high average-efficiency power amplifier techniques jason...

44
High Average-Efficiency Power Amplifier Techniques Jason Stauth, U.C. Berkeley Power Electronics Group 2 2 Q I

Upload: others

Post on 27-Feb-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

High Average-Efficiency Power Amplifier Techniques

Jason Stauth, U.C. Berkeley Power Electronics Group

22 QI

Page 2: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

Overview

• Application Space: Efficient RF Power Amplifiers

• PA Fundamentals, Polar/ET Architectures• Challenges with Polar/ET

• Research Directions• Direct Digital Modulation• Pulse-Density Modulation

Page 3: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

Power Amplifier Fundamentals

VDD

RL

BiasVout

Rs

Vs

Source

InputNetwork

Output Network

Q

I

Edge Constellation:3pi/8, rotated 8-PSK

Page 4: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

Linear Power Amplifier (PA)

•Active transconductance device

•Input matched to previous stage

•Output (antenna) impedancetransformed to increasepower gain

•Small-signal model close to common source amplifier

Page 5: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

Nonlinear PA

• Active device operates as a switch

• Approx LTV System

• Voltage waveform constrained(also consider current waveform)

constrained unconstrained constrained

Gate Voltage

Dra

in V

olta

ge

• Class-F— Frequency Domain— Impedance Design

• Class-E— Time domain— Impulse Response

design-Class E/F ZVS Amplifiers, Kee et al., MTT ‘03

Page 6: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

The Point…

• Nonlinear PAs can’t do amplitude modulation

0%

1%

2%

3%

4%

5%

-60 -50 -40 -30 -20 -10 0dB(Pmax) - dB(Pout)

Effic

ienc

y

0%

20%

40%

60%

80%

100%

Prob

abili

ty

PDF Class A Class B Nonlinear*

• Linear PAs can do amplitude modulation, but are inefficient

2

2

21

dd

aA V

V

dd

aB V

V4

dd

aS V

V

Page 7: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

Average Efficiency

0%

1%

2%

3%

4%

5%

-60 -50 -40 -30 -20 -10 0dB(Pmax) - dB(Pout)

Effic

ienc

y

0%

20%

40%

60%

80%

100%

Prob

abili

ty

PDF Class A Class B Nonlinear*

LLsupplyL

LLL

supply

loadavg

dPPPPg

dPPPg

EE

)()(

)(

LL

LL

LLL

dPPPPg

dPPPg

)()(

)(

PA Class: Class A Class B Nonlinear PA

Average Efficiency:

0.78%* / 9.2%** 14.46% 18.21%

*constant bias current

**variable bias current

Page 8: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

Polar and Envelope Tracking Transmitters

• Supply regulation synchronous with RF Envelope

Voltage Regulator

0%

1%

2%

3%

4%

-60 -50 -40 -30 -20 -10 0dB(Pmax) - dB(Pout)

Effic

ienc

y

00.10.20.30.40.50.60.70.80.9

Prob

abili

ty

Ideal Class-B PA Efficiency

0%

1%

2%

3%

4%

-60 -50 -40 -30 -20 -10 0dB(Pmax) - dB(Pout)

Effic

ienc

y

0%10%20%30%40%50%60%70%80%90%

Prob

abili

ty Ideal DynamicSupply PA

0%

1%

2%

3%

4%

-60 -50 -40 -30 -20 -10 0dB(Pmax) - dB(Pout)

Effic

ienc

y

0%10%20%30%40%50%60%70%80%90%

Prob

abili

ty

Realistic Dynamic SupplyPA Efficiency

%5.62avg-Raab et al. “High efficiency L-band Kahn-technique transmitter," MTT-S, 1998.

-Hanington, et al. "High-Efficiency Power Amplifier Using Dynamic Power-Supply Voltage for CDMA Applications," MTT, Aug. 1999.

Page 9: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

Polar Architecture

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10time

Am

plitu

de S

igna

l

-1.5

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8 10

timePh

ase

Sign

al

PA

Regulator

PolarModulator

Env.Det.

A(t)

Φ(t)RFLO

Limiter

I

Q

)(),()sin()cos(),(

wtjeFV

wtQwtIQIFV• Many (most?) implementations don’t use

an efficient supply modulator • efficiency gains from using nonlinear PA

Q

I

Page 10: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

Envelope Tracking

• Linear (class-AB) PA

• Efficient supply modulator (linear reg doesn’t make sense)

Bas

eban

dG

ener

atio

n

RF

RF LOLinear

PA

V(t)

Enve

lope

Map

ping

Envelope Feedback

Operate at max PAE point

Page 11: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

Challenges• Bandwidth• Peak-average power ratio• Time alignment• Distortion (AM-AM, AM-PM)• PSRR

System Bandwidth (MHz)

Peak-Average Power Ratio (dB)

Power Control Range (dB)

GSM 0.20 0 30EDGE 0.20 3.2 30WCDMA 3.84 3.5–7 80cdma2000 1.23 4–9 80802.11a/g 18.0 6–17 —

-15 -10 -5 0 5 10 15-20 20

-90

-80

-70

-60

-50

-40

-30

-20

-100

-10

freq, MHzdBm

(fs(W

LAN

A[1

],-20

M,2

0M,,,

"Kai

s

42.5 43.0 43.542.0 44.0

0.10.20.30.40.50.60.70.80.91.0

0.0

1.1

time, usec

mag

(WLA

NA

[1])

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5-2.0 2.0

-90

-80

-70

-60-50

-40

-30

-20

-100

-10

freq, MHzdBm

(fs(C

DM

A2k

[1],-

2M,2

M,,,

"Kai

ser"

))

27 29 31 3325 35

0.2

0.3

0.4

0.1

0.5

time, usec

mag

(CD

MA

2k[1

])

0.1 0.2 0.3 0.4 0.50.0 0.6

50

100

150

200

0

250

indep(histogram(mag(CDMA2k[1]),250,0,.5))

hist

ogra

m(m

ag(C

DM

A2k

[1]),

250,

0,.5

)

0.1 0.2 0.3 0.4 0.5 0.6 0.70.0 0.8

50

100

150

200

0

250

indep(histogram(mag(WLANA[1]),250,0,.8))

hist

ogra

m(m

ag(W

LAN

A[1

]),25

0,0,

.8

Page 12: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

Project Directions

-+

C

VDD

Switching Regulator

LoadLinear Regulator

ILr ISr

ILoadVref

Feedback

-+

Control/PWM

L

Bas

eban

dG

ener

atio

n

IF

RF

RF LOLinear

PA

V(t)

Enve

lope

Map

ping

Envelope Feedback

RF Pulse Train

Pulse-density modulation process

Mixer PA Filter

Wideband Switching Regulators

Hybrid Linear-Switching Regulators

Direct Nonlinear Modulation Transmitters

Page 13: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

Wideband Switching Regulators

• Envelope Tracking Architecture• Wideband: 20MHz Envelope bandwidth• High switching frequency• High PSRR PA

Control&

PWM

Baseband

Baseband-Envelope

Map

EnvelopeDetect

AND/OR

PA RF-Out

Vdd

.

Filter

Switching Regulator

LO

RFIFupconversion

EnvelopeReference

0%

1%

2%

3%

4%

-60 -50 -40 -30 -20 -10 0dB(Pmax) - dB(Pout)

Effic

ienc

y

0%

10%

20%

30%

40%

50%

60%

Prob

abili

ty

Probability density functionPA Efficiency

w/o dynamicsupplywith

dynamic supply

Page 14: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

Challenge: Power Supply Rejection

• Supply noise can mix into the RF spectrum, degrading SNR, violating spectral masks (ACPR)

• New Concept: design for high PSRR

P(d

B)

P(d

B)

P(d

B)

-Stauth, Sanders, "Power supply rejection for RF amplifiers," (RFIC) Symposium, June 2006

Page 15: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

Results: MTT Oct ‘07

• Supply-Signal mixing term:

423222111

1

222 KgmbKgmKyKgmogmdBPSRR

0

423222111111

222),(K

KgmbKgmKyKgmoyjwjwA Sba

0

10

20

30

40

50

60

70

1.E+06 4.E+06 1.E+07 5.E+07 2.E+08 7.E+08 3.E+09 1.E+10Frequency (Hz)

PSR

R (d

BV)

gmo11gmo11+go2gmo11+go2+C2

go2*

gmo11*

C2*

Total PSRR value

PSRR=sideband in dBc for 1V (0dBv) supply noise tone

),()(2

011

010

SjwjwAjwA

dBPSRR

Page 16: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

Hybrid Linear-Switching Regulators

Page 17: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

Hybrid Regulator Paradigm

-+

C

VDD

Switching RegulatorLoad

Linear Regulator

Vref RefControl/PWM

L

Series Hybrid Parallel (shunt) Hybrid

•Decouple bandwidth-efficiency (audio, AVS digital, PA supply)

•Fast linear block: (supply dynamic output voltage, attenuate switching regulator harmonics)

•Slow switching block: (efficient, low cost)

•Series hybrid drawbacks: low Vdd efficiency, headroom issues

Page 18: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

Parallel Hybrid Operation

• Linear Stage: Voltage Follower(Class AB LDO)

• Switching Stage: Current source

• Traditional:

• Previous work: Optimize in the frequency domain

SwitchingFrequency

SwitchingReg. BW Linear Reg. BW

Dynamic Supply BW

-Yousefzadeh, et al. ISCAS ‘05, PESC 06.-F. Wang et al, MTT-S, June 2004.-P. Midya et al. PESC, ‘00.

LOADSR ii

Page 19: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

This Work: Optimize in the Time Domain

• Fundamental: many signals may share same power spectrum• Phase of signals not represented can be critical for max efficiency in

the time domain• Consider strong nonlinearities in conversion from Cartesian to polar

representation

0 1 2 30

5

10

15

Sig

nal A

(V)

0 1 2 30

5

10

15

Sig

nal B

(V)

time (s)0 5 10 15 20 25

-100

-80

-60

-40

-20

0

20

frequency (Hz)

Pow

er S

pect

rum

(dB

/Hz)

PAPR=5.2 dB

PAPR=10.1 dB

Page 20: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

Interesting Conclusions

00.10.20.30.40.50.60.70.80.9

1

0 0.1 0.2 0.3 0.4 0.5Modulation Amplitude, Normalized (V)

Effi

cien

cy

Sin-AM isr=isr*Sin-AM isr=idc2-tone isr=isr*2-tone isr=idc

•Traditional method with is suboptimal

•Optimum isr is a function of Vdd, and dynamics of the modulation signal

•Power savings potentially very large for high PAPR signals, high Vdd

00.10.20.30.40.50.60.70.80.9

1

0.0 5.0 10.0 15.0 20.0 25.0Average Output Power (dBm)

Effi

cien

cy

isr = idcisr = isr*

Sin-AM, 2-Tone: IS-95 CDMA:

LOADSR ii

Page 21: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

Future Work

• Adaptive optimization

• Performance tuning

Page 22: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

Digital Pulse-Density Modulation

Page 23: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

This work:1-Bit Linear Transmitter

• PA at ‘max power’ or ‘off’• Inherent linearity• Improved efficiency in

power backoff…

RF Pulse Train

Pulse-density modulation process

Mixer PA Filter

Page 24: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

Pulse Density Modulation Process

• AM process Extra harmonics• Tradeoff between oversampling ratio & Q

—Out of band spectrum—Efficiency

• Noise shaping: digital • Conclusions

—No major efficiency advantage with Q<~5-10—Linearity may be the compelling factor— (almost) pure digital implementation!—Need to run PDM process *as fast as possible*

Pow

er sp

ectru

m Filter profile

Carrier withDSB harmonics

Page 25: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

PDM Process

•Sigma-delta

•Error feedback

Spectrum: •bandpass in nature•Amplitude modulation•Noise Shaping

Page 26: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

PDM Process

0.4 0.6 0.8 1 1.2 1.4 1.6-5

0

5

10

15

Frequency (Hz)P

ower

/freq

uenc

y (d

B/H

z)

Power Spectral Density

0 2 4 6 8 10 120

0.5

1

Time-Domain Waveforms

0 2 4 6 8 10 120

0.5

1

•Modulate at fraction of carrier frequency out of band harmonics

Page 27: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

0.4 0.6 0.8 1 1.2 1.4 1.6-5

0

5

10

15

Frequency (Hz)P

ower

/freq

uenc

y (d

B/H

z)

Power Spectral Density

0 2 4 6 8 10 120

0.5

1

Time-Domain Waveforms

0 2 4 6 8 10 120

0.5

1

PDM Process

•Modulate at fraction of carrier frequency out of band harmonics

Page 28: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

0.4 0.6 0.8 1 1.2 1.4 1.6-5

0

5

10

15

Frequency (Hz)P

ower

/freq

uenc

y (d

B/H

z)

Power Spectral Density

0 2 4 6 8 10 120

0.5

1

Time-Domain Waveforms

0 2 4 6 8 10 120

0.5

1

PDM Process

•Modulate at fraction of carrier frequency out of band harmonics

Page 29: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

Class-D PA

• Conventional timing, control• Series-Resonant Filter block out of band

harmonics• High impedance out of band reduce power

drawn from supply for ‘wasted’ energy

10-1

100

101

30

40

50

60

70

80

mag

(impe

danc

e) (o

hms)

(dB)

Impedance vs Frequency

Page 30: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

Architecture

• Cartesian Representation— Noise-Shaped PDM amplitude modulation— Independent I-Q processing/upconversion— Class-D PA— Series resonant bandpass filter/transformer

PA

BasebandI

Q

Pulse-Density

modulator

50ΩRFclk 0o

Upconversion

PAPulse-Density

modulator

Upconversion

RFclk 90o

This work

Q

I

Page 31: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

Behavioral Verification

• Ideal Components, PDM process• Passive network Q~30• Vdd=1.0V (assume 90nm CMOS)

timin

g,

driv

ers

Page 32: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

Ideal no losses in switches, passives

Page 33: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

Carrier Fundamental Linearity

Simulation, expt show good linearity vs pulse densityIM3 comparable to good linear PA (range of -20dBc to -40dBc)Predistortion likely to improve linearity further

Output Voltage Amplitude vs Code

y = 7.27E-04x3 - 1.37E-02x2 + 3.61E-01x

0.000

0.500

1.000

1.500

2.000

2.500

3.000

0 2 4 6 8 10

Page 34: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

ClassD PA, 90nm CMOS, Spectre Sim, Q~15 in passives

Page 35: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

2-tone test

Page 36: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

Conclusions

Efficiency stays high in power backoffFuture analysis: comparison of series resonant to parallel resonant output filters for class-D PAs

High linearity, compelling argument for this architecture

Page 37: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

Implementation

timin

g,

driv

ers

Two chips:ModulatorClass D PA

h 90nm CMOS,w voltage (1.0V),ebond chip-on-rd

Page 38: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

Architecture

Multiple stages: RF PDM and Baseband sigma-deltaTradeoff oversampling for power consumptionStill have 10-100x oversampling for most standards (edge, Bluetooth, WCDMA, 802.11x)

Reg

iste

r

Reg

iste

r

Page 39: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

PDM Process

0 10 20 30 40 50FREQUENCY (MHz)

-1 -0.5 0 0.5 1-1

-0.5

0

0.5

1Pole-Zero Map

Real Axis

Imag

inar

y Ax

is

1.9 1.925 1.95 1.975 2-80

-60

-40

-20

FREQUENCY (GHz)

PO

WE

R (d

Bm

)

321 5.25.21)( zzzzG

Page 40: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

PA Blocks

Use 2.0V to drive for higher output powerMaximum Voxide=1.0VNo resonant switching: need accurate control of gate voltageRecycle current used by high-side switches (excess goes to digital processing block)

PA Drivers Output StageVHV=2.0 V

Vhalf=1.0 V

Delay, 60ps

Delay, 60ps

Vhalf

lf

Level Shift Deadtime Control

Page 41: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

Results

Program I/Q waveforms into FPGADownconvert/process signals with NI PXI box running labview

Results show linear downconverted I/Q waveforms

1.2

-1.0

-750.0m

-500.0m

-250.0m

0.0

250.0m

500.0m

750.0m

1.0

Time (sec)250.0u0.0 25.0u 50.0u 75.0u 100.0u 125.0u 150.0u 175.0u 200.0u 225.0u

Plot 0AM Demodulated Signal

Page 42: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

Two-tone spectrum

0mV tones with 2MHz pacing at 1.95GHz arrier0MHz of noise haping is functional, oise peaks 50MHz rom carrier at fs/2

LO leakage tuned with ignal offset

1.85 1.9 1.95 2 2.05-65

-60

-55

-50

-45

-40

-35

Frequency (GHz)

Pow

er (d

Bm

)

Page 43: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

802.11a, 64QAM OFDM Waveform

0mV tones with 2MHz pacing at 1.95GHz arrier0MHz of noise haping is functional, oise peaks 50MHz rom carrier at fs/2

LO leakage tuned with ignal offset

1.85 1.9 1.95 2 2.05-60

-50

-40

-30

-20

-10

Frequency (GHz)

Pow

er (d

Bm

)WCDMA Spectrum

Page 44: High Average-Efficiency Power Amplifier Techniques Jason ...publish.illinois.edu/grainger-ceme/files/2014/06/CEME1007UCBerkeley.pdfHybrid Regulator Paradigm-+ C VDD Load Switching

References

[1] A. Jerng and C. G. Sodini, "A Wideband Delta-Sigma Digital-RF Modulator for High Data Rate Transmitters," IEEE Journal of Solid State Circuits, vol. 42, pp. 1710-1722, Aug. 2007.[2] A. Kavousian, D. K. Su, and B. A. Wooley, "A Digitally Modulated Polar CMOS PA with 20MHz Signal BW," IEEE International Solid State Circuits Conference (ISSCC) Dig. Tech. Papers, pp. 78-588, 2007.[3] S. M. Taleie, T. Copani, B. Bakkaloglu, and S. Kiaei, "A bandpass Delta-Sigma RF-DAC with embedded FIR reconstruction filter," IEEE International Solid State Circuits Conference (ISSCC) Dig. Tech. Papers, pp. 578-579, 2006.[4] R. B. Staszewski, J. Wallberg, S. Rezeq, C.-M. Hung, O. Eliezer, S. Vemulapalli, C. Fernando, K. Maggio, R. Staszewski, N. Barton, M.-C. Lee, P. Cruise, M. Entezari, K. Muhammad, and D. Leipold, "All-digital PLL and GSM/EDGE transmitter in 90nm CMOS," IEEE International Solid State Circuits Conference, vol. 1, pp. 316-600, Feb. 2005.[5] J. Lindeberg, J. Vanakka, J. Sommarek, and K. Halonen, "A 1.5-V direct digital synthesizer with tunable delta-sigma modulator in 0.12um CMOS," IEEE Journal of Solid State Circuits, vol. 40, pp. 1978-1982, Sept. 2005.[6] F. Wang, D. Kimball, D. Y. Lie, P. Asbeck, and L. E. Larson, "A Monolithic High-Efficiency 2.4GHz 20dBm SiGe BiCMOS Envelope-Tracking OFDM Power Amplifier," IEEE Journal of Solid State Circuits, vol. 42, pp. 1271-1281, June 2007.