significant increase in theR2parameter of about 10.78% (P = 0.0004) after 1 month of treat‐ment.Thevariationof thisparameter in theplaceboareawasnotsignificant.

TheresultsshowthattheapplicationofLBMledtoasignificantincrease in the R5 parameter of about 18.21% (P = 0.0103) after1monthoftreatment.Thevariationofthisparameterintheplaceboareawasnotsignificant.

TheresultsshowthattheapplicationofLBMledtoasignificantincrease in the R7 parameter of about 11.42% (P = 0.0050) after1monthoftreatment.Thevariationofthisparameterintheplaceboareawasnotsignificant.

The net active‐placebo effect was not statistically significantafter12applicationsofLBMfortheparametersR2,R5,andR7,asshowninFigure10.

Among several ingredients contained in the LBM, hydrolyzedhyaluronic acid could be responsible for the improvement of skinelasticity. Furthermore, the presence of this ingredient togetherwithacetyldecapeptide‐3couldleadtoclinicaleffectssuchastheslowingofaging,duetotheactionofacetyldecapeptide‐3onthe

Sample Study

Mean (µg/cm2) T1‐T0

T0 T1 Variation Variation (%) P‐value

PCtot PRBM 80.59 51.99 −28.60 −33.02 0.0000

PLBM 79.62 76.08 −3.54 −0.92 0.4294

Neteffect 0.97 −24.09 −25.06 −32.09 0.0000

PCS1 PRBM 23.59 17.50 −6.09 −20.00 0.0008

PLBM 23.57 23.98 0.42 9.41 0.7950

Neteffect 0.03 −6.48 −6.51 −29.41 0.0003

PCS2 PRBM 21.74 13.44 −8.30 −35.64 0.0000

PLBM 21.00 20.00 −1.00 0.74 0.4974

Neteffect 0.74 −6.56 −7.30 −36.38 0.0002

PCS3 PRBM 18.76 11.32 −7.44 −36.53 0.0000

PLBM 18.52 16.65 −1.87 −7.63 0.0954

Neteffect 0.24 −5.33 −5.57 −28.89 0.0015

PCS4 PRBM 16.50 9.73 −6.77 −38.41 0.0000

PLBM 16.53 15.45 −1.08 0.46 0.3714

Neteffect −0.03 −5.72 −5.69 −38.87 0.0004

TA B L E 3  Totalandsingletapestrippingproteincontent(PC)datashowingvariation,neteffect,andstatisticalsignificance

F I G U R E 11  Variationandstatisticalsignificanceoftheproteincontent(PC)oftotalandsingletape‐strips(Si)intheareastreatedwithPRBMandPLBM.*,P<0.05issignificant;**,P<0.01isstronglysignificant;***,P<0.001isverystronglysignificant

******

***

*** ***

F I G U R E 1 2  Confidenceintervalsofthenetactive‐placeboeffectforproteincontent(PC).Theareabetweenthelowerandupperboundscorrespondstotheregionofacceptanceofthenullhypothesis,thatis,thatthereisnodifferencebetweentheactiveandplacebomasks

Page 10: In vivo evaluation of the effectiveness of biocellulose ... · • LBM: A total of 20 subjects between 38 and 57 years old with facial skin sagging were enrolled in a 1‐month study

10  |     PERUGINI Et al.

formation of wrinkles.24,25 Skin roughness decreased significantlyafter1monthoftreatmentwithLBM(by6.7%).Thevariationofthisparameterintheplaceboareawasnotsignificant.UnlikeforABM,nosignificantdifferencewasdetectedinwrinklebreadthfollowingtheuseofLBM.

3.2.3 | Skin purifying and renewal effect

InordertoevaluatetheskinpurifyingandrenewaleffectofPRBM,subjectsbetween25and40yearsoldwithdullfacialskinwereen‐rolledina1‐monthstudyinvolvingthecontinuoususeofPRBMandPLBM.

Atthebeginning(T0)andtheendofthestudy(T1),fourdifferenttapestrippings(S1,S2,S3,S4)wereperformedsequentiallyonthesameareaofthecheekbonetreatedwithPRBMandPLBM.Thetapestrippingprocedureisabletoremovethefirstlayersofthestratumcorneum.

Table3reportstotalandsingletapestrippingPCdatainµg/cm2.TheresultsshowthatPRBMledtoasignificantdecreaseofthe

averagePCandthenof thestratumcorneumcohesionof33.02%(P=0.0000)after1monthoftreatment.ThevariationoftheaveragePCintheplaceboareawasnotstatisticallysignificant(P=0.4294)andwasequalto−0.92%(Figure11).

Thenet active–placeboeffecton the averagePCwas statisti‐callysignificantandcorrespondedtoavariationofabout−32.09%(P=0.0000;Figure12).

The stratum corneumappears to bemore cohesivewith a re‐ductionoftheremovedPC,whichresultsinanimprovementinthesmoothnessoftheskinsurface.ThePRBMseemstoexertarenewaleffectontheepidermisthroughamildexfoliatingaction.

ByanalyzingthePCofeachsingletape,itisclearthat,atthebe‐ginningofthestudy,theamountofproteinswasthesameforbothsidesoftheface.After1monthoftreatmentwithPRBM,a loweramount of proteinwas removed by each tape stripwith a strongstatistical significance,ashighlighted inFigure11,andthenetac‐tive‐placeboeffectwasalwaysstatisticallysignificantforeachstrip(Figure12).

Thesmoothingeffectcouldbeduetoanexfoliatingmechanism.Additionally, if thiseffect ispresent,noerythemaishighlighted inthePRBM‐treatedarea,probablyduetothepresenceofP oleracea extract,which alleviates skin irritation and allergic responses andhaspharmacologicaleffectssuchasantibacterialandanti‐inflamma‐toryeffects.Thus,thisextractisusedmainlyinacnecareproducts,cosmeticsforsensitiveskin,etc.31

4  | CONCLUSIONS

Bacterialcelluloseisaninnovativesubstrateforfacialmasks,mainlyduetoitsfavorablepropertiessuchasveryhighwater‐holdingcapa‐bility,tolerability,andbiocompatibility.

Eventhoughthereisagrowingskincaremarketforcosmeticsheetmasks,thereareveryfewstudiesaddressingtheireffectivenessin

theliterature.Thisworkmainlyfocusedontheinvivoevaluationoftheeffectivenessofthreedifferentfacemasksbasedonbiocellulosesheetsthatwereformulatedtohavespecificcosmeticeffects(anti‐aging,lifting,andcellrenewal).

Scientificprotocolsusingnoninvasiveskinbioengineeringtech‐niquesandadequatestatisticalmethodswereemployedinordertodiscriminatetheefficacyofthedifferentmaskformulationstestedwithrespecttoplacebocomparison.

Inparticular,theself‐controlledstudymethodologyusedinthisworkrevealedtobethebestapproachto investigateboththeef‐fectivenessofactivemasksandtheevaluationofthenetactive‐pla‐ceboeffect.

Theresultsobtainedinthisstudyhighlightthepossibilitytode‐velopcosmeticmaskswithveryhighquality, tolerability, andeffi‐cacybasedonbiocellulosesheetembeddedwithseveralbioactiveingredients, such as peptides, natural extracts, and biopolymers.A statistically significant decrease in skin roughness and wrinklebreadth, and a statistically significant improvement in dermis ho‐mogeneityandfirmness,wasobservedafter2monthsoftreatmentwith “anti‐aging” biocellulose masks. Furthermore, a statisticallysignificant improvement of skin firmness and elasticity was ob‐servedafter1monthoftreatmentwith“lifting”biocellulosemasks.Moreover,1‐monthtreatmentswith“cellrenewal”“purifyingandre‐generatingbiocellulosemask,whichpromotetheproductionofnewskin cells through amild exfoliating action, significantly improvedstratumcorneumcohesion.

Inconclusion,thisstudyhighlightsthatbiocellulosemasksrep‐resentaneffectivetailoredsystemtoexertstatisticallysignificantbeneficialeffectstotheskin.

ORCID

Paola Perugini https://orcid.org/0000‐0002‐8774‐8534

R E FE R E N C E S

1. NilforoushzadehMA, AmirkhaniMA, Zarrintaj P, et al. Skin careandrejuvenationbycosmeceuticalfacialmask.J Cosmet Dermatol. 2018;17(5):693‐702.

2. Sulaeva I,HennigesU,RosenauT,PotthastA.Bacterial celluloseasamaterialforwoundtreatment:propertiesandmodifications.Areview. Biotechnol Adv.2015;33(8):1547‐1571.

3. LinaF,YueZ,JinZ,GuangY.Bacterialcelluloseforskinrepairma‐terials,biomedicalengineering.In:Fazel‐RezaiR,ed.Frontiers and Challenges.Rijeka,Croatia:InTechPublisher;2011:249‐274.

4. UllahH,SantosHA,KhanT.Applicationsofbacterialcellulosebinfood,cosmeticsanddrugdelivery.Cellulose.2016;23(4):2291‐2314.

5. CzajaWK,YoungDJ,KaweckiM,BrownRMJr.The futurepros‐pectsofmicrobialcelluloseinbiomedicalapplications.Biomacromol. 2007;8(1):1‐12.

6. IguchiM,YamanakaS,BudhionoA.Reviewbacterial cellulose—amasterpieceofnature'sarts.J Mater Sci.2000;35:261‐270.

7. DuR,ZhaoF,PengQ,ZhouZ,HanY.Productionandcharacter‐ization of bacterial cellulose produced byGluconacetobacter xyli-nus isolated from Chinese persimmon vinegar. Carbohydr Polym. 2018;15(194):200‐207.

Page 11: In vivo evaluation of the effectiveness of biocellulose ... · • LBM: A total of 20 subjects between 38 and 57 years old with facial skin sagging were enrolled in a 1‐month study

     |  11PERUGINI Et al.

8. PetersenN,GatenholmP.Bacterial cellulose‐basedmaterialsandmedical devices: current state and perspectives. Appl Microbiol Biotechnol.2011;91:1277‐1286.

9. Chawla PR, Bajaj IB, Survase SA, Singhal RS. Fermentativeproduction of microbial cellulose. Food Technol Biotechnol. 2009;47(2):107‐124.

10. ShaoW,WuJ,LiuH,YeS,JiangL,LiuX.Novelbioactivesurfacefunctionalizationofbacterialcellulosemembrane.Carbohydr Polym. 2017;15(178):270‐276.

11. StumpfTR,YangX,ZhangJ,CaoX.Insituandexsitumodificationsofbacterial cellulose forapplications in tissueengineering.Mater Sci Eng C Mater Biol Appl.2018;1(82):372‐383.

12. HasanN, Biak A, Kamarudin S. Application of bacterial cellulose(BC)innaturalfacialscrub.IJASEIT.2012;2(4):1‐4.

13. GallegosA,CarreraSH,ParraR,KeshavarzT,IqbalH.Bacterialcel‐lulose: a sustainable source to develop value‐addedproducts ‐ areview. BioResources.2016;11(2).5641‐5655.

14. TorresFG,CommeauxS,TroncosoOP.Biocompatibilityofbacterialcellulosebasedbiomaterials.J Funct Biomater.2012;3:864‐878.

15. AlmeidaIF,PereiraT,SilvaN,etal.Bacterialcellulosemembranesasdrugdeliverysystems:aninvivoskincompatibilitystudy.Eur J Pharm Biopharm.2014;86:332‐336.

16. PeruginiP,BleveM,CortinovisF,ColpaniA.Biocellulosemasksasdeliverysystems:anovelmethodologicalapproachtoassurequal‐ityandsafety.Cosmetics.2018;5:66.

17. Velasco MV, Vieira RP, Fernandes AR, et al. Short‐term clin‐ical of peel‐off facial mask moisturizers. Int J Cosmet Sci. 2014;36(4):355‐360.

18. AmnuaikitT,ChusuitT,RaknamP,BoonmeP.Effectsofacellulosemasksynthesizedbyabacteriumonfacialskincharacteristicsandusersatisfaction.Med Devices (Auckl).2011;4:77‐81.

19. PachecoG,deMelloCV,Chiari‐AndréoBG,etal.Bacterialcellu‐lose skinmasks‐properties and sensory tests. J Cosmet Dermatol. 2017;17:840‐847.

20. SilvaN,DrumondI,AlmeidaIF,etal.Topicalcaffeinedeliveryusingbiocellulosemembranes:apotentialinnovativesystemforcellulitetreatment.Cellulose.2014;21:665‐674.

21. Kamatou G, Vermaak I, Viljoen AM. An updated review ofAdansonia digitata: a commercially importantAfrican tree.S Afr J Bot.2011;77:908‐919.

22. Mahadevan N, Kamboj S, Kamboj P.Hibiscus sabdariffa Linn. Anoverview. Nat Prod Radiance.2009;8(1):77‐83.

23. Gazitaeva ZI, Drobintseva AO, Chung Y, Polyakova VO, KvetnoyIM.Cosmeceuticalproductconsistingofbiomimeticpeptides:an‐tiaging effects in vivo and in vitro.Clin Cosmet Investig Dermatol. 2017;10:11‐16.

24. LimaTN,PedrialiMoraesCA.Bioactivepeptides:applicationsandrelevanceforcosmeceuticals.Cosmetics.2018;5:21.

25. SaxenaSJ,MariniJL.Skinfirmingcream,Applicant:JanMariniSkinResearch,US9,089,505B1,Jul.28;2015.

26. SCCS Opinion concerning “Guidelines on the use of human vol‐unteers in compatibility testing of finished cosmetic products”,adoptedbyTheScientificCommitteeonCosmeticsandNon‐foodProductsIntendedforconsumers,23June1999.

27. WorldMedicalAssociation.WorldMedicalAssociationdeclarationofHelsinkiethicalprinciplesformedicalresearchinvolvinghumansubjects.JAMA. 2013;310:20.

28. BlichmanCW,SerupJ.Assessmentofskinmoisture.Measurementof electrical conductance, capacitance and transepidermal waterloss.Acta Derm Venereol (Stockh).1988;68:284.

29. LeeCM,MaibachHIBioengineeringanalysisofwaterhydration:anoverview. Exog Dermatol.2002;1:269‐275.

30. Pinnagoda J, Tupkek R, Agner T, Serup J. Guidelines for tran‐sepidermal water loss (TEWL) measurement. Contact Dermatitis. 1990;22(3):164‐178.

31. Escobar‐ChávezJJ,MerinoV,López‐CervantesM,etal.Thetape‐stripping techniqueasamethod fordrugquantification in skin.J Pharm Pharmaceut Sci.2008;11(1):104‐130.

How to cite this article:PeruginiP,BleveM,RedondiR,CortinovisF,ColpaniA.Invivoevaluationoftheeffectivenessofbiocellulosefacialmasksasactivedeliverysystemstoskin.J Cosmet Dermatol. 2019;00:1–11. https://doi.org/10.1111/jocd.13051