imaging to enable the next generation of chips · imaging to enable the next generation of chips...

31
AT:1100 Imaging to Enable the Next Generation of Chips 100nm Volume Manufacturing on 300mm wafers

Upload: lamdiep

Post on 25-Feb-2019

233 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Imaging to Enable the Next Generation of Chips · Imaging to Enable the Next Generation of Chips 100nm Volume Manufacturing on 300mm wafers. 100nm Applications Wireless PDAs with

AT:1100

Imaging to Enable the Next Generation

of Chips

100nm Volume Manufacturing on 300mm wafers

Page 2: Imaging to Enable the Next Generation of Chips · Imaging to Enable the Next Generation of Chips 100nm Volume Manufacturing on 300mm wafers. 100nm Applications Wireless PDAs with

100nm Applications

� Wireless PDAs with Enterprise Databases� Real-time Language Translators� 3D HDTV graphical images� Complex vocal commands to computer� 3D integrated images

– Virtual shopping in 3D– Integrated composite images GPS/Radar/Weather/– 3D Medical composite imaging

� Dynamic event simulations

Page 3: Imaging to Enable the Next Generation of Chips · Imaging to Enable the Next Generation of Chips 100nm Volume Manufacturing on 300mm wafers. 100nm Applications Wireless PDAs with

Performance scales with Process GenerationProcess

Generation

Intel 486Processor

PentiumProcessor

Pentium IIProcessor 100Mhz 300Mhz

600Mhz

Pentium IIIProcessor

Pentium IVProcessor

1µm 800nm 600nm 350nm 250nm 180nm 100nm

FutureProcessors

130nm

4 GhzForecastProcess Name P860 P1262Production 2001 2003Generation 130 100Gate Length 70 50

Actual

2 Ghz

1.0 Ghz

66Mhz

33Mhz

Source: Intel

Page 4: Imaging to Enable the Next Generation of Chips · Imaging to Enable the Next Generation of Chips 100nm Volume Manufacturing on 300mm wafers. 100nm Applications Wireless PDAs with

Performance Requires Higher Transistor Density

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1971 1974 1982 1989 1997 2000

4004 80088080

8086

286386

486™ DXPentium

Pentium IIPentium III

Pentium 4

Source: Intel

Tran

sist

or C

ount

per

Chi

p

Year

Page 5: Imaging to Enable the Next Generation of Chips · Imaging to Enable the Next Generation of Chips 100nm Volume Manufacturing on 300mm wafers. 100nm Applications Wireless PDAs with

Evolution of Leading Edge Lithography & Wafer Size

300mm

Des

ign

Rul

e (�

m)

’86 ’88 ’90 ’92 ’94 ’96 ’98 ’00 ’02 ’04 ’06 ’08

0.18

0.13

0.10

0.07

0.05

Year

i-line

157nm

ArF

KrF

g-line

150mm

200mm

1.0

0.7

0.5

0.35

0.25

Page 6: Imaging to Enable the Next Generation of Chips · Imaging to Enable the Next Generation of Chips 100nm Volume Manufacturing on 300mm wafers. 100nm Applications Wireless PDAs with

Milestones of Progress in Lens Technology

TWINSCAN AT:1100ASML Model # PAS 2500/40 PAS 5500/300-

# Pixels (*E+6) 40 10.000 - 25.0003208

80.0002000100

Wavelength g-Line I-Line KrF ArF

Pixel Factor 1 250 - 625Price Factor 1 8010Weight (kg) 2 20 250 500

Yr of First Proto 1975 1987 1995 2001

Page 7: Imaging to Enable the Next Generation of Chips · Imaging to Enable the Next Generation of Chips 100nm Volume Manufacturing on 300mm wafers. 100nm Applications Wireless PDAs with

High NA ArF System for 100nm Node

157NA 0.85

CD (nm)180 0.46170 0.43 0.48160 0.41 0.45 0.52150 0.38 0.42 0.48 0.49 0.58 0.81140 0.36 0.40 0.45 0.46 0.54 0.76130 0.33 0.37 0.42 0.42 0.51 0.70120 0.30 0.34 0.39 0.39 0.47 0.65110 0.28 0.31 0.35 0.36 0.43 0.60

100 0.25 0.28 0.32 0.33 0.39 0.5490 0.25 0.29 0.35 0.4980 0.26 0.31 0.4370 0.27 0.3860 0.3250 0.27

193CD = k1

NA248 248 248 193�

0.750.63 0.7 0.8 0.63

0.37ANNULAR

QUASAR

Alt PSMatt. PSMdipole

Page 8: Imaging to Enable the Next Generation of Chips · Imaging to Enable the Next Generation of Chips 100nm Volume Manufacturing on 300mm wafers. 100nm Applications Wireless PDAs with

Why 300mm? Why ArF?

100nm on100nm on300mm300mm

200mm200mm

200mm200mm

200mm200mm

200mm200mm130nm130nmnodenode

200mm200mm

300mm300mm 100nm100nmnodenode

2.25More Die per

Wafer

1.7More Die per

WaferX = 3.8 More Die per Wafer

Page 9: Imaging to Enable the Next Generation of Chips · Imaging to Enable the Next Generation of Chips 100nm Volume Manufacturing on 300mm wafers. 100nm Applications Wireless PDAs with

Challenges for ArF & 300mm

� ArF

� Lens Manufacturing with CaF2 Materials

� Mature Resist Processes� High Power ArF Lasers� Increase Focus Control

� 300mm

� Productivity

� Vibration Containment

� Tighter Overlay

� Increase Metrology Accuracy

Page 10: Imaging to Enable the Next Generation of Chips · Imaging to Enable the Next Generation of Chips 100nm Volume Manufacturing on 300mm wafers. 100nm Applications Wireless PDAs with

Leading edge High NA 193nm Lens

Projection Lens- High NA

- Low aberrations

� Zeiss Starlith 1100 Lens:

� Variable Numerical Aperture 0.75 to 0.50

� CaF2 for Critical Lens Elements Only

� High Transmission Coatings

� Control of Magnification, Field Curvature, 3rd Order Distortion, Coma and Spherical

� Optimized Dynamics for Larger Lens Mass

Page 11: Imaging to Enable the Next Generation of Chips · Imaging to Enable the Next Generation of Chips 100nm Volume Manufacturing on 300mm wafers. 100nm Applications Wireless PDAs with

ArF Imaging ResultsExposure LatitudeDepth of FocusLow Proximity EffectsLow Line-end ShorteningLow Mask Error FactorLinearity

Low Aberration Level

Narrow BandwidthLow Fading (MSD)

Illumination Uniformity

Mature ProcessesBinary Chrome Reticles

ArF High NA Lens

� Lens Design/ Manufacturing + Set-up

� Laser Design� Stage Design

� Illuminator Design

� Resists� Reticles

Page 12: Imaging to Enable the Next Generation of Chips · Imaging to Enable the Next Generation of Chips 100nm Volume Manufacturing on 300mm wafers. 100nm Applications Wireless PDAs with

ArF Imaging Results 100nm Dense Lines Through Focus

F + 0.1F - 0.1F - 0.2 F + 0.2F 0.0

Binary MaskPitch = 200nm

NA = 0.75��� = 0.85/0.55 Annular Illumination

Scanned Exposure Starlith™ 1100

E = 17.5 mJ/cm2

Page 13: Imaging to Enable the Next Generation of Chips · Imaging to Enable the Next Generation of Chips 100nm Volume Manufacturing on 300mm wafers. 100nm Applications Wireless PDAs with

ArF Imaging Results 90nm Dense Lines Through Focus

F + 0.1F - 0.1F - 0.2 F + 0.2F 0.0

Binary Mask Pitch = 180nm

NA = 0.75��� = 0.85/0.55 Dipole Illumination

Scanned Exposure Starlith™ 1100

Page 14: Imaging to Enable the Next Generation of Chips · Imaging to Enable the Next Generation of Chips 100nm Volume Manufacturing on 300mm wafers. 100nm Applications Wireless PDAs with

ArF Imaging Results Contact Holes with Binary Mask, 130nm, pitch 260nm

F - 0.3 F - 0.2 F - 0.1 F 0.0

F + 0.4F + 0.1 F + 0.2 F+ 0.3

NA = 0.75��� = 0.85/0.55

QUASAR Illumination

Scanned Exposure Starlith™ 1100

Page 15: Imaging to Enable the Next Generation of Chips · Imaging to Enable the Next Generation of Chips 100nm Volume Manufacturing on 300mm wafers. 100nm Applications Wireless PDAs with

ArF Imaging Results 130nm Contact Holes

Top-Down 130nm10nm Bias 53mJ

Cross Section 130nm10nm Bias 53mJ

Page 16: Imaging to Enable the Next Generation of Chips · Imaging to Enable the Next Generation of Chips 100nm Volume Manufacturing on 300mm wafers. 100nm Applications Wireless PDAs with

20 Watt 4 kHz ArF Laser for High Dose Levels

30405060708090

100

15 20 25 30 35Dose (mJ/cm2)

Waf

ers

per H

our

10 Watt (2kHz)20 Watt (4kHz)

Increased Illumination Intensity Maintains

Productivity for High Dose Levels

Dose (mJ/cm2) 10 15 20 25 30 35

10 Watt (2kHz) 93 76 64 55 48 4320 Watt (4kHz) 98 98 93 84 76 69

Productivity in Wafers per Hour

Productivity vs Laser Power

Page 17: Imaging to Enable the Next Generation of Chips · Imaging to Enable the Next Generation of Chips 100nm Volume Manufacturing on 300mm wafers. 100nm Applications Wireless PDAs with

Measurement PositionWafer Height Mapping

Level SensorUsed As a Height Gauge

Page 18: Imaging to Enable the Next Generation of Chips · Imaging to Enable the Next Generation of Chips 100nm Volume Manufacturing on 300mm wafers. 100nm Applications Wireless PDAs with

Experiment:

• Expose Wafer With IC Structures

• Measure Height Map

Wafer Map With IC Structures

Accurate leveling data to wafer edge - no “Edge Die”

340 nm

300 mm

Resolution:3 x 0.5 mm

Page 19: Imaging to Enable the Next Generation of Chips · Imaging to Enable the Next Generation of Chips 100nm Volume Manufacturing on 300mm wafers. 100nm Applications Wireless PDAs with

Better Focus through Pre-Recorded Z-Map

Optimum Focus & Tilt Setting of Exposure Slit

Z Position Measured & Controlled With Interferometer Precision

Wafer Mapped in Z According to Exposure Field Size

Z Positioning Optimised for Stage Servo Response

Page 20: Imaging to Enable the Next Generation of Chips · Imaging to Enable the Next Generation of Chips 100nm Volume Manufacturing on 300mm wafers. 100nm Applications Wireless PDAs with

TWINSCAN Platform Focusing Approach• Wafer scanned at metrology position• 9 spot focus sensor• 8 axis interferometry for X, Y and Z, �X, �Y, �Z

• Perfect meander - alternating scan directions improves throughput

Focus Pre-Scan - Measure Position Exposure

Page 21: Imaging to Enable the Next Generation of Chips · Imaging to Enable the Next Generation of Chips 100nm Volume Manufacturing on 300mm wafers. 100nm Applications Wireless PDAs with

Challenges for ArF & 300mm

� ArF

� Lens Manufacturing with CaF2 Materials

� Mature Resist Processes� High Power ArF Lasers� Increase Focus Control

� 300mm

� Productivity� Vibration Containment� Tighter Overlay� Increase Metrology

Accuracy

Page 22: Imaging to Enable the Next Generation of Chips · Imaging to Enable the Next Generation of Chips 100nm Volume Manufacturing on 300mm wafers. 100nm Applications Wireless PDAs with

TWINSCAN™ Dual Wafer Stages

Separate metrology positionFull 3D wafer mapping

Balance massfor 70 nm dynamics

Dual wafer stageParallel operation

320mm Scan Speed

Page 23: Imaging to Enable the Next Generation of Chips · Imaging to Enable the Next Generation of Chips 100nm Volume Manufacturing on 300mm wafers. 100nm Applications Wireless PDAs with

Dual Stage Elapsed time Improvement

ExposePosition

MetrologyPosition

Total time = 38.6 sec 93 WPH

6X more Alignment Data+ Full Wafer Height Map

1545

15

32 secs

Overhead = Align + Wafer Swap

Total time= 57 sec 63 WPH

0

15

30

Overhead

Step

Expose

Overhead

Step

Expose

0

Single Stage Cycle45

45

ArF Example: 20mJ/cm2

Page 24: Imaging to Enable the Next Generation of Chips · Imaging to Enable the Next Generation of Chips 100nm Volume Manufacturing on 300mm wafers. 100nm Applications Wireless PDAs with

Dual Stage Benefits for Alignment Metrology

Dual Stage

50

Thro

ughp

ut %

2 4 8 16 24 32

556065707580859095

100

Number of Alignment Marks

Single StageTrade Off Between Alignment Information & Throughput

No Throughput Penalty for up to 25 Alignment Marks with Dual Stage

Page 25: Imaging to Enable the Next Generation of Chips · Imaging to Enable the Next Generation of Chips 100nm Volume Manufacturing on 300mm wafers. 100nm Applications Wireless PDAs with

ArF Productivity -Intensity, Scan Speed, Dual Stage vs. Field Size

0

20

40

60

80

100

120

140

160

50100150Scanned Fields per Wafer

Thro

ughp

ut (3

00m

m W

pH)

16x32mm109 fields

18x32mm95 scans

22x32mm73 scans

26x32mm63 scans

Single Stage System

Increased Scan Speed & ArF Intensity

Conditions :

Dose 20 mJ/cm2

Wafer 300mm

Page 26: Imaging to Enable the Next Generation of Chips · Imaging to Enable the Next Generation of Chips 100nm Volume Manufacturing on 300mm wafers. 100nm Applications Wireless PDAs with

Imaged Pixels per Hour

0

100

200

300

400

500

600

1998 2000 1998 2000 2001 1999Year of Introduction

Pixe

ls p

er H

our (

x10e

20)

I-line KrF ArF

AT:400

AT:1100

AT:750

Quantum jump in pixel transfer rate !

• 20 W ArF Source• 320mm scan speeds• Dual stage design

2001

Page 27: Imaging to Enable the Next Generation of Chips · Imaging to Enable the Next Generation of Chips 100nm Volume Manufacturing on 300mm wafers. 100nm Applications Wireless PDAs with

TWINSCAN Platform RoadmapG

ener

atio

n (S

IA)*

First product ship 1997 1998 1999 2000 2001 2002 2003 2004 2005

>250nm(non critical)

150nm

130nm

100nm

*

AT:400 280nmNAmax = 0.65

AT:1100 100nm NAmax = 0.75

AT:750 130nm NAmax = 0.70

70nm

Legend

193nm

248nm

365nm

*ITRS Roadmap, 1999 Update

Page 28: Imaging to Enable the Next Generation of Chips · Imaging to Enable the Next Generation of Chips 100nm Volume Manufacturing on 300mm wafers. 100nm Applications Wireless PDAs with

TWINSCAN 1100Key Specifications

� Variable NA: 0.75�0.50� Resolution: � 100nm� Field Size: 26mm X 32mm

� Laser: 20Watt 4kHz� Overlay: < 20nm� Throughput: > 93 wph

Page 29: Imaging to Enable the Next Generation of Chips · Imaging to Enable the Next Generation of Chips 100nm Volume Manufacturing on 300mm wafers. 100nm Applications Wireless PDAs with

Extends ASML’s TWINSCAN Product Family with ArF Technology for 100nm on 300mm

TWINSCAN AT:400TWINSCAN AT:400ii--Line Step & ScanLine Step & Scan

TWINSCAN AT:750TWINSCAN AT:750KrF Step & ScanKrF Step & Scan

TWINSCAN AT:1100TWINSCAN AT:1100ArF Step & ScanArF Step & Scan

Page 30: Imaging to Enable the Next Generation of Chips · Imaging to Enable the Next Generation of Chips 100nm Volume Manufacturing on 300mm wafers. 100nm Applications Wireless PDAs with

Worldwide Demand for AT:1100

� Demand from Foundry, Logic and Memory

Shipment ramp commences end of 2001

Page 31: Imaging to Enable the Next Generation of Chips · Imaging to Enable the Next Generation of Chips 100nm Volume Manufacturing on 300mm wafers. 100nm Applications Wireless PDAs with

100nm Volume Manufacturing on 300mm Wafers

� Productivity for Volume – New 320mm/sec dual stages – Highest utilization of optics– Parallel align metrology– 20W 4kHz Laser

� 100nm imaging – A-A overlay <20nm– 0.75 NA ArF Optics– Vibration control to 70nm– Z-interferometry for focus control