imaging and aberration theory - iap.uni-jena.deand+aberration+theory... · 2 preliminary time...

48
www.iap.uni-jena.de Imaging and Aberration Theory Lecture 12: Zernike polynomials 2014-01-30 Herbert Gross Winter term 2013

Upload: vonga

Post on 16-Aug-2019

296 views

Category:

Documents


7 download

TRANSCRIPT

www.iap.uni-jena.de

Imaging and Aberration Theory

Lecture 12: Zernike polynomials

2014-01-30

Herbert Gross

Winter term 2013

2

Preliminary time schedule

1 24.10. Paraxial imaging paraxial optics, fundamental laws of geometrical imaging, compound systems

2 07.11. Pupils, Fourier optics, Hamiltonian coordinates

pupil definition, basic Fourier relationship, phase space, analogy optics and mechanics, Hamiltonian coordinates

3 14.11. Eikonal Fermat Principle, stationary phase, Eikonals, relation rays-waves, geometrical approximation, inhomogeneous media

4 21.11. Aberration expansion single surface, general Taylor expansion, representations, various orders, stop shift formulas

5 28.11. Representations of aberrations different types of representations, fields of application, limitations and pitfalls, measurement of aberrations

6 05.12. Spherical aberration phenomenology, sph-free surfaces, skew spherical, correction of sph, aspherical surfaces, higher orders

7 12.12. Distortion and coma phenomenology, relation to sine condition, aplanatic sytems, effect of stop position, various topics, correction options

8 19.12. Astigmatism and curvature phenomenology, Coddington equations, Petzval law, correction options

9 09.01. Chromatical aberrations

Dispersion, axial chromatical aberration, transverse chromatical aberration, spherochromatism, secondary spoectrum

10 16.01. Further reading on aberrations sensitivity in 3rd order, structure of a system, analysis of optical systems, lens contributions, Sine condition, isoplanatism, sine condition, Herschel condition, relation to coma and shift invariance, pupil aberrations, relation to Fourier optics

11 23.01. Wave aberrations definition, various expansion forms, propagation of wave aberrations, relation to PSF and OTF

12 30.01. Zernike polynomials special expansion for circular symmetry, problems, calculation, optimal balancing, influence of normalization, recalculation for offset, ellipticity, measurement

13 06.02. Miscellaneous Intrinsic and induced aberrations, Aldi theorem, vectorial aberrations, partial symmetric systems

1. Definition

2. Properties

3. Calculation

4. Application in optical performance description

5. Aberration balancing

6. Sampling

7. Relation to power expansion

8. Change influences

9. High NA case

10. Miscellaneous

3

Contents

Zernike Polynomials

+ 6

+ 7

- 8

m = + 8

0 5 8764321n =

cos

sin

+ 5

+ 4

+ 3

+ 2

+ 1

0

- 1

- 2

- 3

- 4

- 5

- 6

- 7

Expansion of wave aberration surface into elementary functions / shapes

Zernike functions are defined in circular coordinates r,

Ordering of the Zernike polynomials by indices:

n : radial

m : azimuthal, sin/cos

Mathematically orthonormal function on unit circle for a constant weighting function

Direct relation to primary aberration types

n

n

nm

m

nnm rZcrW ),(),(

01

0)(cos

0)(sin

)(),(

mfor

mform

mform

rRrZ m

n

m

n

4

Zernike Polynomials

Alternative representation

5

+ 6

+ 7

- 8

m = + 8

0 5 8764321n =

cos

sin

+ 5

+ 4

+ 3

+ 2

+ 1

0

- 1

- 2

- 3

- 4

- 5

- 6

- 7

yp

xp

Zernike Polynomials

Advantages of the Zernike polynomials:

1. usually good match of circular symmetry to most optical systems

2. de-coupling of coefficients due to orthogonality

3. stable numerical computation 4. direct measurement by interferometry possible

5. direct relation of lower orders to classical aberrations

6. optimale balancing of lower orders (e.g. best defocus for spherical aberration)

7. fast calculation of Wrms and Strehl ratio in approximation of Marechal

Problems and disadvantages of the Zernike polynomials:

1. computation on discrete grids

2. non circular pupils often occur in practice

3. different conventions can be found, conversion is quite confusing

4. calculation not stable for very high orders

5. Zernike functions are no eigenfunctions of wave propagation,

if the measurement is not made exactly in the pupil, the coefficients are erroneous

6

Indexing and Azimuthal Periodicity

azimuthal index m

radial

index n

same

spatial

frequency

rotational

symmetry:

defocus

spherical

in cosq

linear :

tilt, coma

in cos2q

quadratic :

astigmatisms

empty

in cos3q of

3rd power :

trefoil

Index m: azimuthal periodicity

Constant spatial frequency: sum of n+|m|

7

Nr Cartesian representation Circular representation

1 1 1

2 x r sin

3 y r cos

4 2 x2 + 2 y

2 - 1 2 r² - 1

5 2 x y r² sin 2

6 y2 - x

2 r² cos 2

7 ( 3x2 + 3 y

2 - 2 ) x ( 3r

3 - 2r ) sin

8 ( 3x2 + 3 y

2 - 2 ) y ( 3r

3 - 2r ) cos

9 6 (x2+y

2)2-6 (x

2+y

2) +1 6r

4 - 6r² + 1

10 ( 3y2-x

2 ) x r³ sin 3

11 ( y2-3x

2) y r³ cos 3

12 (4x2+4y

2-3) 2xy ( 4r

4 - 3r² ) sin 2

13 (4x2+4y

2-3) (y

2 - x

2) ( 4r

4 - 3r² ) cos 2

14 [10(x2+y

2)2-12(x

2+y

2)+3] x ( 10r

5 - 12r³ + 3r ) sin

15 [10(x2+y

2)2-12(x

2+y

2)+3] y ( 10r

5 - 12r³ + 3r ) cos

16 20 (x2+y

2)3 - 30 (x

2+y

2)2 + 12 (x

2+y

2) - 1 20r

6 - 30r

4 + 12r² - 1

17 (y2-x

2) 4xy R

4 sin 4

18 y4+x

4-6x

2y

2 R

4 cos 4

Zernike Polynomials: Fringe Convention

8

19 (5x2+5y

2-4) (3y

2-x

2)x ( 5r

5 - 4r³ ) sin 3

20 (5x2+5y

2-4) (y

2-3x

2)y ( 5r

5 - 4r³ ) cos 3

21 [15(x2+y

2)2-20(x

2+y

2)+6] 2xy ( 15r

6 - 20r

4 + 6r² ) sin 2

22 [15(x2+y

2)2-20(x

2+y

2)+6] (y

2-x

2) ( 15r

6 - 20r

4 + 6r² ) cos 2

23 [35(x2+y

2)3-60(x

2+y

2)2+30(x

2+y

2)-4] x ( 35r

7 - 60r

5 + 30r³ - 4r ) sin

24 [35(x2+y

2)3-60(x

2+y

2)2+30(x

2+y

2)-4] y ( 35r

7 - 60r

5 + 30r³ - 4r ) cos

25 70(x2+y

2)4-140(x

2+y

2)3+90(x

2+y

2)2-20(x

2+y

2)+1 70r

8 - 140r

6 + 90r

4 - 20r² + 1

26 (5y4-10x

2y

2+x

4)x R

5 sin 5

27 (y4-10x

2y

2+5x

4)y R

5 cos 5

28 (6x2+6y

2-5) (y

2-x

2)2xy ( 6r

6 - 5r

4 ) sin 4

29 (6x2+6y

2-5) (y

4-6x

2y

2+x

4) ( 6r

6 - 5r

4 ) cos 4

30 [21(x2+y

2)2-30(x

2+y

2)+10] (3y

2-x

2)x ( 21r

7 - 30r

5 + 10r

3 ) sin 3

31 [21(x2+y

2)2-30(x

2+y

2)+10] (y

2-3x

2)y ( 21r

7 - 30r

5 + 10r

3 ) cos 3

32 [ 56(x2+y

2)3-105(x

2+y

2)2+60(x

2+y

2)-10] 2xy ( 56r

8 – 105r

6 + 60r

4 - 10r

2 ) sin 2

33 [ 56(x2+y

2)3-105(x

2+y

2)2+60(x

2+y

2)-10] (y

2-x

2) ( 56r

8 – 105r

6 + 60r

4 - 10r

2 ) cos 2

34 [ 126(x2+y

2)4-280(x

2+y

2)3+210(x

2+y

2)2-60(x

2+y

2)+5] x ( 126r

9 – 280r

7 + 210r

5 – 60r

3 + 5r ) sin

35 [ 126(x2+y

2)4-280(x

2+y

2)3+210(x

2+y

2)2-60(x

2+y

2)+5] y ( 126r

9 – 280r

7 + 210r

5 – 60r

3 + 5r ) cos

36 252(x2+y

2)5-630(x

2+y

2)4+560(x

2+y

2)3-

210(x2+y

2)2+30(x

2+y

2)-1

( 252r10

– 630r8 + 560r

6 – 210r

4 + 30r

2 - 1 )

Zernike Polynomials: Fringe Convention

9

Zernike Polynomials: Meaning of Lower Orders

n m Polar coordinates

Interpretation

0 0 1 1 piston

1 1 r sin x

Four sheet 22.5°

1 - 1 r cos y

2 2 r 2

2 sin 2 xy

2 0 2 1 2

r 2 2 1 2 2

x y +

2 - 2 r 2

2 cos y x 2 2

3 3 r 3

3 sin 3 2 3

xy x

3 1 ( ) 3 2 3

r r sin 3 2 3 3 2

x x xy +

3 - 1 ( ) 3 2 3

r r cos 3 2 3 3 2

y y x y +

3 - 3 r 3

3 cos y x y 3 2

3

4 4 r 4

4 sin 4 4 3 3

xy x y

4 2 ( ) 4 3 2 4 2

r r sin 8 8 6 3 3

xy x y xy +

4 0 6 6 1 4 2

r r + 6 6 12 6 6 1 4 4 2 2 2 2 x y x y x y + + +

4 - 2 ( ) 4 3 2 4 2

r r cos 4 4 3 3 4 4 4 2 2 2 2

y x x y x y +

4 - 4 r 4

4 cos y x x y 4 4 2 2

6 +

Cartesian coordinates

tilt in y

tilt in x

Astigmatism 45°

defocussing

Astigmatism 0°

trefoil 30°

trefoil 0°

coma x

coma y

Secondary astigmatism

Secondary astigmatism

Spherical aberration

Four sheet 0°

10

Radial Zernike Polynomials

11

1901980184809009025225242042041184021879048620)(

172126092403465072072840845148012870)(

15675642001155016632120123432)(

142420168031502772924)(

130210560630252)(

1209014070)(

1123020)(

166)(

12)(

24681012141618

100

246810121416

81

2468101214

64

24681012

49

246810

36

2468

25

246

16

24

9

2

4

++++

++++

+++

+++

++

++

+

+

rrrrrrrrrrZ

rrrrrrrrrZ

rrrrrrrrZ

rrrrrrrZ

rrrrrrZ

rrrrrZ

rrrrZ

rrrZ

rrZ

Radial polynomial functions

Oscillating signs corresponds to compensating effects

Large coefficients for higher orders cause numerical inaccuracies for explicite calculations in particular for points near to the edge

Recurence formulas preferred, but residual errors are propagated

Indices of Zernike Fringe Polynomials

Indexing of Fringe polynomials

Principle: growing spatial frequency of variations

1. radial

2. azimuthal

Meaningful: truncation at quadratic numbers

4: image location

9: 4th order, primary aberrations

16: 6th order, secondary aberrations

.....

Indexing:

1. starting with m=0

2. growing absolute value of m

Running index

2

)sgn(121

2

2

mm

mnj

+

+

+

12

Indices of Zernike Fringe Polynomials

13

Zernike Standard Polynomials

Normalization of standard Zernike

polynomials

Orthogonality

Constant rms-value for all terms

easy estimation possible

Indexing of standard polynomials:

1. increasing radial index n

2. increasing absolut value of azimuthal index |m|

Therefore irregulary

growing spatial

frequency

''

'*

'

1

0

2

0

),(),( mmnn

m

n

m

n drrdrZrZ

( )( )

+

+

01

0cos

0sin

)(1

)1(2),(

0mfor

mform

mform

rRn

rZ m

n

m

m

n q

q

q

k

n

n

nm

nmrms cW1

22

sin cos

n/m -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

0 1

1 2 3

2 5 4 6

3 9 7 8 10

4 14 12 11 13 15

5 20 18 16 17 19 21

6 27 25 23 22 24 26 28

7 35 33 31 29 30 32 34 36

8 44 42 40 38 37 39 41 43 45

14

Azimuthal Dependence of Zernike Polynomials

Azimuthal spatial

frequency

r1

r3

r2

r1r3

r2

31

2 4

15

( )''

0'*

'

1

0

2

0)1(2

1),(),( mmnn

mm

n

m

nn

drrdrZrZ

+

+

n

n

nm

m

nnm rZcrW ),(),(

( ) +

+

1

0

*

2

00

),(),(1

)1(2drrdrZrW

nc m

n

m

nm

Orthogonality

Expansion of the wave aberration on a circular area

Orthonormality for Fringe

convention

Orthogonality of radial functions

Determination of coefficients

Necessary requirements for orthogonality:

1. pupil shape circular

2. uniform illumination of pupil (corresponds to constant weighting)

3. no discretization effects (finite number of points, boundary)

Orthogonality perturbed in reality by:

1. real non-circular boundary (vignetting)

2. apodization (laser illumination)

3. discretization (calculation by a discrete finite ray set) ,

16

R r R r r drn

n

m

n

m nn( ) ( )( )

''

+

2 10

1

Orthogonality

Usual found new sets of orthogonal functions:

1. discretized finite sampling grid

2. apodization due to gaussian illumination (Mahajan)

3. elliptical deformed pupil shape (Dai)

4. ring-shaped pupil (Tatian)

5. rectangular pupil (2D Legendre)

General orthogonalization of polynomials by Gram-Schmidt algorithm from Zernikes

possible:

- Definition of inner product of two functions

- first new function Y, normalized

- second new function, linear combination of

old function and lower order new functions

normalized

- general step, analogoues

17

rdrdFFFF 2121

1,

11' ZY 11

11

,

'

YY

YY

YYZZYTZY + 12212122 ,'

22

22

,

'

YY

YY

+1

1

1

1

,'n

m

mmnn

n

m

mnmnn YYZZYTZY

nn

nn

YY

YY

,

'

Mathematical Properties

Recurrence formulas

Explicite formula

Symmetry

Value at the edge

Value range:

18

1

1

1

1 )()2()1(2 +

+

+ ++++ m

n

m

n

m

n RmnRmnRrn

+

+

++

+

+ +

m

n

m

n

m

n Rn

mnR

n

mn

n

mnrn

mn

nR 2

22222

2222

)2()()1(4

)2(

2

qn

mn

q

qm

n r

qmn

qmn

q

qnrR 2

2

0 !2

!2

!

)!()1()(

+

R Rn

m

n

m

Rn

m( )1 1

1...1)1( +m

nZ

Mathematical Properties

Fourier transform relationship:

frequency spectrum of Zernike

functions

Distributed frequency

content

Higher radial order polynomials

has higher spatial frequency

support

In the spatial domain, the high

frequency are located at the

edge

19

( )

( )

( )

+

0)1(

0sin)1(

0cos)1(

)2(,),(ˆ

2

2

2

1

mfor

mformi

mformi

k

kJkUrZF

n

mn

m

mn

m

nnmnm

0 2 4 6 8 10 12-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

n = 2

n = 6

n = 10

n = 16

n = 24

Different standardizations used concerning:

1. indexing

2. scaling / normalization

3. sign of coordinates (orientation for off-axis field points)

Fringe - representation

1. CodeV, Zemax, interferometric test of surfaces

2. Standardization of the boundary to ±1

3. no additional prefactors in the polynomial

4. Indexing according to m (Azimuth), quadratic number terms have circular symmetry

5. coordinate system invariant in azimuth

Standard - representation

- CodeV, Zemax, Born / Wolf

- Standardization of rms-value on ±1 (with prefactors), easy to calculate Strehl ratio

- coordinate system invariant in azimuth

Original - Nijboer - representation

- Expansion:

- Standardization of rms-value on ±1

- coordinate system rotates in azimuth according to field point

+++k

n

n

gerademn

m

m

nnm

k

n

n

gerademn

m

m

nnm

k

n

nn mRbmRaRaarW0 10 10

0

000 )sin()cos(2

1),(

Zernikepolynomials: Different Conventions

20

Mean value vanishes

Rms value of the wave aberration 1. Fringe convention:

2. Standard convention

Marechal approximation for large Strehl numbers

Marechal criteria for single indices

Zernikepolynomials: Performance Criteria

21

++

+

k

n

n

nm

nmk

n

n

rms

n

c

n

c

drdrWrWW

1

2

1

2

0

1

0

2

0

22

12

1

1

),(1

k

n

n

nm

nmrms cW1

22

0),(1

1

0

2

0

drdrrZZ jj

++

+

N

n

n

m

nmN

n

ns

n

c

n

cD

1 0

2

1

2

0

2

12

1

1

21

Aberration Coefficient Limit

Defocus c20 0.125

Spherical c40 0.161

Astigmatism c22 0.177

Coma c31 0.210

W

rp1

4th order

(Seidel)

4th and 2nd order

4th, 2nd and 0th order

(Zernike) rms is minimal

4

1

-1

3

2

0_

++ +

_

-2

166)( 24 + ppp rrrW

Balance of Lower Orders by Zernike Polynomials

Mixing of lower orders to get the minimal Wrms

Example spherical aberration:

1. Spherical 4th order according to

Seidel

2. Additional quadratic expression:

Optimal defocussing for edge

correction

3. Additional absolute term

Minimale value of Wrms

Special case of coma: Balancing by tilt contribution, corresponds to shift between peak and centroid

22

drrdrZrWc jj

),(*),(1

1

0

2

0

min)(

2

1 1

i

ijj

N

j

i rZcW

( ) WZZZcTT 1

Calculation of Zernike Polynomials

Assumptions:

1. Pupil circular

2. Illumination homogeneous

3. Neglectible discretization effects /sampling, boundary)

Direct computation by double integral:

1. Time consuming

2. Errors due to discrete boundary shape

3. Wrong for non circular areas

4. Independent coefficients

LSQ-fit computation:

1. Fast, all coefficients cj simultaneously obtained

2. Better total approximation

3. Non stable for different numbers of coefficients,

if number too low

4. Stable for non circular shape of pupil

Calculation by Fourier transform

23

1

22),(),(r

kri rderWkA

q

1

0

*

2

),(),(1 N

l

nmlnm kUkAc qq

rderZkU kri

nmnm

22),(),( q

Radial Sampling

Spatial frequency grows towards the edge of the pupil radius

The outer zeros are denser distributed and grows with index n

The sampling is dominated at the edge

Possible maximum radial order for a given equidistant sampling number N

24

00.

1

0.

2

0.

3

0.

4

0.

5

0.

6

0.

7

0.

8

0.

91

-

1

-

0.8

-

0.6

-

0.4

-

0.2

0

0.

2

0.

4

0.

6

0.

8

1

r

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

5

10

15

20

25

30

n = 30

Z(r)

rn

r

zeros

2

)( 1

nr zero

N over

radius

N over

diameter n

32 64 4

64 128 5

128 256 8

256 512 11

512 1024 16

Truncation Error

If the series expansion is truncated before convergence is obtained: - errors in wavefront description - errors of lower order coefficients for NLSQ-calculation:

balancing to minimize the rms-error

Example: - circular symmetric wavefront

- coefficients c4=c9=c16=... = 0.2

- error of lower order coefficients c9, c16 for growing number of terms

25

c/c

0 2 4 6 8 10 12 140

0.1

0.2

0.3

c9

c16

drrdrZrZC jjjj

),(*),(1

1

0

2

0

''

Calculation of Zernike Polynomials

Correlation of modes

Numerical residual errors due to discretization

Main errors are caused by the corrugated boundary

Largest errors for same symmetry: no cancellation

26

log Cjj'

j'

j

Conversion to Monomials

Cartesian representation of Zernike functions

Equalization of two expansion representations

gives mapping matrix T for conversion of coefficients explicit

27

)(2)(2

0

2

0

2

0 !2

!2

!

)!(2

2)1(

cos

kjinkiq

i

mn

j

jmn

k

ji

m

n

m

n

yx

jmn

nmn

j

jn

k

jmn

i

m

mRZ

+++

+

oddnifm

evennifm

q

2

1

2

12

0

),(),(n

n

nm

m

nnm yxZcyxW

0 0

),(p

p

q

qpq

pq yxayxW

0 0p

p

q

pqnmpqnm Tac

+++

+

2/)(

0

0 0'

!2/)(!2/)()22(!

)!(1)1(

)!'(!'

)',,,,(

)!(!

1

2

!)!(

mn

s

s

q

t

qp

tppqnm

smnsmnspns

snn

tqpt

ttmqpg

tqt

qqpT

+

+

++

+

+

+

+

+

0)1(2

0)1(

0)1(2

)',,,,(

)'222()'222(

'2/)1(

)'222(0)'22(0

'2/)(

)'222()'22(

'2/)(

mif

mif

mif

ttmqpg

ttpqmttqpm

tqp

ttqpttp

tqp

ttqpmttpm

tqp

Conversion to Monomials

Matrix H for linear indexed functions

Matrix is sparse

28

n m

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 1 -1 1 2 1 -2 3 3 1 -2 3 4 2 1 -6 -3 5 2 -6 6 2 -1 -6 3 7 3 1 -12 -4 8 3 3 -12 -12 9 3 -3 -12 12

10 -1 3 4 -12 11 6 4 1 12 4 8 13 12 -4 -6 14 -4 8 15 6 -4 1 16 10 5 1 17 5 15 10 18 20 -15 -10 19 -10 -5 20 20 10 -15 5 21 1 -5 10 22 23 6

24 25 -20

26 27 6

Cartesian Derivatives of Zernikes

Cartesian derivatives of the Zernike function according to x, y

Most measuring techniques: Primary the gradients of the wave are measured

Direct fit of derivatives is appropriate

Calculation / integration of coefficients via expansion

29

+

0)sin(cos)cos(sin'

0)cos(cos)sin(sin'

0sin'

mfürmr

mRmR

mfürmr

mRmR

mfürR

Z x

+

0)sin(sin)cos(cos'

0)cos(sin)sin(cos'

0cos'

mfürmr

mRmR

mfürmr

mRmR

mfürR

Z y

Z

Zx

Z

Zy

Zx

Zy

1 52 3 4 6 7 8 9

10 11 12 13 14 15 16 17 18

Vectorial Zernike Functions

Composition of the gradients in a vectorial function

Normalization and expansion into original functions

Describes elementary decomposition of orientation fields

Applications: polarization aberrations

30

jyyjxxj ZeZeS +

'

+j

jjy

j

jjxj ZbeZaeS

( )

( )

( )

( )

( ) 5648

6457

326

235

324

13

12

22

1

22

1

2

1

2

1

2

1

ZeZZeS

ZZeZeS

ZeZeS

ZeZeS

ZeZeS

ZeS

ZeS

yx

yx

yx

yx

yx

y

x

++

+

+

+

S2 S4

S5 S7

S3

S6

Changes of conditions changes the Zernike coefficients

Special small changes of practical relevance can be calculated analytically by expansion: 1. change of radius of normalization 2. ellipticity of the aperture 3. lateral shift of the pupil center 4. azimuthal rotation 5. change of exact z-position of the pupil

Point 5. corresponds to the propagation changes of Zernikes: 1. Zernikes are no invariant eigenfunctions 2. Linear approach: - direction vector s depends on position - change of wavefront in geometrical approximation

3. Problem: additional change of pupil size due to convergence/divergence needs re-normalization

Zernike Coefficients for Changed Conditions

31

22),(),(

),(

+

y

yxW

x

yxWyxs

),(2

),(2

),()','('

12

2

yxPbr

za

yxsr

zyxWyxW

j

j

jj

+

+

++

N

j

j

s

s

jsjs

sjsjjc

r

zrr

1

1

020,2

)!(!

)!2)(()1()122'

Changes of z-distance changes Zernikes

Relevant applications: 1. Human eye, iris pupil not accessible 2. Microscopic lens, exit pupil not accessible

Possible solution to determine the exact pupil phase front: 1. Calculation of Zernike changes by numerical propagation 2. Pupil transfer relay optical system

For a phase preserving transfer, a well corrected 4f-system is necessary A simple one-lens imaging generates a quadratic phase in the image plane

Zernike Coefficients in Different z-Planes

32

chief

ray

exit

pupil

rear

stopobject

plane

pupil

retina

fovea

cornea

iris

optical disc

blind spotcrystalline lens

lens capsule

anterior

chamber

posterior

chamber

vitreous

humor

temporal

nasal

final

plane

starting

plane

f1

f1

f2

f2

d'd

Change of normalization radius, Problem, if pupil edge is not well known or badly defined

Deviation in the radius of normalization of the pupil size:

1. wrong coefficients

2. mixing of lower orders during fit-calculation, symmetry-dependent

Example primary spherical aberration:

polynomial:

Stretching factor of the radius

New Zernike expansion on basis of r

166)( 24

9 + Z

r

( )( )

14

24

44

2

949

23

)(13

)(1

Z

rZrZZ

+

+

+

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

c4

c1

c9 / c

9

Zernike Coefficients for Change of Radius

33

Change pupil center position, lateral shift a

Mixing of Zernike coefficients

Example: 1. initially spherical aberration 2. finally: - coma, grows linear with a - astigmatism, grows quadratic with a - defocus, grows quadratic with a - tilt, grows linear with a

Zernike Coefficients for Pupil Decenter

34

axx

( ) ( ) 166),( 22222

9 +++ yxyxyxZ

( ) 1

2

2

3

6

2

4

2

799

12424

12128

ZaZaa

ZaZaZaZZ

+++

++

a0 0.02 0.04 0.06 0.08 0.1

coma c7

tilt c2

astigmatism

and defocus

c4 / c6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Zernike Expansion of Local Deviations

Small Gaussian bump in

the topology of a surface

Spectrum of coefficients

for the last case

model

error

N = 36 N = 64 N = 100 N = 144 N = 225 N = 324 N = 625

original

Rms = 0.0237 0.0193 0.0149 0.0109 0.00624 0.00322 0.00047

PV = 0.378 0.307 0.235 0.170 0.0954 0.0475 0.0063

0 100 200 300 400 500 6000

0.01

0.02

0.03

0.04

35

Zernike Representation of a Spherical Wave

Defocus coefficient of Zernike c4: parabolic approximation

Exact expansion of a sphere:

Important aspect for high numerical aperture

22)( rRRrz R

aNA

2

11)(a

NAr

NA

arz

++++

+++++

...65536

715

32768

429

2048

33

1024

21

256

7

128

5

16

1

8

1

2

1)(

181614

12108642

xxx

xxxxxxNA

arz

a

NArx

exact

spherical

wave

parabolic

approximation

by Z4

z

r

a

correction

z by

higher

orders

36

Zernike Representation of a Spherical Wave

Comparing coefficients with circular symmetric

Zernike functions:

- linear relationship between Zernikes

- corresponds to a Zernike expansion of the

spherical wave

Accuracy depends on radius, NA and number of terms

Special case:

Defocus on the high NA side:

causes a linear change of all orders c4, c9,c16,...

( )

( ) ( )

( ) ( ) ( )

.....

12012840844204201024

21

924

1

514804118402048

33

3432

1

21879032768

429

12870

1

65536

715

48620

1

6481100

11

49

81100

13

64

100

15

81

17

100

cccNAc

ccNAc

cNAc

NAc

4 9 16 25 36 49 64 81 10010

-8

10-6

10-4

10-2

100

cj

37

Zernike Representation of a Spherical Wave

Example:

Accuracy as a function of NA and

radius for 7 terms as a function of

position

NA = 0.8

z

r

NA = 0.9

NA = 0.6

-1 -0.5 0 0.5 110

-

10

10-8

10-6

10-4

10-2

38

Axial Intensity for Circular Symmetric Zernikes

Circular symmetric Zernikes:

- corresponds to a chirped radial phase grating

Increasing Talbot-effect along the axis causes a split of the axial intensity into

separated peaks

Effect grows with order and size of coefficient

The spreading of the side-lobes increases with the order

Corresponds to a multi-focus image

zRE

I(z)I(z)

-60 -40 -20 0 20 40 600

0.5

1

c = 0.3 n = 10

n = 14

n = 18

n = 24

n = 30

-60 -40 -20 0 20 40 600

0.5

1

c = 0.7 n = 10

n = 14

n = 18

n = 24

n = 30

zRE

I(z)

-60 -40 -20 0 20 40 600

0.5

1

c = 0.5 n = 10

n = 14

n = 18

n = 24

n = 30

39

Zernike Expansion of a Vignetted Pupil

Direct numerical (SVD optimization) expansion

of a vignetted amplitude in the pupil.

Apodization due to surface vignetting:

24% relative area.

Modelling of this profile by N Zernike

coefficients on a 128x128 grid

Errors in Apodization and corresponding Psf:

xM

rV

r

24%

Nzern Apod Rms

Apod PV Psf Rms Psf PV Psf Peak error [%]

36 0.1268 0.593 0.00113 0.0185 1.8

64 0.1083 0.568 6.4 10-4

0.0108 1.1

100 0.0962 0.531 3.8 10-4

0.0064 0.63

225 0.0765 0.512 6.2 10-5

8.5 10-4

0.13

40

Zernike Expansion of a Vignetted Pupil

N = 225N = 64N = 36 N = 100

Apodization

Error of

apodization

Error of

Psf

41

Zernike Expansion of a Vignetted Pupil

rms

50 100 150 200 25010

-5

10-4

10-3

10-2

10-1

100

Nzern

apodization

Psf

The improvement of the apodization itself grows slowly with the number of terms

The accuracy of the Psf in increased quite better

42

Zernike Expansion of a Vignetted Pupil

Cross section of the modelled apodization

amplitude A(y) and corresponding error

Poor convergence of the Zernike coefficients

cj

50 100 150 200 2500

0.1

0.2

0.3

0.4

0.5

-1 -0.5 0 0.5 1-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Apodization

A(y)

error A(y)

y

43

Performance Description by Zernike Expansion

Vector of cj

linear sequence with runnin g index

Sorting by symmetry

0 1 2 3 4 -1 -2 -3 -4

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

circular

symmetric

m = 0cos terms

m > 0

sin terms

m < 0

cj

m

44

Field Dependence of Zernike Coefficients

Usually the system quality changes with the field position

The natural behavior is

a decrease in quality from

the center to the edge

For spatial variant PSF

deconvolution or image

calculation applications,

a robust interpolation for

arbitrary field points is desirable

An interpolation of the PSF-intensity

distribution is nearly impossible

The individual Zernike coefficients vary

rather smoothly with the field location

An interpolation of the individual

Zernike coefficients therefore is quite

good -2

-1

0

1

2

3

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cj in

relative

field

position

c4 defocus

c5 astigmatism

c8 coma

c9 spherical

c11

trefoil

c12

astigmatism 5. order

c15

coma 5. order

c16

spherical 5. order

x = 0 x = 20% x = 40% x = 60 % x = 80 % x = 100 %

45

Conventional usage of Zernike coefficients: - description of wave front in pupil - determines the PSF intensity in the reference plane

More general approach due to Braat (2005) according to an old idea of Zernike (1930) - expansion of the intensity I(x,y,z) in the image domain in all dimensions - lateral expansion into Zernikes - axial Taylor expansion with coefficients

cnm: classical Zernike coefficients

This gives an analytical representation of the volume distribution of intensity

Extended Zernike Approach

( )

++

+

++++

l

jlq

jp

l

l

lj

l

ljmjlmb pnm

lj

1

1

1

1

12)1(

22

mnq

mnp

+

( ) ( ) ( )

++

+

p

jl

jlmnm

lj

l

liz

mn

m

nmrl

rJbizemici

r

rJzrE

0

2

1

1

0,

1)(

2cos4)(2

2,,

46

Example: - intensity z-stack for coma - calculation with diffraction integral / extended Zernike approach - nearly perfect result without differences

Extended Zernike Approach

z = -1.5 -1.0 -0.5 0 0.5 1.0 1.5

ccoma = 0.05

diffraction

integral

extended

Nijboer-

Zernike

47

Extended Zernike Accuracy

Problems with extended Zernikes: 1. circular coordinates 2. no apodization 3. truncation of expansion critical, in particular along z finite range of convergence

Example calculation: accuracy as a function of growing coefficients for fixed number of terms

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

Irms

cj

defocus

astigmatism

coma

spherical

defocus

astigmatism

coma

spherical

0 0.2 0.4 0.6 0.8 1

correlation

cj0.5

0.6

0.7

0.8

0.9

1

48