iir direct form realization

Upload: abdul-basit-mughal

Post on 03-Jun-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 IIR Direct Form Realization

    1/69

    Copyright 2001, S. K. Mitra

    Basic IIR Digital Filter

    Structures The causal IIR digital filters we are

    concerned with in this course are

    characterized by a real rational transferfunction of or, equivalently by a constantcoefficient difference equation

    From the difference equation representation,it can be seen that the realization of thecausal IIR digital filters requires some formof feedback

    1z

  • 8/12/2019 IIR Direct Form Realization

    2/69

    Copyright 2001, S. K. Mitra

    Basic IIR Digital Filter

    Structures AnN-th order IIR digital transfer function is

    characterized by2N+1 unique coefficients,

    and in general, requires2N+1 multipliersand 2Ntwo-input adders for implementation

    Direct form IIR filters:Filter structures in

    which the multiplier coefficients areprecisely the coefficients of the transfer

    function

  • 8/12/2019 IIR Direct Form Realization

    3/69

    Copyright 2001, S. K. Mitra

    Direct Form IIR Digital Filter

    Structures Consider for simplicity a3rd-order IIR filter

    with a transfer function

    We can implementH(z)as a cascade of two

    filter sections as shown on the next slide

    33

    22

    11

    33

    22

    110

    1

    zdzdzd

    zpzpzpp

    zD

    zPzH

    )(

    )()(

  • 8/12/2019 IIR Direct Form Realization

    4/69

    Copyright 2001, S. K. Mitra

    Direct Form IIR Digital Filter

    Structures

    where

    33

    22

    1101

    zpzpzppzP

    zX

    zWzH )(

    )(

    )()(

    )(zH1

    )(zH2

    )(zW)(zX )(zY

    33

    22

    11

    21

    11

    zdzdzdzDzW

    zYzH

    )()(

    )()(

  • 8/12/2019 IIR Direct Form Realization

    5/69

    Copyright 2001, S. K. Mitra

    Direct Form IIR Digital Filter

    Structures The filter section can be seen to be

    an FIR filter and can be realized as shown

    below]3[]2[]1[][][ 3210 nxpnxpnxpnxpnw

    )(zH1

  • 8/12/2019 IIR Direct Form Realization

    6/69

    Copyright 2001, S. K. Mitra

    Direct Form IIR Digital Filter

    Structures The time-domain representation of is

    given by

    Realization of

    follows from the

    above equationand is shown on

    the right

    )(zH2

    ][][][][][ 321 321 nydnydnydnwny

    )(zH2

  • 8/12/2019 IIR Direct Form Realization

    7/69

    Copyright 2001, S. K. Mitra

    Direct Form IIR Digital Filter

    Structures A cascade of the two structures realizing

    and leads to the realization of

    shown below and is known as thedirectform Istructure

    )(zH2

    )(zH1)(zH

  • 8/12/2019 IIR Direct Form Realization

    8/69

    Copyright 2001, S. K. Mitra

    Direct Form IIR Digital Filter

    Structures Note:The direct form Istructure is

    noncanonic as it employs6 delays to realize

    a 3rd-order transfer function

    A transpose of the

    direct form Istructure

    is shown on the rightand is called thedirect

    form I structuret

  • 8/12/2019 IIR Direct Form Realization

    9/69

    Copyright 2001, S. K. Mitra

    Direct Form IIR Digital Filter

    Structures

    Various other noncanonic direct form

    structures can be derived by simple block

    diagram manipulations as shown below

  • 8/12/2019 IIR Direct Form Realization

    10/69

    Copyright 2001, S. K. Mitra

    Direct Form IIR Digital Filter

    Structures

    Observe in the direct form structure shown

    below, the signal variable at nodes and

    are the same, and hence the two top delayscan be shared

    1 '1

  • 8/12/2019 IIR Direct Form Realization

    11/69

    Copyright 2001, S. K. Mitra

    Direct Form IIR Digital Filter

    Structures Likewise, the signal variables at nodes

    and are the same, permitting the sharing

    of the middle two delays Following the same argument, the bottom

    two delays can be shared

    Sharing of all delays reduces the totalnumber of delays to 3resulting in a canonicrealization shown on the next slide alongwith its transpose structure

    2

    '2

  • 8/12/2019 IIR Direct Form Realization

    12/69

    Copyright 2001, S. K. Mitra

    Direct Form IIR Digital Filter

    Structures

    Direct form realizations of anN-th order IIR

    transfer function should be evident

  • 8/12/2019 IIR Direct Form Realization

    13/69

  • 8/12/2019 IIR Direct Form Realization

    14/69

    Copyright 2001, S. K. Mitra

    Cascade Form IIR Digital

    Filter Structures Examples of cascade realizations obtained

    by different pole-zero pairings are shown

    below

  • 8/12/2019 IIR Direct Form Realization

    15/69

    Copyright 2001, S. K. Mitra

    Cascade Form IIR Digital

    Filter Structures Examples of cascade realizations obtained

    by different ordering of sections are shown

    below

  • 8/12/2019 IIR Direct Form Realization

    16/69

    Copyright 2001, S. K. Mitra

    Cascade Form IIR Digital

    Filter Structures There are altogether a total of 36different

    cascade realizations of

    based on pole-zero-pairings and ordering

    Due to finite wordlength effects, each such

    cascade realization behaves differently from

    others

    )()()()()()()( zDzDzD

    zPzPzPzH321

    221

  • 8/12/2019 IIR Direct Form Realization

    17/69

    Copyright 2001, S. K. Mitra

    Cascade Form IIR Digital

    Filter Structures Usually, the polynomials are factored into a

    product of 1st-order and 2nd-order

    polynomials:

    In the above, for a first-order factor

    k kk

    kk

    zz

    zzpzH

    22

    11

    22

    11

    01

    1

    )(

    022 kk

  • 8/12/2019 IIR Direct Form Realization

    18/69

    Copyright 2001, S. K. Mitra

    Cascade Form IIR Digital

    Filter Structures Consider the 3rd-order transfer function

    One possible realization is shown below

    2

    221

    12

    222

    112

    111

    111

    1

    1

    1

    1

    0 zzpzH

    zz

    z

    z

    )(

  • 8/12/2019 IIR Direct Form Realization

    19/69

  • 8/12/2019 IIR Direct Form Realization

    20/69

    Copyright 2001, S. K. Mitra

    Cascade Form IIR Digital

    Filter Structures

    Direct form II Cascade form

  • 8/12/2019 IIR Direct Form Realization

    21/69

    Copyright 2001, S. K. Mitra

    Parallel Form IIR Digital Filter

    Structures A partial-fraction expansion of the transfer

    function in leads to the parallel form I

    structure Assuming simple poles, the transfer function

    H(z) can be expressed as

    In the above for a real pole

    k zz

    z

    kk

    kkzH2

    21

    1

    110

    10

    )(

    012 kk

    1z

  • 8/12/2019 IIR Direct Form Realization

    22/69

    Copyright 2001, S. K. Mitra

    Parallel Form IIR Digital Filter

    Structures A direct partial-fraction expansion of the

    transfer function inzleads to the parallel

    form IIstructure Assuming simple poles, the transfer function

    H(z) can be expressed as

    In the above for a real pole

    k zz

    zz

    kk

    kkzH2

    21

    1

    2210

    10

    )(

    022 kk

  • 8/12/2019 IIR Direct Form Realization

    23/69

    Copyright 2001, S. K. Mitra

    Parallel Form IIR Digital Filter

    Structures The two basic parallel realizations of a 3rd-

    order IIR transfer function are shown below

    Parallel form I Parallel form II

  • 8/12/2019 IIR Direct Form Realization

    24/69

    Copyright 2001, S. K. Mitra

    Parallel Form IIR Digital Filter

    Structures Example - A partial-fraction expansion of

    in yields

    321

    321

    20180401

    0203620440

    zzzzzz

    zH ...

    ...

    )(

    21

    1

    1 50801

    2050

    401

    60

    10

    zzz

    zzH ..

    ..

    .

    .

    .)(

    1z

  • 8/12/2019 IIR Direct Form Realization

    25/69

    Copyright 2001, S. K. Mitra

    Parallel Form IIR Digital Filter

    Structures

    The correspondingparallel form Irealization

    is shown below

  • 8/12/2019 IIR Direct Form Realization

    26/69

    Copyright 2001, S. K. Mitra

    Parallel Form IIR Digital Filter

    Structures Likewise,a partial-fraction expansion of

    H(z)inzyields

    The corresponding

    parallel form II

    realization is shown

    on the right

    21

    11

    1

    1

    50801

    25020

    401

    240

    zz

    zz

    z

    zzH

    ..

    ..

    .

    .)(

  • 8/12/2019 IIR Direct Form Realization

    27/69

    Copyright 2001, S. K. Mitra

    Realization Using MATLAB

    The cascade form requires the factorization

    of the transfer function which can bedeveloped using the M-filezp2sos

    The statementsos = zp2sos(z,p,k)

    generates a matrixsoscontaining the

    coefficients of each2nd-order section of the

    equivalent transfer functionH(z) determined

    from its pole-zero form

  • 8/12/2019 IIR Direct Form Realization

    28/69

    Copyright 2001, S. K. Mitra

    Realization Using MATLAB

    sosis an matrix of the form

    whosei-th row contains the coefficientsand , of the the numerator and

    denominator polynomials of thei-th2nd-

    order section

    6L

    2L1L0L2L1L0L

    221202221202

    211101211101

    dddppp

    dddppp

    dddppp

    sos

    }{ ip}{ id

  • 8/12/2019 IIR Direct Form Realization

    29/69

    Copyright 2001, S. K. Mitra

    Realization Using MATLAB

    Ldenotes the number of sections

    The form of the overall transfer function is

    given by

    Program 6_1can be used to factorize an

    FIR and an IIR transfer function

    L

    i iii

    iiiL

    ii

    zdzdd

    zpzppzHzH

    12

    21

    10

    22

    110

    1

    )()(

  • 8/12/2019 IIR Direct Form Realization

    30/69

    Copyright 2001, S. K. Mitra

    Realization Using MATLAB

    Note:An FIR transfer function can be

    treated as an IIR transfer function with a

    constant numerator of unity and adenominator which is the polynomial

    describing the FIR transfer function

  • 8/12/2019 IIR Direct Form Realization

    31/69

    Copyright 2001, S. K. Mitra

    Realization Using MATLAB

    Parallel forms I and II can be developedusing the functionsresiduezand

    residue, respectively Program 6_2 uses these two functions

  • 8/12/2019 IIR Direct Form Realization

    32/69

    Copyright 2001, S. K. Mitra

    Realization of Allpass Filters

    AnM-th order real-coefficient allpass

    transfer function is characterized by

    Munique coefficients as here the numerator

    is the mirror-image polynomial of thedenominator

    A direct form realization of requires

    2Mmultipliers

    Objective -Develop realizations of

    requiring onlyMmultipliers

    )(zAM

    )(zAM

    )(zAM

  • 8/12/2019 IIR Direct Form Realization

    33/69

    Copyright 2001, S. K. Mitra

    Realization Using Multiplier

    Extraction Approach

    Now, an arbitrary allpass transfer function

    can be expressed as a product of 2nd-orderand/or 1st-order allpass transfer functions

    We consider first the minimum multiplier

    realization of a 1st-order and a 2nd-orderallpass transfer functions

  • 8/12/2019 IIR Direct Form Realization

    34/69

    Copyright 2001, S. K. Mitra

    First-Order Allpass Structures

    Consider first the1st-order allpass transfe

    function given by

    We shall realize the above transfer function

    in the form a structure containing a single

    multiplier as shown below1d

    121122211122111 ttttztzt ,,

    1d

    1X

    2X1

    Y

    2Y

  • 8/12/2019 IIR Direct Form Realization

    35/69

    Copyright 2001, S. K. Mitra

    First-Order Allpass Structures

    We express the transfer function

    in terms of the transfer parameters of the

    two-pair as

    A comparison of the above with

    yields1

    1

    11

    11

    zd

    zdzA )(

    221

    21122211111

    221

    1211211 111 td

    ttttdt

    td

    dtttzA

    )()(

    111 XYzA /)(

    1211222111

    221

    11 ttttztzt ,,

  • 8/12/2019 IIR Direct Form Realization

    36/69

    Copyright 2001, S. K. Mitra

    First-Order Allpass Structures

    Substituting and in

    we get

    There are 4possible solutions to the above

    equation:

    Type 1A:

    Type 1B:

    121122211 tttt

    111

    zt 1

    22 zt

    22112 1 ztt

    11 21212122111 tztztzt ,,,

    121

    112

    122

    111 11

    ztztztzt ,,,

  • 8/12/2019 IIR Direct Form Realization

    37/69

    Copyright 2001, S. K. Mitra

    First-Order Allpass Structures

    Type 1A :

    Type 1B :

    We now develop the two-pair structure for

    the Type 1Aallpass transfer function

    22112

    122

    111 11

    zttztzt ,,,

    121

    112

    122

    111 11

    ztztztzt ,,,

    t

    t

  • 8/12/2019 IIR Direct Form Realization

    38/69

    Copyright 2001, S. K. Mitra

    First-Order Allpass Structures

    From the transfer parameters of this allpass

    we arrive at the input-output relations:

    A realization of the above two-pair is

    sketched below

    2112 XzXY

    221

    22

    11

    1 1 XYzXzXzY )(

  • 8/12/2019 IIR Direct Form Realization

    39/69

  • 8/12/2019 IIR Direct Form Realization

    40/69

    Copyright 2001, S. K. Mitra

    First-Order Allpass Structures

    In a similar fashion, the other three single-multiplier first-order allpass filter structures

    can be developed as shown below

    Type 1B Type 1At

    Type 1Bt

  • 8/12/2019 IIR Direct Form Realization

    41/69

    Copyright 2001, S. K. Mitra

    Second-Order Allpass

    Structures A 2nd-order allpass transfer function is

    characterized by 2unique coefficients

    Hence, it can be realized using only 2multipliers

    Type 2allpass transfer function:

    221

    11

    21121

    21

    zddzd

    zzdddzA )(

  • 8/12/2019 IIR Direct Form Realization

    42/69

    Copyright 2001, S. K. Mitra

    Type 2 Allpass Structures

  • 8/12/2019 IIR Direct Form Realization

    43/69

  • 8/12/2019 IIR Direct Form Realization

    44/69

    Copyright 2001, S. K. Mitra

    Type 3 Allpass Structures

    R li ti U i M lti li

  • 8/12/2019 IIR Direct Form Realization

    45/69

    Copyright 2001, S. K. Mitra

    Realization Using MultiplierExtraction Approach

    Example -Realize

    A3-multiplier realization of the aboveallpass transfer function is shown below

    321

    321

    20180401

    40180203

    zzz

    zzzzA

    ...

    ...)(

    )..)(.()..)(.(

    211

    211

    50801401805040

    zzzzzz

  • 8/12/2019 IIR Direct Form Realization

    46/69

  • 8/12/2019 IIR Direct Form Realization

    47/69

    Copyright 2001, S. K. Mitra

    Realization Using Two-Pair

    Extraction Approach Let

    We use the recursion

    where

    It has been shown earlier that is

    stable if and only if

    mm

    mm

    mmmmm

    zdzdzdzd

    zzdzdzddm zA

    )(

    )(

    ...

    ...)(

    11

    22

    11

    11

    22

    11

    1

    11 ,...,, MMm],[)()(

    )(

    zAk

    kzAm

    mm

    mmzzA

    11

    mmm

    dAk )(

    )(zAM

    12

    mk for 11 ,...,, MMm

  • 8/12/2019 IIR Direct Form Realization

    48/69

    Copyright 2001, S. K. Mitra

    Realization Using Two-Pair

    Extraction Approach If the allpass transfer function is

    expressed in the form

    then the coefficients of are simply

    related to the coefficients of through

    )()(

    )()(

    ''...'

    '...'')( 1

    12

    21

    1

    121121

    11

    mm

    mm

    mmmm

    zdzdzd

    zzdzddm zA

    )(zAm 1)(zAm

    111

    2

    mi

    d

    dddd

    m

    immii ,'

    )(zAm 1

  • 8/12/2019 IIR Direct Form Realization

    49/69

    Copyright 2001, S. K. Mitra

    Realization Using Two-Pair

    Extraction Approach To develop the realization method we

    express in terms of :

    We realize in the form shown below

    )(zAm 1)(zAm

    )(zAm

    )(

    )()(zAzk

    zAzkm

    mm

    mmzA1

    111

    1

    )(zAm

    )(zAm 11

    X

    1Y

    2X

    2Y

    2221

    1211

    tt

    tt

  • 8/12/2019 IIR Direct Form Realization

    50/69

    Copyright 2001, S. K. Mitra

    Realization Using Two-Pair

    Extraction Approach

    The transfer function of the

    constrained two-pair can be expressed as

    Comparing the above with

    we arrive at the two-pair transfer parameters

    )()()()(

    zAtzAtttttm

    m

    mzA122

    121122211111

    11 XYzAm /)(

    )(

    )()(

    zAzk

    zAzkm

    mm

    mmzA1

    111

    1

  • 8/12/2019 IIR Direct Form Realization

    51/69

    Copyright 2001, S. K. Mitra

    Realization Using Two-Pair

    Extraction Approach

    Substituting and in the

    equation above we get

    There are a number of solutions for and

    12211

    zktkt mm,1

    21122211 ztttt

    122 zkt mmkt 11

    122112 1

    zktt m)(

    21t12t

  • 8/12/2019 IIR Direct Form Realization

    52/69

    Copyright 2001, S. K. Mitra

    Realization Using Two-Pair

    Extraction Approach Some possible solutions are given below:

    11 2112

    121

    2211 tzktzktkt mmm ,)(,,

    mmmm ktzktzktkt 11 21

    112

    12211 ,)(,,

    2

    21

    12

    12

    1

    2211 11 mmmm ktzktzktkt ,,,

    2

    21

    1

    12

    1

    2211 1

    mmm ktztzktkt ,,,

  • 8/12/2019 IIR Direct Form Realization

    53/69

    Copyright 2001, S. K. Mitra

    Realization Using Two-Pair

    Extraction Approach Consider the solution

    Corresponding input-output relations are

    A direct realization of the above equations

    leads to the 3-multiplier two-pair shown on

    the next slide

    11 2112

    121

    2211 tzktzktkt mmm ,)(,,

    212

    11 1 XzkXkY mm )(

    21

    12 XzkXY m

    R li ti U i T P i

  • 8/12/2019 IIR Direct Form Realization

    54/69

    Copyright 2001, S. K. Mitra

    Realization Using Two-Pair

    Extraction Approach

    The transfer parameters

    lead to the 4-multiplier two-pair structure

    shown below

    mmmm ktzktzktkt 11 21

    112

    12211 ,)(,,

  • 8/12/2019 IIR Direct Form Realization

    55/69

    Copyright 2001, S. K. Mitra

    Realization Using Two-Pair

    Extraction Approach Likewise, the transfer parameters

    lead to the 4-multiplier two-pair structure

    shown below

    2

    21

    12

    12

    1

    2211 11 mmmm ktzktzktkt ,,,

  • 8/12/2019 IIR Direct Form Realization

    56/69

    Copyright 2001, S. K. Mitra

    Realization Using Two-Pair

    Extraction Approach A2-multiplier realization can be derived by

    manipulating the input-output relations:

    Making use of the second equation, we can

    rewrite the first equation as

    212

    11 1 XzkXkY mm

    )(

    21

    12 XzkXY m

    21

    21 XzYkY m

  • 8/12/2019 IIR Direct Form Realization

    57/69

    Copyright 2001, S. K. Mitra

    Realization Using Two-Pair

    Extraction Approach A direct realization of

    lead to the2-multiplier two-pair structure,

    known as thelattice structure, shown below

    21

    21 XzYkY m

    2112 XzkXY m

  • 8/12/2019 IIR Direct Form Realization

    58/69

    Copyright 2001, S. K. Mitra

    Realization Using Two-Pair

    Extraction Approach Consider the two-pair described by

    Its input-output relations are given by

    Define

    mmmm ktzktzktkt 11 21

    112

    12211 ,)(,,

    21

    11 1 XzkXkY mm )(

    2

    1

    12 1 XzkXkY

    mm

    )(

    21

    11 XzXkV m )(

  • 8/12/2019 IIR Direct Form Realization

    59/69

    Copyright 2001, S. K. Mitra

    Realization Using Two-Pair

    Extraction Approach We can then rewrite the input-output

    relations as and

    The corresponding 1-multiplier realizationis shown below

    21

    11 XzVY 112 VXY

    1V

    1V

  • 8/12/2019 IIR Direct Form Realization

    60/69

    Copyright 2001, S. K. Mitra

    Realization Using Two-Pair

    Extraction Approach Anmth-order allpass transfer function

    is then realized by constraining any one of

    the two-pairs developed earlier by the

    th-order allpass transfer function)( 1m

    )(zAm

    )(zAm 1

  • 8/12/2019 IIR Direct Form Realization

    61/69

    Copyright 2001, S. K. Mitra

    Realization Using Two-Pair

    Extraction Approach The process is repeated until the

    constraining transfer function is

    The complete realization of based onthe extraction of the two-pair latttice is

    shown below

    )(zAM

    10 )(zA

  • 8/12/2019 IIR Direct Form Realization

    62/69

    Copyright 2001, S. K. Mitra

    Realization Using Two-Pair

    Extraction Approach It follows from our earlier discussion that

    is stable if the magnitudes of all

    multiplier coefficients in the realization areless than 1, i.e., for

    The cascaded lattice allpass filter structure

    requires2Mmultipliers A realization withMmultipliers is obtained if

    instead the single multiplier two-pair is used

    1|| mk 11 ,...,, MMm

    )(zAM

  • 8/12/2019 IIR Direct Form Realization

    63/69

    Copyright 2001, S. K. Mitra

    Realization Using Two-Pair

    Extraction Approach Example -Realize

    332211

    321

    121

    1

    zdzdzd

    zzdzdd

    321

    321

    3 2.018.04.01

    4.018.02.0)(

    zzz

    zzzzA

  • 8/12/2019 IIR Direct Form Realization

    64/69

    Copyright 2001, S. K. Mitra

    Realization Using Two-Pair

    Extraction Approach We first realize in the form of a

    lattice two-pair characterized by the

    multiplier coefficientand constrained by a 2nd-order allpass

    as indicated below

    )(3 zA

    )(2 zA2.033 dk

    2.03 k

  • 8/12/2019 IIR Direct Form Realization

    65/69

    Copyright 2001, S. K. Mitra

    Realization Using Two-Pair

    Extraction Approach The allpass transfer function is of the

    form

    Its coefficients are given by

    )(2 zA

    22

    11

    2112

    ''1

    ''

    2 )(

    zdzdzzdd

    zA

    4541667.0223

    231

    )2.0(1

    )18.0)(2.0(4.0

    1

    '1

    d

    dddd

    2708333.022

    3

    132

    )2.0(1

    )4.0)(2.0(18.0

    1

    '2

    d

    dddd

  • 8/12/2019 IIR Direct Form Realization

    66/69

    Copyright 2001, S. K. Mitra

    Realization Using Two-Pair

    Extraction Approach Next, the allpass is realized as a

    lattice two-pair characterized by the

    multiplier coefficientand constrained by an allpass as

    indicated below

    )(2 zA

    )(1 zA2708333.0

    '22 dk

    ,2.03 k 2708333.02k

  • 8/12/2019 IIR Direct Form Realization

    67/69

    Copyright 2001, S. K. Mitra

    Realization Using Two-Pair

    Extraction Approach The allpass transfer function is of the

    form

    It coefficient is given by

    )(1 zA

    11

    11

    "1

    "

    1 )(

    zd

    zd

    zA

    3573771.02708333.1

    4541667.0

    1)(1

    "

    1 '2

    '1

    2'2

    '1

    '2

    '1

    d

    d

    d

    dddd

  • 8/12/2019 IIR Direct Form Realization

    68/69

    Copyright 2001, S. K. Mitra

    Realization Using Two-Pair

    Extraction Approach Finally, the allpass is realized as a

    lattice two-pair characterized by the

    multiplier coefficientand constrained by an allpass as

    indicated below

    )(1 zA

    1)(0 zA3573771.0

    "11 dk

    ,2.03 k 2708333.02k

    3573771.01 k

  • 8/12/2019 IIR Direct Form Realization

    69/69

    Cascaded Lattice Realization

    Using MATLAB The M-filepoly2rccan be used to realize

    an allpass transfer function in the cascaded

    lattice form To this end Program 6_3can be employed