heat transfer analysis of underground heat and chilled ... · matlolfalbukkat' orstandabus...

70
wi&kMm 'Mimim NAT'L INST. OF STAND & TECH R.I.C. NBSIR 81-2378 AlllOl 77bfiMD AlllDS LI&73S TT >leat Transfer Analysis of Underground Heat and Chilled-Water Distribution Systems U.S. DEPARTMENT OF COMMERCE National Bureau of Standards National Engineering Laboratory Center for Building Technology Washington, DC 20234 November 1981 Prepared for Naval Facilities Engineering Council U.S. Navy Washington, DC 20390 Directorate of Civil Engineering U.S. Air Force Washington, DC 20330 and f-QC- lOQ U56 81-2378 1981 Office of Chief of Engineers As. Army 'ashington, DC 20304 V.

Upload: others

Post on 24-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

wi&kMm'Mimim

NAT'L INST. OF STAND & TECH R.I.C.

NBSIR 81-2378AlllOl 77bfiMD

AlllDS LI&73S

TT

>leat Transfer Analysis of

Underground Heat andChilled-Water Distribution Systems

U.S. DEPARTMENT OF COMMERCENational Bureau of Standards

National Engineering Laboratory

Center for Building Technology

Washington, DC 20234

November 1981

Prepared for

Naval Facilities Engineering Council

U.S. NavyWashington, DC 20390

Directorate of Civil Engineering

U.S. Air Force

Washington, DC 20330

and

f-QC-

lOQ

• U56

81-2378

1981

Office of Chief of Engineers

As. Army'ashington, DC 20304

V.

Page 2: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS
Page 3: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

MATlOlfAL BUKKAT'or standABUS

LIRRART

NBSIR 81-2378 DEC 7 1981

HEAT TRANSFER ANALYSIS OFUNDERGROUND HEAT ANDCHILLED-WATER DISTRIBUTION SYSTEMS

T. Kusuda

U S. DEPARTMENT OF COMMERCENational Bureau of Standards

National Engineering Laboratory

Center for Building Technology

Washington, DC 20234

November 1981

Prepared for

Naval Facilities Engineering Council

U.S. NavyWashington, DC 20390

Directorate of Civil Engineering

U.S. Air Force

Washington, DC 20330

and

Office of Chief of Engineers

U.S. ArmyWashington, DC 20304

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Page 4: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

* . ^¥ ^ I ?'

> HQ

Page 5: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

Heat Transfer Analysis of Underground Heat andChilled-Water Distribution Systems

T. Kusuda

National Bureau of Standards

ABSTRACT

Simplified calculation procedures for determining heat exchange between theearth and a multiplicity of buried pipes having different temperature andthermal insulation are presented. The procedures deal with cases where pipesare burled side by side, as well as those when several pipes are bundled in a

conduit. The effects of seasonal variation of earth temperature are treated in

a quasi-steady-state equation that includes the soil thermal properties, depthof burial, pipe sizes, and relative locations of pipes. Sample calculationsare included, together with the Fortran program listing and thermal propertiesof earth to be used for the calculations.

Key words: computer program; earth temperature; heat transfer; pipes; thermalInsulation; thermal properties; underground systems.

lii

Page 6: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

TABLE OF CONTENTS

Page

Abstract Ill

1. Introduction 1

2. Theoretical Background for Underground Pipe Heat Transfer 2

2.1 Single Shallow Pipe System 2

2.2 Multiple Pipe System 5

2.3 Pipes In an Underground Conduit 13

2.4 Underground Pipe In an Insulated Trench 18

3. Earth Temperature Data 20

4. Sample Problems and Solutions 22

5. Summary 23

6. References 25

7 . Unit Conversion Factor 26

Appendix A. Earth Temperature Tables for Underground Heat-Dlstrlbutlon-System Design A-1

Appendix B. Computer Program Listing for Multiple Pipe Heat Transferand Economic Analysis B-1

Iv

Page 7: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

1 . INTRODUCTION

Although underground heat distribution systems for a complex of buildings,

such as college campuses and military bases, have been widely used in the

United States for the past several decades, not much attention has been givento heat transfer analysis other than to such technical problems as the possi-bility of failure of the piping system from corrosion, thermal expansiondifficulties, or moisture penetration through the thermal insulation. Thisis largely because many of the underground installations designed to distrib-ute steam or hot water are purposely well insulated. Until recently, heatloss from these pipes has been considered small when compared with the totalheat energy being transmitted through the pipe, providing that the thermalinsulation is not damaged and rendered ineffective by leaking pipe fluid orfrom ground moisture. Thus, the main emphasis is placed on the preservationof a dry insulation around the pipe, corrosion protection of the conduit whichhouses the piping system, and the design of the piping system to minimizestress caused by the thermal expansion and contraction.

Since the early part of the 1960 ’s when underground chilled water distributionsystems began to gain popular acceptance for district cooling, the economicconsideration as to whether the chilled water pipes should be Insulated or not

has required a careful reevaluation of the heat transfer problem [1].

Underground chilled water pipes are sometimes installed uninsulated, allowinga considerable savings in capital investment, especially for a large districtcooling system. The uninsulated chilled water system appears justified onthe following basis:

a. Ground temperature is not severely affected by the presence of a

deeply buried uninsulated chilled water pipe, and soil ecology andplant life are not unduly affected.

b. Heat gain from the surrounding earth to large chilled-water pipes is

usually a very small part of the total refrigeration load, andIncreases in the temperature of the chilled water being circulatedin the underground piping network are not significant.

c. There is no heat source such as an underground heat distribution systemin the vicinity of the chilled water pipe.

Although item a is unquestionably valid, item b may be less so, particularlywhen the pipe diameter is small, long lengths of pipe are used, and when theearth surrounding the pipe remains warm and conductive for long periods oftime. Item c is often invalid because in many instances underground chilledwater lines run parallel and close to the steam and/or hot water lines.

The question is under what conditions is it necessary to insulate undergroundchilled-water pipes? If insulation becomes necessary, how much is needed?In order to answer this question, a comprehensive heat transfer calculationmethodology is needed to analyze the situation whereby several underground pipesof different temperatures are buried side by side. This report presents a

1

Page 8: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

recommended procedure and sample calculation to solve multiple pipe undergroundheat and chilled water distribution systems.

2. THEORETICAL BACKGROUND FOR UNDERGROUND PIPE HEAT TRANSFER

Except for the work of Loudon [2]

,

very few papers have been published in the

past treating the realistic conditions applicable to the analysis of under-ground pipe heat transfer. Most of the analytical solutions readily availablefor estimating heat transfer to and from underground pipes are either steady-state solutions for a pipe at shallow depths or transient heat conduction solu-tions for a single deep underground pipe. All of these solutions are basedupon the assumption that the earth surrounding the pipe is homogeneous, thethermal properties of the earth are constant, and the temperature of the earthat reasonable distances from the pipe is constant and unaffected by the

existence of the pipe.

It has been well known that these assumptions are unrealistic because thermalproperties as well as earth temperatures change with respect to time and spacedue to seasonal change of the earth surface temperature and also due to move-ment of the soil moisture or ground water around the pipe. Analytical solutionswhich take into account these realistic situations are, however, extremely dif-ficult to obtain and are not expected to be available in the near future.Therefore, the approach here was to examine quasi-steady-state heat transfertheories applicable to seasonal change of earth temperature. The method wouldprovide approximate solutions for several practical problems, inclusive ofmultiple-pipe situations.

2.1 SINGLE SHALLOW PIPE SYSTEM (figure 1)

The solution for steady-state heat conduction from an underground pipeInstalled horizontally at a finite depth in homogenous soil of constant propertycan be found in several heat transfer texts [3,4]. This solution is based uponthe potential flow theory and is obtained by the use of the "mirror-image”technique [3]. According to this technique, the heat loss Q from the unitlength of the pipe of temperature Tp to the undisturbed ground at an averagetemperature Tq can be approximated by following equation:

where kg = average thermal conductivity of earth surrounding the pipe (see

figure 2)

d = depth of the pipe measured from the ground surface to the center-

line of the piper = external radius of the pipe where the pipe temperature is Tp

£n = natural logarithm

Another form of the above equation usually cited is

27ikc(Tp-Tp)( 1 )Q

)

2

Page 9: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

GROUND SURFACE

Figure 1. Single-pipe system (Nomenclature).

3

Page 10: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

3ea

MOISTURE CONTENT |% of dry weigtitj

2.0

1.5

1.0

0.5

Figure 2. Thermal conductivity versus moisture content for soils.

4

THERMAL

CONDUCTIVITY

(W/m

•K)

Page 11: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

2iTks(Tp~TG)( 2 )Q =

r

which is a further approximate representation of equation (1) when d/r » 1, or

when the radius of the pipe is sufficiently smaller than the depth.

Equations (1) and (2) were developed for the average pipe surface temperatureTp and the average temperature Tq of the undisturbed earth at some distancefrom the pipe inclusive of the ground surface.

When the pipe is insulated, a term for the thermal resistance of the insulationlayer must be added to the above equations. If the pipe is uninsulated and the

pipe material has high thermal resistance, such as non-metallic pipes, the ther-mal resistance term for the pipe wall should also be included in the pipe heattransfer equation in such a way that

in consistent units where

Kp = pipe heat transfer factorTp = pipe fluid temperatureTq = undisturbed average earth temperature surrounding the pipery = inside radius of the piper = external radius of the insulationt = thickness of the pipe Insulationhy = heat transfer coefficient of the pipe fluid

ks = thermal conductivity of the earth surrounding the pipeky = thermal conductivity of the pipe wallkj = thermal conductivity of the pipe insulation .

The above expression is, however, only approximately correct since actual heatflow is not radial and may result in error if kg/kj » 1. The extent of theerror due to this approximation, is however, unknown.

Moreover, for the calculation of pipe heat transfer factor for metallic pipeKp, it is customary to ignore the terms involving hy and ky because of theirvery small numerical value. Even for the non-metallic pipes, the term involv-ing hy is usually neglected unless the pipe fluid velocity is extremely small.

2.2 MULTIPLE PIPE SYSTEM; (figure 3)

The foregoing discussion is for a single isolated underground pipe. Inpractice, several pipes may be installed in the same vicinity. Thus, heat

1 ,

(3)

5

Page 12: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

GROUND

SURFACE

X

UJq:

3h"<(TliJ

CL

:sUJ

XI-a:

<UJ

UJCD<q:UJ><

QUJCDcr

3

3

>-

I

6

UNDISTURBED

AVERAGE

THERMAL

CONDUCTIVITY

Page 13: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

transfer around each pipe is affected by the presence of its neighbor. The

steady-state heat transfer for a multiple- pipe system was explored in detailduring this study and is presented in this report because little informationwas available from reference material. The multiple pipe system considered in

this section is shown schematically in figures 3 and 4. The undisturbed earthtemperature is designated by Tq, whereas the earth temperature at any point(x, -y) in the region of pipe heat transfer is designated by T.

The difference in temperature T-Tq, due to M number of heat sources (or sinks)can be obtained by the superposition of mirror image technique employed for thesingle pipe problem (such as found in reference 3) in consistent units as

follows

:

T-Tg1=1 (x-aj^)^ + (y+d^)2

(4)

where = strength of the i-th heat source (if plus) or sink (if minus). It

is the total heat loss (if plus) or heat gain (if minus) of the i-thpipe per unit length.

k3 = thermal conductivity of earth surrounding all the pipes.aj[ and dj^ = coordinates of the center of the i-th pipe referring to an arbi-

trary origin of the coordinate system (x, -y) . If, for instance,the coordinates were so chosen that X]^ = 0 and yi = -d]^, theorigin of the coordinates for the multiple pipe system would beat the ground surface above the centerline of the first pipe.

By denoting the exterior radius of the k-th pipe as rj^, the pipe surface can beexpressed as

(x-ak)^ + (y+dj^)^ = r^^ . (5)

Or with the use of the polar coordinate system

X = a]j^ + r^ sin 6 (6)

y = r^j^ cos 6 - dj^

where 9 is the angular position of a point on the surface around the k-th pipeas shown in figure 3. Equations (5)/(6) represent a point on a circle of radiusrj^, the center of which is the line heat source of strength Btu/hr.ft. Thetemperature of the point defined by (x, -y), however, would be influenced byall the other m lines heat sources such as (i=l> 2, . . . m) and would varyfrom point to point over the circle as a function of 0 . By substituting (6)into (4), the surface temperature distribution for the k-th pipe can be obtainedas a function of 6 as follows:

m

Tk (6) - Tg = 2

i=l^ ^

(ak sin 9)^ + (r^^ cos e-d^^-d.^^

(3k "a^+r^ sin 9)^ + (r^ cos 9-dj^+d^^)^ ^ (7)

7

Page 14: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

By denoting further that

^ki “K

^2 _Aki 2

tan =a, -a.

. ^k"^i^ik = A-rdk+df

equation (7) becomes

Tk (0) - Tg =

m

Z

i=l

l?^k

( 8 )

4irkf

A ^ - 2A cos (9+C ) + 1

Zn

^ik ” 2Aj[k ^

(9)

Qv r r^^k'i 1— Zn {1-4 Ji cos 0 + [

4iTks r^

With the assumption also that the circle represented by equations (5)/(6) is

the cross section of a pipe which is losing heat Q Btu/hr.ft at average surfacetemperature one can approximate the value of by integrating with respectto 6 as follows:

T -T = _Lk "g

2TT

M

2tt

/ (Tj^(0)-Tg) d0

(10)

4irkZ Qi Zn

S i=l '^ik 4iTkftn (!^)'

Although this equation is consistent with the approximate solution for the caseof the single-pipe heat transfer (equation 2) if M = 1, it is not recommendedfor the shallow large pipe problems where d]^^/r^ « 1.

By defining matrix elements Pi^k such a manner that

2

Plk = (~)^ik

( 11 )

8

Page 15: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

2d ^

Pkk = to (—

^

the values of, Q2 • • *Qm can now be obtained as a solution of the following

simultaneous equations

P12 ••• Pim'' ^Qi'

"ti - Tg'I

P2I P22 ••• P2M

• •

Q2 T2 - Tg

• •

PmI Pm2 ••• PmM^ /

Tm Tg

provided that the values of T]^ , T2 . . . are known.

The above equations are for bare steel pipe systems where the average exteriorpipe surface temperature may safely be approximated as equal to the pipe fluidtemperature

.

When the system includes non-metallic pipes or insulated pipes, the externalsurface temperatures (pipe-earth Interface temperatures) T;[, T 2 ••• mustbe calculated first. Assuming, for the time being, that the values of

,

T 2 . . . are known as well as the pipe fluid temperatures, Tp][, Tp2 » »

the heat transfer from the pipes Q]^, A2 ••• Qm then be calculated by

Qk ~ ^k^"^Fk~

"^k^ for k=l, 2, . . . .M (13)

where = is the heat transfer coefficient for the k-th pipe for use withthe thermal resistance between the pipe fluid and the externalradius of the pipe or the pipe insulation where it interfaces withsoil. The value of may be approximated by

1- = 1 1 to (!l.) + 1- to + J_ .

Ck 2tt kji^ rj]^ kj^l^ rj^(14)

In equation (14), kj and and k^pi^ are the thermal conductivities of insulationand wall for the k-th pipe, whereas rj]^ and rj^j^ are the external radii of theinsulation and the wall, respectively.

The symbol hy refers to the heat transfer coefficient between the pipe fluidand the pipe wall. The value of h^j is usually very high unless the pipe fluidvelocity is extremely small, and consequently the last term of equation (14) is

usually neglected.

9

Page 16: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

By substituting equation (13) into (12) and rearranging the terms with respectto the pipe average surface temperature T^, T 2 ... the following simultaneousequations can be derived.

11 12 IM

P' P" ... P"21 22 2M

p''

\ Ml M2’**

mm/

where

Pik =

Pkk =

^k P

4 irkS

^k^kk ^4irks

^ Ti N

®2

% ,

(15)

M^ Pik Tpk

k=l

The solution of (15) yields a set of pipe-soil interface temperatures, T2

... Tjq, thus permitting the calculation of pipe heat transfer by equation (13).

When equation (15) is to be solved for the multiple pipe system where some ofthe pipes are non-insulated steel pipes, fictitious insulation of arbitrarythickness with thermal conductivity identical to the surrounding soil may beassumed for the bare pipes. This procedure is necessary because the values of

Pi,k ®i meaningless otherwise.

®i= Tg +

4irk<

Computer programs have been developed during the course of this study to

implement this derivation for the multiple pipe system. The Fortran listing ofthis program is included in Appendix B, which includes the life-cycle costanalysis of pipe insulation. A sample case selected is illustrated in figures4 and 5 with the results of the calculations given in figure 5 to show relativeeffect between heat transfer and distance between pipes. The values in paren-theses indicate percentage change from case 5, where each pipe is considered to

be a single separate pipe system.

10

Page 17: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

Tf = PIPE TEMPERATURE

Tq = EARTH TEMPERATURE, ®F

ks = THERMAL CONDUCTIVITY OF EARTHBTU/HR, Ft2, *F/IN

kj = THERMAL CONDUCTIVITY OF PIPE INSULATIONBTU/HR, Ft2^ ®F/IN

THREE- PIPE SYSTEM

Figure 4. Multiple-pipe system (insulated pipes).

11

Page 18: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

43”

CASE ^1

in

^2

in

hBtu/hr , ft

^2

Btu/hr, ft

<^3

Btu/hr, ft

1 60 110 -17.89 (16)* -20.30 (72) 81.24 (2)

2 55 100 -18.15 (12) -21.46 (98; 81.57 (3)

3 55 90 -18.48 (14) -22.82 (111) 82.00 (3)

4 45 80 -18.89 (16) -24.46 (126) 82.55 (4)

5 -16.23 (0) -10.82 (0) 79.40 (0)

* percentage change from the single-pipe system.

Figure 5. Sample calculation for multiple-pipe system (insulated pipe).

12

Page 19: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

2.3 PIPES IN AN UNDERGROUND CONDUIT (figure 6 )

When a group of pipes (some Insulated and others non-insulated) are installed

in the unvented underground conduit such as illustrated in figure 3, the

following heat balance equation in consistent units would approximate the

overall heat transfer process

X 2wrk Uk (Tju - Ta) = KCT^ - Tg)

k-1

where M = total number of pipes in the conduitr]^ = outside radius of insulated or non-insulated pipes (k-th pipe)

Uk = overall heat transfer coefficient of the k-th pipe calculatedby the following formula

1 = "k + 1

Ur ^Ik(17)

kiDk = thermal conductivity of the insulation around the k-th pipe

t|^ = thickness of the insulation around the k-th pipe” outside surface heat transfer coefficient around the pipe (if no data

are available)= temperature of the k-th pipe= air temperature in the conduit

Tq = undisturbed ground temperature surrounding the conduitK = overall heat transfer factor of the conduit calculated by

K_1

2nkg

ko kniln

]+ An [1 +

^ R (18)

k0 = thermal conductivity of earth surrounding the conduitR = outside radius of the conduit*ky = effective thermal conductivity of the conduit wallt = thickness of the conduit walld = depth of the conduit, distance between the ground surface and the

center-line of the conduit

In equation (17), the value of heat transfer coefficient of air space h^ is

not well known. For a concentric annular space, natural convection coefficientsuch as determined by formula developed by Grigull and Hauf [5] may be used inconjunction with standard radiation exchange formula. Figures 7 and 8 areobtained by such calculations.

In equations (17) and (18) the thermal resistance across the walls of themetallic pipe and metallic conduit were neglected from the formulas. If themetallic pipe or conduit is uninsulated, terms such as

* If the conduit is square in cross section instead of circular, equivalentradius may be approximated by R = 0.56 W, where W is the external width ofthe square conduit [

2 ].

13

Page 20: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

Figure 6. Pipes in a conduit.

14

Page 21: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

18 -T

oocLUU-00

Q_00

16

-3.0 Inner pipe temperature 250°F |12rC|

Outer pipe temperature 150°F (66°C|

-2.8 Emissivity of the annular surfaces 0.9

Inner pipe

diameter

-2.6 inches

14

12 -

10 -

8 -

1.5 2.0

AIR SPACE THICKNESS, cm

2-3/8”

Figure 7. Conduit air space heat transfer coefficient with respect to air

space thickness.

15

Page 22: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

25

20

15

10

5

0

Btu/hft

Conduit air space heat transfer coefficient with respect to innerpipe diameters.

16

Page 23: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

Ti. , Ti kgJL- in (— —)

or — »» (A)R-t

may be dropped for the uninsulated non-metallic pipes or conduit; the wallthickness and its thermal conductivity value should be retained for the valuesfor t]^ and t, and kj^ and ky, respectively.

Solving for from equation (16) and rearranging it, the heat transfer fromk-th pipe in the conduit can be obtained as follows

Qk = 2’'ri,Uk(TFk-TA) . (W)

where

TA

MKTg + 2 2irrk

k=lM

K + I Ukk=l

(20)

If the conduit is ventilated and the ventilation mass flow rate is known to

be G, Ib/hr, equation (20) may be modified to yield

TA

ME

k=l

M

E

k=l

“k + KTg

GC2TTrkUk + -—P + K

L

where Cp = specific heat of airTy = the ventilation air temperatureL = total vented length of the conduit.

( 21 )

Data on ventilation rates for underground conduits are extremely scarce.Possible natural ventilation (without the wind effects) for a vented under-ground conduit system may be estimated as follows:

The theoretical natural draft APp, chimney effect, for an underground conduitof d ft depth may be calculated by [6]

AP^ = 0.52 • Pg» d [1— - -i— ), inches of water'^0 ^A

( 22 )

where

Pg = atmospheric pressure, psid = depth of the conduit, ft

Tq = absolute temperature of outdoor air, Rankine= absolute temperature of conduit air, Rankine.

17

Page 24: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

Also, the pressure drop AP^ of ventilation air flowing within an undergroundconduit can be calculated by

AP. = (C. + C- + —) • (—— ) (

2—) inches of waterA ^ 1 o D 4005 0.075(23)

where = entrance pressure loss coefficientCq = exit pressure loss coefficientf = frictional pressure loss coefficientL = length of the pipe between two consecutive vents along the pipe, ftD = hydraulic diameter of the air passage within the conduit, ft

V = velocity of the air flow, ft/mln

p = density of the air within the conduit, Ib/ft^

By noting that the net ventilation flow G (Ib/hr) can be expressed by

where represents the cross sectional area for air passage within the conduit,and by noting the fact that AP-j and AP^ should be equal, it is possible to write

For evaluation of G it is necessary to have data on Cj, Cq, and f. Moreover,equation (21) requires calculation of the value of T^, conduit air temperature.Thus, the process of estimating the air temperature in a vented conduit requiresiterative procedures which are cumbersome for manual calculation.

2.4 UNDERGROUND PIPE IN AN INSULATED TRENCH (figures 9 and 10)

In some installations, pipes are Installed in a trench and an insulatingmaterial is poured over and around the pipes, as illustrated in figures 9 and10. For the case of a single pipe system (fig. 9), a square region insulatedin the trench may be treated as an equivalent annular ring of exterior radius0.56 W (Loudon [2]), whereby W denotes the exterior width of the insulatedregion. The formulas and tables discussed in section 2.1 can then be used to

approximate the pipe heat transfer. For the case shown in figure 10, or themultiple-pipe system, the computational method developed in section 2.2 can beused if the insulated region is assumed to consist of two equivalent annularzones such as shown by the dotted circles in figure 10. This assumption can beexpected to yield erroneous results if the distance(s) between the pipes is

(are) very small as compared with the total dimensions of the insulated zone.The precision can be improved, however, in the following manner. Repeat theabove calculation on the premise that uninsulated pipes are burled in soilwhose thermal properties are equal to those of the insulating material. Theactual pipe heat transfer value should lie between the two sets of values thuscalculated

.

G = 60 pVAc , (24)

G = 240300 (25)

18

Page 25: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

GROUND SURFACE

Figure 9. Pipe in an insulated trench.

GROUND SURFACE

Figure 10. Two pipes in an insulated trench.

19

Page 26: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

3. EARTH TEMPERATURE DATA

When evaluating underground pipe heat transfer, it is essential that thetemperature of the earth surrounding the pipe be known.

It has been customary when designing a heating pipe system to assume that theearth temperature is equal to the well water temperature for any given region,and that the well water temperature is close to the annual average air tempera-ture. This concept appears reasonable as long as the annual average heattransfer from the heat distribution system is what is desired to be estimated.Moreover, well water temperature data, such as those compiled by Collins [7],are readily available for many localities in the United States. If, however,the maximum heat loss or heat gain of the underground pipes is desired, the

well water temperature, which is the annual average earth temperature, is notadequate [8]. This is because the majority of the underground pipes areinstalled at a depth less than 10 ft from the surface, where the seasonalchange of the ambient air temperature affects the heat transfer process.

Penrod's data [9] show, for instance, at a depth of 10 ft the temperature of

the earth at Lexington, Kentucky is at its minimum in April, approximately50 °F, and at its maximum in October, approximately 65 °F. Thus, it is consid-ered to be impractical to evaluate the maximum heat gain to a chilled waterpipe which was buried at a depth of 5 ft on the basis of the well water temper-ature, or on the annual average air temperature, which in this particularexample is 58 °F.

According to reference [8], the annual earth temperature cycle, T, of a giventhermal diffusivlty, a, may be approximated by a simple harmonic function suchas

where y = depthP = period of the annual cycle, 365 dayst = time in daysA = annual average earth temperature ~ well water temperatureB = amplitude of the earth surface temperature cycle4) = phase angles of the earth temperature cycle relative to a datum

Reference [8] lists the values of A, B and (]) for various earth temperaturestations in the United States. While A and B depend on the monthly normaltemperature cycle of a given climatic region, the value of ({> is relativelyconstant at 0.6 radians.

The thermal diffusivlty appearing in equation (26) is dependent upon the type

of soil and its moisture content, as shown, for example, in figure 11.

The average earth temperature, Tq, as used in previous discussions can be

evaluated by taking the integrated average of equation (26) to the depth of

cos [ (26)

point

20

Page 27: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

THERMAL

DIFFUSIVITY

(ftVh)

Figure 11. Thermal diffusivity versus moisture content for several so

0.10

0.09

0.08

0.07

0.06

0.05

0.04

0.03

ils

.

21

THERMAL

DIFFUSIVITY

(mVtlay)

Page 28: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

interest. The following equation yields an integrated value of T between0 < y < 1

T = A - B * ^ * cos (l!L t - 4)- (27)

P

-2x cos 3+1232

X = e ^

l~x*(cos 3+sln g) ~j

l-x*(cos 3-sin 3)^^

Since the center-line depth for most underground pipes is at around 10 ft, theIntegrated average temperatures for A = 10 ft were obtained for many places inthe United States where the earth temperature records were maintained. Theresults of this integration calculation are presented in Appendix A for

Winter (January 1), Spring (April 1), Summer (July 1) and Fall (October 1),representing the seasonal average values. Reference [8] shows that the major-ity of the thermal diffusivity values deduced from the measured earth tempera-tures in the United States are in the neighborhood of 0.025 ft2/hr. Appendix Awas, therefore, obtained for a *= 0.025.

4. SAMPLE PROBLEMS AND SOLUTIONS

This section presents some typical heat transfer problems and solutions to

illustrate the use of the formulas and tables developed in section 2.

Evaluate the heat gain of a double pipe system (fig 12)—one pipe is for thesupply of 42 “F chilled water and another is for the return of 57 °F water.These two pipes are bare steel pipes of 24-in diameter, and both are installedat the depth of 72 in from the ground surface to the center lines of the pipesand separated by a distance of 4 ft on center. Assume that the average undis-turbed earth temperature around the pipe is 68 °F and the thermal conductivityof the earth is 5 Btu - in/hr ft2 “F.

Solution

Setting the origin of the coordinate system to be as shown in figure 3, the

constants indicated in formulas (8) and (11) can be numerically evaluated as

follows

:

where y

= 0, a2 = 4

dl = d2 = -6

ri = r2 = 1

22

Page 29: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

= 160

1*12 1*21 iln (1^) = 0.440

2Zn (^) = 0.949

Ti - Tg = 42 - 66 = -34

T2 - Tg = 57 - 66 = -9

The pipe heat transfer Q]^ and Q2 can then be solved from the following

simultaneous equation (12)

0.949 Qx + 0.440 Q2 = -34

0.440 Qx + 0.949 Q2 = -9

The solutions to these equations are

Qx= -26.6 Btu/hr ft

Q2 = 2.84 Btu/hr ft.

If these two pipes are separated at a distance so that each pipe is considereda single pipe sytem, Qx would have been -25.3 Btu/hr ft and Q 2 = -9.48 Btu/hrft. It is interesting to observe that the supply chilled-water pipe, 42°F,gains more heat by being in the vicinity of the return water pipe, 57 °F, andthe return water pipe actually loses heat instead of gaining it from thewarmer earth.

The total system heat gain for the double pipe system is, however, 23.76 Btu/hrft, much less than 34.76 Btu/hr ft had they been separated at a distance fromeach other.

Thus, there is a definite advantage by installing the chilled-water lines neareach other. The advantage will be offset, however, if the two pipes are tooclose together, because then the supply water would be warmed up too much beforeit reaches its destination, by gaining heat from the return pipe.

Figure 12 also includes a table showing the effect of distance on heat transferrates between the two pipes for values of 4 ft, 5 ft, 10 ft and Infinity, andearth thermal conductivities of 10 and 5 Btu in/hr, ft^, °F.

23

Page 30: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

CASE a 0| ^2

1

5’1 0 - 50.79 0.565

2 oo 1 0 - 50.57 - 18.96

3 4'10 - 53.21 5.687

4 4 5 - 26.60 2.843

5 OO 5 - 25.29 -9.48

6 10 5 - 24.37 -5.11

Figure 12. Sample double-pipe problem.

24

Page 31: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

5 . SUMMARY

Calculation methods were developed with sample problems as well as with computerprogram listings to approximate heat transfer of multiple pipe systems. Severalpipes of different temperatures, insulations, and sizes Installed in the samevicinity can be evaluated to study the heat transfer of each pipe affected byits neighboring pipes.

Seasonal average earth temperature data (from surface to approximately 10 ft

depth) for underground piping distribution systems were developed for selectedstations in the United States and for the thermal diffusivity of earth of 0.025ft^/hr. These data will permit the appraisal of the heat gain of chilled watersystems as well as the heat loss of the hot water or steam pipes.

6. REFERENCES

[1] Henderson, J. H., Economic Justification of Thermal Insulation of

Underground Chilled Water Piping, American Society for Heating, Refrigerat-ing and Air Conditioning Engineers (ASHRAE), Symposium Bulletin of ChilledWater Systems , January, 1970.

[2] Loudon, A. G., Heat Loss from Underground Heating Mains, Journal ofInstitute for Heating and Ventilating Engineers (IHVE), London, November,1957, pp. 196-203.

[3] Eckert, E. R. G., Heat and Mass Transfer,McGraw-Hill Book Company, 1959,

pp. 60-64.

[4] McAdams, W. H., Heat Transmission,McGraw-Hill Book Company, 1954, page 25.

[5] Grigull, U., and Hauf, Werner, National Convection in HorizontalCylindrical Annuli, Proceedings of the Third International Heat TransferConference , American Institute of Chemical Engineers, 1966, pp 182-195.

[6] Handbook of Fundamentals, American Society of Heating, Refrigerating andAir-Conditioning Engineers, 1967, page 406.

[7] Collins, W. D., Temperature of Water Available for Industrial Use inthe United States. U.S. Geological Survey, Water Supply Paper 520-F,1925.

[8] Kusuda, T., and Achenbach, P. R. ,Earth Temperature and Thermal

Diffusivity at Selected Stations in the United States. ASHRAE Transac-tions

, Vol. 1, Part 1, 1965, and more detailed data in NBS Report 8972 ofthe same title.

[9] Penrod, E. B., Variation of Soil Temperature at Lexington, Kentuckyfrom 1952-1956. University of Kentucky Engineering Experiment Station,Bulletin No. 57, September 1960.

25

Page 32: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

7. UNIT CONVERSION FACTOR

English units are used throughout the text because of the fact that this reporthas been prepared for American practicing engineers and underground systemmanufacturers. The conversion multipliers to SI units for the pertinent variablesare found as follows

Multiplierthermal conductivity Btu-in/h» ft^* F to W/m»K = 0.144pipe heat transfer factor Btu/h* f t*F to W/m»K = 1.728heat transfer coefficient Btu/h»ft2» F to W/m2.K = 5.678length ft to m = 0.3048velocity ft/mln to m/ s = 0.00508density Ib/min to kg/m^ = 16.03pressure ln*H20 to Pa = 249pressure psi to KPa = 6.89temperature °F to °C = (F-32)/l

Rankine to kelvin = 0.556thermal diffusivity ft2/h to m2 /day = 2.23

26

Page 33: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

Table A

Illustrative Thermal Conductivities for Some Pipe Insulation Materials

Thermal Conductivity, kjBtu/hr, ft2, °F/in

Temperature LevelInsulating Materials

50 °F 100 °F 200

Cellular Glass 0.38 0.42 0.48

Cork Board 0.27 0.29

Calcium Silicate 0.30 0.32 0.37

Expanded Polyurethane 0.16 0.18 0.21

Expanded Polystyrene 0.25 0.26

Mineral Fiber(rock, slag, or glass)

0.22 0.24 0.29

Lightweight Concrete(perlite, vermlculite,etc

. , 30 psf

)

0.9

Sawdust 0.48

Sand 2.1

300 °F

0.55

0.42

* Multiplier to obtain SI unit W/m»K is 0.144.

27

Page 34: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

y

Page 35: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

Appendix A. Earth Temperature Tables for Underground Heat-Distribution-SystemDesign

The following list presents the average earth temperature in deg F from 0 to

10 feet below the surface for the four seasons of the year and for the wholeyear for the indicated locales. The temperatures were computed on the basis of

the method described in the 1965 ASHRAE technical paper entitled "Earth Temper-ature and Thermal Diffusivity at Selected Stations in the United States" byT. Kusuda and P. R. Achenbach (in ASHRAE Transactions, Volume 71, Part I, p. 61,

1965) using the monthly average air temperatures published by the U.S. WeatherBureau for the listed localities in the United States. Earth temperatures are

expressed in Fahrenheit degrees.

Location Winter Spring Summer Autumn Annual

AlabamaAnniston AP^ 55. 58. 70. 67. 63.

Birmingham AP 54. 58. 71. 68. 63.

Mobile AP 61. 63. 74. 71. 67.

Mobile CO^ 61. 64. 75. 72. 68.

Montgomery AP 58. 61. 73. 70. 65.

Montgomery CO 59. 62. 74. 71. 66

.

ArizonaBisbee COOP^ 55. 58. 70. 67. 62,

Flagstaff AP 35. 39. 54. 50. 45.

Ft Huachuca (provingground) 55. 58. 71. 68. 63.

Phoenix AP 60. 64. 79. 75. 69.

Phoenix CO 61. 65. 80. 76. 70.

Prescott AP 46. 49. 65. 61. 55.

Tucson AP 59. 62. 76. 73. 68.

Winslow AP 45. 49. 65. 61. 55.

Yuma AP 65. 69. 84. 80. 75.

ArkansasFort Smith AP 52. 56. 72. 68. 62.

Little Rock AP 53. 57. 72. 68. 62.

Texarkana AP 56. 60. 74. 71. 65.

CaliforniaBakersfield AP 56. 60. 74. 70. 65.Beaumont CO 53. 56. 67. 64. 60.Bishop AP 47. 51. 65. 61. 56.Blue Canyon AP 43. 46. 58 55. 50.Burbank AP 58. 60. 68. 66

.

63.

^ AP = Airport Data^ CO = City Office Data^ COOP = Cooperative Weather Station

A-1

Page 36: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

Location Winter Spring Summer Fall Annual

CaliforniaEureka CO 50. 51. 54. 54. 52.

Fresno AP 54. 58. 68. 63.

Los Angeles AP 58. 59. 64. 63. 61.

Los Angeles CO 60. 61. 68. 66

.

64.

Mount Shasta CO 41. 44. 57. 54. 49.

Oakland AP 53. 54. 60. 59. 56.

Red Bluff AP 54. 58. 72. 69. 63.

Sacramento AP 53. 56. 67. 64. 60.

Sacramento CO 54. 57. 68. 65. 61.

Sandberg CO 47. 50. 63. 60. 55.

San Diego AP 59. 60. 66

.

65. 62.

San Francisco AP 53. 54. 59. 57. 56.

San Francisco CO 55. 55. 59. 58. 57.

San Jose COOP 55. 57. 64. 62. 59.

Santa Catalina AP 57. 58. 64. 62. 60.

Santa Maria AP 54. 55. 60. 59. 57.

ColoradoAlamosa AP 30. 35. 52. 48. 41.

Colorado Springs AP 39. 43. 59. 55. 49.

Denver AP 39. 43. 60. 56. 50.

Denver CO 41. 45. 61. 58. 51.

Grand Junction AP 39. 44. 65. 60. 52.

Pueblo AP 41. 45. 62. 58. 51.

ConnecticutBridgeport AP 40. 44. 61. 57. 50.

Hartford AP 39. 43. 61. 57. 50.

Hartford AP (Brainer) 39. 43. 60. 56. 50.

New Haven AP 40. 44. 60. 56. 50.

DelawareWilmington AP 44. 48. 64. 60. 54.

Washington, D.C.Washington AP 47. 51. 66

.

63. 56.

Washington CO 47. 51. 66. 63. 57.

Silver Hill OBS^^ 46. 50. 65. 61. 55.

FloridaApalachicola CO 63. 65. 75. 73. 69.

Daytona Beach AP 65. 67. 75. 74. 70.

Fort Myers AP 70. 71. 78. 76. 74.

Jacksonville AP 63. 66

.

75. 73. 69.

Jacksonville CO 64. 66

.

76. 73. 70.

Key West AP 74. 75. 80. 79. 77.

Key West CO 75. 76. 81. 79. 78.

Lakeland CO 68. 69. 77. 75. 72.

A-2

Page 37: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

Location Winter Spring Summer Fall Annual

FloridaMelbourne AP 68. 70. 77. 75. 72.

Miami AP 72. 74. 79. 78. 76.

Miami CO 72. 73. 78. 77. 75.

Miami Beach COOP 74. 75. 80. 78. 77.

Orlando AP 68. 70. 77. 75. 72.

Pensacola CO 62. 64

.

74. 72. 68.

Tallahassee AT 61. 64

.

74. 72. 68.

Tampa AP 68. 69. 77. 75. 72.

West Palm Beach 71. 73. 79. 77. 75.

GeorgiaAlbany AP 60. 63. 75. 72. 67.

Athens AP 54. 58. 71. 68. 63.

Atlanta AP 54. 57. 70. 67. 62.

Atlanta CO 54. 57. 70. 67. 62.

Augusta AP 56. 59. 72. 69. 64.

Columbus AP 56. 59. 72. 69. 64.

Macon AP 58. 61. 74. 71. 66.

Rome AP 53. 56. 70. 67, 61.

Savannah AP 60. 63. 74. 71. 67,

Thomasville CO 62. 64. 74. 72. 68,

Valdosta AP 61. 64. 74. 72. 68.

IdahoBoise AP 40. 44. 62. 58. 51,

Idaho Falls 46 W 30. 35. 55. 50. 42.

Idaho Falls 42 NW 28. 33. 54. 49. 41.

Lewiston AP 42. 46. 63. 59. 52,

Pocatello AP 35. 40. 59. 55. 47,

Salmon CO 32. 37. 56. 52. 44,

IllinoisCairo CO 49. 53. 70. 66

.

60.

Chicago AP 38. 43. 62. 57. 50.

Joliet AP 37. 42. 61. 56. 49.

Moline AP 38. 43. 62. 58. 50.

Peoria AP 39. 44. 63. 58. 51.

Springfield AP 41. 45. 64. 60. 52.

Springfield CO 43. 47. 66

.

62. 54.

IndianaEvansville AP 47. 51. 67. 63. 57.

Fort Wayne AP 39. 43. 61. 57. 50.

Indianapolis AP 41. 46. 64. 59. 52.

Indianapolis CO 43. 48. 65. 61. 54.

South Bend AP 38. 42. 61. 56. 49.

Terre Haute AP 42. 47. 65. 60. 53.

A-3

Page 38: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

Location Winter Spring Summer Fall Annual

IowaBurlington AP 39. 44. 64. 59. 51.

Charles City CO 33. 38. 60. 55. 46.Davenport CO 39. 44. 64. 59. 51.

Des Moines AP 37. 42. 63. 58. 50.

Des Moines CO 38. 43. 64. 59. 51.

Dubuque AP 34. 39. 60. 55. 47.

Sioux City AP 35. 40. 62. 57. 49.

Waterloo AP 35. 40. 61. 56. 48.

KansasConcordia CO 42. 47. 67. 62. 54.

Dodge City AP 43. 48. 67. 62. 55.

KansasGoodland AP 38. 43. 62. 57. 50.

Topeka AP 43. 47. 66

.

62. 55.

Topeka CO 44. 49. 68. 63. 56.

Wichita AP 45. 50. 68. 64. 57.

KentuckyBowling Green AP 47. 51. 67. 63. 57.

Lexington AP 44. 48. 65. 61. 54.

Louisville AP 46. 50. 67. 63. 56.

Louisville CO 47. 51. 67. 64. 57.

LouisianaBaton Rouge AP 61. 63. 74. 72. 67.

Burrwood CO 65. 67. 77. 74. 71.

Lake Charles AP 61. 64. 75. 73. 68.

New Orleans AP 63. 65. 75. 73. 69.

New Orleans CO 64. 66

.

77. 74. 70.

Shreveport AP 58. 61. 75. 72. 66.

MaineCaribou AP 24. 29. 50. 45. 37.

Eastport CO 33. 37. 51. 48. 42.

Portland AP 33. 38. 56. 51. 44.

MarylandBaltimore AP 45. 49. 65. 61. 55.

Baltimore CO 47. 51. 67. 63. 57.

Frederick AP 44. 48. 65. 61. 55.

MassachusettsBoston AP 41. 44. 61. 57. 51.

Nantucket AP 41. 44. 57. 54. 49.

Pittsfield AP 34. 38. 55. 51. 44.Worcester AP 36. 40. 58. 54. 47.

A-4

Page 39: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

Location Winter Spring Summer Fall Annual

MichiganAlpena CO 33. 37. 54. 50. 43.

Detroit Willow Run AP 38. 42. 60. 56. 49.

Detroit City AP 38. 43. 60. 56. 49.

Escanaba CO 30. 35. 53. 49. 42.

MichiganFlint AP 36. 40. 58. 54. 47.

Grand Rapids AP 36. 40. 58. 54. 47.

Grand Rapids CO 38. 42. 60. 56. 49.

East Lansing CO 36. 40. 58. 54. 47.

Marquette CO 31. 35. 53. 49. 42.

Muskegon AP 36. 40. 57. 53. 47.

Sault Ste Marie AP 28. 32. 51. 47. 39.

MinnesotaCrookston COOP 25. 31. 55. 49. 40.

Duluth AP 25. 30. 52. 47. 38.

Duluth CO 26. 31. 52. 47. 39,

International Falls 22. 27. 51. 45. 36.

Minneapolis AP 32. 37. 60. 54. 46

.

Rochester AP 31. 36. 58. 53. 44.

Saint Cloud AP 28. 33. 56. 51. 42,

Saint Paul AP 32. 37. 60. 54. 46.

MississippiJackson AP 57. 61. 73. 70. 65.

Meridian AP 57. 60. 72. 69. 64.

Vicksburg CO 58. 61. 74. 71. 66.

MissouriColumbia AP 43. 48. 66. 62. 55.

Kansas City AP 44. 49. 68. 64. 56.

Saint Joseph AP 42. 47. 67. 62. 54.

Saint Louis AP 45. 49. 67. 63. 56.

Saint Louis CO 46. 50. 68. 64. 57.

Springfield AP 45. 49. 66. 62. 56.

MontanaBillings AP 35. 40. 59. 55. 47.

Butte AP 27. 31. 50. 45. 38.

Glasgow AP 27. 33. 56. 51. 42.

Glasgow CO 28. 34. 57. 52. 43.

Great Falls AP 34. 38. 56. 52. 45.

Havre CO 31. 36. 57. 52. 44.

Helena AP 31. 36. 55. 50. 43.

Helena CO 32. 36. 55. 50. 43.

Kalispell AP 32. 37. 54. 50. 43.

Miles City AP 32. 37. 59. 54. 45.

A-5

Page 40: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

Location Winter Spring Summer Fall Annual

MontanaMissoula AP 33. 37. 56. 51. 44.

NebraskaGrand Island AP 38. 43. 64. 59. 51.

Lincoln AP 39. 44. 64. 60. 52.

Lincoln CO University 40. 45. 65. 61. 53.Norfolk AP 35. 40. 62. 57. 48.

North Platte AP 37. 42. 62. 57. 49.

Omaha AP 39. 44. 65. 60. 52.

Scottsbluff AP 36. 41. 60. 56. 48.

Valentine CO 35. 40. 61. 56. 48.

NevadaElko AP 34. 39. 57. 53. 46.

Ely AP 35. 39. 56. 52. 45.

Las Vegas AP 56. 60. 78. 74. 67.

Reno AP 40. 44. 58. 55. 49.

Tonopah 41. 45. 61. 57. 51.

Winnemucca AP 38. 42. 60. 56. 49.

New HampshireConcord AP 33. 38. 56. 52. 45.

Mt. Washington COOP 17. 21. 37. 33. 27.

New JerseyAtlantic City CO 45. 49. 63. 60. 54.

Newark AP 43. 47. 63. 59. 53.

Trenton CO 43. 47. 64. 60. 53.

New MexicoAlbuquerque AP 46. 50. 67. 63. 57.

Clayton AP 43. 47. 63. 59. 53.

Raton AP 38. 42. 58. 54. 48.

Roswell AP 51. 54. 69. 66

.

60.

New YorkAlbany AP 36. 40. 59. 54. 47.

Albany CO 38. 43. 61. 56. 49.

Bear Mountain CO 38. 42. 59. 55. 48.

Binghamton AP 34. 38. 56. 52. 45.

Binghamton CO 38. 42. 59. 55. 48.

Buffalo AP 37. 41. 58. 54. 47.

New York AP (La Guardia) 44. 48. 64. 60. 54.

New York CO 44. 47. 63. 59. 53.

New York Central Park 44. 48. 64. 60. 54.

Oswego CO 36. 40. 58. 54. 47.

Rochester AP 37. 41. 58. 54. 47.

Schenectady COOP 35. 40. 59. 55. 47.

A-6

Page 41: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

Location Winter Spring Summer Fall Annual

New YorkSyracuse AP 38. 42. 60. 56. 49.

North CarolinaAsheville CO 48. 51. 64

.

61. 56.

Charlotte AP 52. 55. 69. 66

.

60.

Greensboro AP 49. 53. 67. 64. 58.

Hatteras CO 56. 59. 70. 68. 63.

Raleigh AP 51. 55. 69. 65. 60.

Raleigh CO 52. 56. 70. 66. 61.

Wilmington AP 56. 59. 71. 69. 64.

Winston Salem AP 50. 53. 67. 64. 58.

North DakotaBismarck AP 27. 33. 56. 51. 42.

Devils Lake CO 24. 29. 54. 48. 39.

Fargo AP 26. 32. 56. 50. 41.

Minot AP 25. 31. 54. 49. 39.

Williston CO 27. 33. 56. 50. 41.

OhioAkron-Canton AP 39. 43. 60. 56, 50.

Cincinnati AP 43. 47. 64. 60, 54.

Cincinnati CO 46. 50. 66

.

63. 56.

Cincinnati ABBE OBS 45. 49. 65. 61. 55.

Cleveland AP 40. 44. 61. 57. 51.

Cleveland CO 41. 45. 62. 58. 51.

Columbus AP 41. 46. 62. 59. 52.

Columbus CO 43. 47. 64. 60. 53.

Dayton AP 42. 46. 63. 59. 52.

Sandusky CO 41. 45. 62. 58. 51.

Toledo AP 38. 43. 60, 56. 49.

Youngstown AP 39. 43. 60. 56. 50.

OklahomaOklahoma City AP 50. 54. 71. 67. 60.

Oklahoma City CO 50. 55. 71. 68. 61.

Tulsa AP 50. 54. 71. 67. 61.

OregonAstoria AP 47. 48. 56. 54. 51.

Baker CO 36. 40. 56. 52. 46.

Burns CO 36. 40. 58. 54. 47.

Eugene AP 46. 48. 59. 57. 52.

Meacham AP 34. 38. 52. 49. 43.

Medford AP 46. 49. 62. 59. 54,

Pendleton AP 42. 46. 63, 59. 53.

Portland AP 46. 49. 60, 57. 53.

Portland CO 48. 50. 61, 59. 55.

A-7

Page 42: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

Location Winter Spring Summer Fall Annual

OregonRoseburg AP 47. 49. 60. 57. 53.

Roseburg CO 48. 51. 61. 59. 55.

Salem AP 46. 49. 60. 57. 53.

Sexton Summit 42. 44. 55. 52. 48.

Troutdale AP 45. 48. 59. 57. 52.

PennsylvaniaAllentown AP 40. 44. 62. 58, 51.

Erie AP 38. 42. 58. 55. 48.

Erie CO 40. 44. 60. 56. 50.

Harrisburg AP 43. 47. 63. 59. 53.

Park Place CO 36. 40. 57. 53. 46.

Philadelphia AP 44. 48. 64. 61. 54.

Philadelphia CO 46. 50. 66

.

62. 56.

Pittsburgh Allegheny 42. 46. 62. 58. 52.

Pittsburgh GRTR PITT 40. 44. 61. 57. 51.

Pittsburgh CO 44. 48. 64. 60. 54.

Reading CO 43. 47. 64. 60. 54.

Scranton CO 40. 44. 61. 57. 50.

Wilkes Barre-Scranton 39. 43. 60. 56. 49.

Williamsport AP 40. 44. 61. 57. 51.

Rhode IslandBlock Island AP 41. 45. 59. 55. 50.

Providence AP 39. 43. 59. 56. 49.

Providence CO 41. 45. 62. 58. 51.

South CarolinaCharleston AP 58. 61. 72. 70. 65.

Charleston CO 60. 62. 74. 71. 67.

Columbia AP 56. 59. 72. 69. 64.

Columbia CO 57. 60. 72. 69. 64.

Florence AP 55. 59. 72. 69. 64.

Greenville AP 53. 56. 69. 66

.

61.

Spartanburg AP 53. 56. 70. 66

.

61.

South DakotaHuron AP 31. 37 60. 55. 46.

Rapid City AP 34. 39. 58. 54. 46.

Sioux Falls AP 32. 37. 60. 55. 46.

TennesseeBristol AP 48. 51. 65. 62. 56.

Chattanooga AP 51. 55. 69. 65. 60.

Knoxville AP 50. 54. 68. 65. 59.

Memphis AP 52. 56. 71. 68. 62.

Memphis CO 53. 57. 72. 68. 62.

Nashville AP 51. 54. 69. 66

.

60.

A-8

Page 43: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

Location Winter Spring Summer Fall Annual

TennesseeOak Ridge CO 49.

Oak Ridge 8 S 49.

TexasAbilene AP 55.

Amarillo AP 47.

Austin AP 60.

Big Springs AP 56.

Brownsville AP 68.

Corpus Chrlstl AP 65.

Dallas AP 57.

Del Rio AP 62.

El Paso AP 54.

Fort Worth AP (AmonCarter) 57.

Galveston AP 63.

Galveston CO 63.

Houston AP 62.

Houston CO 63.

Laredo AP 67.

Lubbock AP 50.

Midland AP 55.

Palestine CO 58.

Port Arthur AP 61.

Port Arthur CO 63.

San Angelo AP 58.

San Antonio AP 61.

Victoria AP 64.

Waco AP 58.

Wichita Falls AP 53.

UtahBlandlng CO 39.

Milford AP 37.

Salt Lake City AP 40.

Salt Lake City CO 41.

VermontBurlington AP 32.

VirginiaCape Henry CO 51.

Lynchburg AP 48.Norfolk AP 51.

Norfolk CO 52.

Richmond AP 48

.

Richmond CO 50.

Roanoke AP 48

.

52. 67. 64. 58

52. 67. 64

.

58

58. 73. 70. 64

50. 67. 63. 57

63. 76. 73. 68

59. 74. 70. 6570. 79. 77. 74

68. 78. 76. 72

61. 76. 72. 66

65. 77. 75. 70

58. 72. 69. 63

60. 75. 72. 66

66

.

77. 74. 7066

.

77. 74. 7065. 76. 73. 69

66. 77. 74. 70

70. 81. 79. 74

54. 69. 65. 59

59. 73. 70. 64

62. 74. 71. 66

64. 75. 72. 68

65. 76. 74. 69

61. 74. 71. 6664. 77. 74. 69

67. 78. 76. 71

62. 76. 73. 67

57. 73. 69. 63

43. 60. 56, 50

42. 61. 56. 49

44. 63. 59. 51

46. 65. 60. 53

37. 57. 52. 44

55. 68. 65. 60

51. 66

.

62. 57

54. 68. 64. 59

56. 69. 66. 61

52. 67. 63. 58

53. 68. 64. 59

51. 66

.

62. 57

A-9

Page 44: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

Location Spring Fall Annual

WashingtonEllensburg AP 37. 41. 59. 55. 48.

Kelso AP 45. 47. 57. 54. 51.

North Head L H RESVN 47. 49. 54. 53. 51.

Olympia AP 44. 46. 56. 54. 50.

Omak 2 mi N W 36. 40. 59. 55. 47.

Port Angeles AP 45. 46

.

53. 52. 49.

Seattle AP (Boeing Field) 46. 48. 58. 56. 52.

Seattle CO 47. 50. 59. 57. 53.

Seattle-Tacoma AP 44. 47. 57. 55. 51.

Spokane AP 37. 41. 58. 54. 47.

Stampede Pass 32. 35. 48. 45. 40.

Tacoma CO 46. 48. 58. 55. 52.

Tattosh Island CO 46. 47. 52. 51. 49.

Walla Walla CO 44. 48. 65. 61. 54.

Yakima AP 40. 44. 61. 57. 50.

West VirginiaCharleston AP 47. 50. 65. 61. 56.

Elkins AP 41. 45. 59. 56. 50.

Huntington CO 48. 52. 67. 63. 57.

Parkersburg CO 45. 49. 65. 61. 55.

Petersburg CO 44. 48. 63. 60. 54.

WisconsinGreen Bay AP 31. 36. 56. 51. 44.

La Crosse AP 32. 38. 60. 55. 46.

Madison AP 34. 39. 59. 54. 47.

Madison CO 34. 39. 60. 55. 47.

Milwaukee AP 35. 40. 58. 54. 47.

Milwaukee CO 36. 41. 59. 55. 48.

WyomingCasper AP 34. 38. 57. 52. 45.

Cheyenne AP 35. 39. 55. 51. 45.

Lander AP 31. 35. 56. 51. 43.

Rock Springs AP 31. 35. 54. 50. 42.

Sheridan AP 33. 37. 56. 52. 44.

HawaiiHilo AP 72. 72. 74. 74. 73.

Honolulu AP 74. 75. 77. 77. 76.

Honolulu CO 74. 74. 77. 76. 75.

Lihue AP 72. 73. 76. 75. 74.

AlaskaAnchorage AP 25. 29. 46. 42. 35.

Annette AP 40. 42. 51. 49. 46.

Barrow AP 4. 7. 16. 14. 10.

A-10

Page 45: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

ocation Spring Summer Fall Annual

AlaskaBethel AP 18.

Cold Bay AP 33.

Cordova AP 32.

Fairbanks AP 14.

Galena AP 13.

Gambell AP 15.

Juneau AP 34.

Juneau CO 36.

King Salmon AP 25.

Kotzebue AP 10.

McGrath AP 14.

Nome AP 16.

Northway AP 12.

Saint Paul Island AP 31.

Yakutat AP 33

.

West IndiesPonce Santa Isabel AP 75.

San Juan AP 77.

San Juan CO 77

.

Swan Island 80.

Virgin IslandsSt. Croix, V.I. AP 78.

Pacific IslandsCanton Island AP 83.

Koror 81.

Ponape Island AP 81.

Truk Moen Island 81.

Wake Island AP 79.

Yap 81.

23. 41. 37. 3035. 43. 41. 3835. 45. 43, 39

19. 38. 34. 2618. 37. 33. 25

19. 34. 30. 2436. 47. 45. 41

39. 49. 46

.

42

28. 44. 40. 34

14. 31. 27. 21

18. 37. 33. 25

20. 37. 33. 26

16. 32. 29. 22

32. 40. 38. 35

36. 45. 43. 39

76. 78. 78. 77

77. 79. 79. 78

77. 79. 79. 78

80. 82. 81. 81

•00 81. 80. 79

84. 84. 84. 84

81. 81. 81. 81

81. 81. 81. 81

81. 81. 81. 81

79. 81. 81. 80

81. 82. 82. 82

A-11

Page 46: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS
Page 47: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

Appendix B. Computer Program Listing for Multiple Pipe Heat Transfer andEconomic Analysis

The attached computer program calculates pipe heat loss (heat gain) for anunderground heat distribution system, for which up to fifteen different pipesare buried. Each of the pipes covered in turn contains up to five inner pipes.All the pipes could be either insulated or uninsulated. The uninsulated pipesare considered to be insulated by material having the same thermal conductivityas that of the surrounding soil. The economic analysis requires the energy costper million Btu's and capital cost in terms of dollar per linear foot of theinstalled system. The life-cycle-cost calculation includes the effect of thegiven discount rate and cost escalation rate. The program allows the determi-nation of minimum life cycle cost with respect to the variation of insulationthickness of one pipe, which may be the subject of major importance.

The following input data will have to be read on the interactive console inresponse to the questions. The input data will be displayed on the consolefor validation and correction (if necessary). The sequence of this interactiveoperation is illustrated at the end of the program listing.

M; number of pipes in the trenchA: horizontal distance of each pipe from a reference pipe, inchesD; depth of each pipe, inchesR: external radius of the pipe (inclusive of insulation and air space if

applicable),inches

KS: thermal conductivity of soil, Btu-in/hr.ft^ .°F

TG: ground temperature, °F

TPF: pipe fluid temperature, ®F

For each pipe the layer-by-layer data on

TH; thickness, inchesKI: thermal conducltivty

,Btu-in/hr . f t^. °F

are required in the sequence of carrier pipe wall, insulation, air space, andconduit wall.

The program would output at this point

C: thermal conductance of each pipe, Btu/hr.ft. FTP; pipe/soil interface temperature, °F

Q: heat loss/gain from each pipe, Btu/hr, ftQP: heat loss/gain from each pipe when all the pipes are completely insolated

from each other, Btu/hr, ft.

If the cost calculation is required, the following input must be provided:

B-1

Page 48: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

pipe cost in terms of $/ft installedcost of heat in terms of $/million Btutotal pipe length, ft

annual interest rate, %

price escalation rate, %

the terms of payment in years.

The program would output the percent-worth factor, pipe cost, heat cost andtotal cost.

If the optimization analysis is required for the insulation thickness for one

of the pipes, that particular pipe should be identified. Five steps of insu-lation thickness, thermal conductivity, and corresponding incremented cost

(installed cost) are then inputted to observe the total cost profile, whichwill in turn provide the optimum insulation thickness.

B-2

Page 49: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

lOvC

KUhJ

E- & .

tB c CO0 1

^© ft ft E

W <! CB © ©r- a a a

1 a ft ft — a5 X ft ft ft t' ’ 0

ft 2j;^ft ft © ft C —

P u; — uT ir hi; . S’* ft ft E-b- > E- ft ft ft - E- Cft ^ u. — 0 ft ft p Cb C P

ft ft p P® ft ft ft P P CO

P IB - C II P ft © F CB aP “ P E- E- ft a ft a —fe CO © • «' < bb

- bb P P C ft ft fta p a < ft C P Ir. p ft E0 C b N-< P H ft E- ft-P

N d z <- d c ft 0© ft c c ft. p a ft • ft© P c P ft — ft 0 ft 0< ft © © ft ft CB ft p ft

ft — ft ft c a - CB E- P — 00C ft s c bb ft bb ft ft P

CO 0 a t;' ft a a F -*

\

ca

E-<

t/i

s:

c.

b.O

[2t/3

r wH J

O U—© JU c-

<E.opa s

cn tjca

fc3

pa0.

dpa

<d

j c c»] _i

^ K ao ©

tj —(1.E-HI— < <C

w

_]^a

o, J J PJ <D © u :s

W (f! <Ca cu o— tti a

pj ’-' -

C . H Cl os K) —< CO f.~ cU - iM C Ua fc, t- Cshooooo00 OO 00 00 0000 00 0) 00 oo

fO fcJ tl fcJ ti

6 BBBB

aa ©2hE- C J

J J ^ U ^J P W U se< c« a c:s a '- D- o— t» ay fi ^0- H a flS (B— C» CM - <P, - c ubb a © b b<©© ©©^ p ^ ^E-E--HE-

1—

t l-M [> I—( I—

<

> > HH > >M E-l HH blE-i H CP [•< E-*

u y P CP CPp p O p p« Q a Q «a a o a ao © U © CPu u u ©p ^ p p.b>H ^,i

C.0 © CP u ©

ft ft ft ft

I..-ft ft pP M ft

H ^ E- h [

PlM -

J

a ftN Mft ft

aftaaftajibCM CO 'G< P — CM CO <? P

CKftaS" — —fthE-E-HW^^papa

H d ft ftft ft ft C-H Hft ft ft ftft ft bb QH b! Hh a ft

E'-* <1ft ft ft© Q ft O ©ftp , Eft P ft ft ftp ft © ft >M ft <P CO 00

bP <c Oja©<1 r, PrJ ft

a ft a ft ft•ft ft ft, [- dft H © P

-«.i

^ ^ <1^ Q,^

fcj II P “1

II II rJ/-N ^ ^ II S

V) fta —'-" ft

ft ftft m

^'1

ft©§E-'

OO ©P PP ©ft a©

^©© p

" 9 2i

<'

dE^ ft ft«=.| !! ftQ E“‘ E-«

E-' ftP © ••

^pGo < u

0lOw

1

CJO'

I

o«<

00 I

wa

qft

CA

ft00p<upp

E-^ ri

& <ftraft •• O 00Ki ca —a a ©<5 O E- PE- H ©

ft ^E^ d ca ftC ft ftr-

1ft d

d o oo ©ft ©

ft © a ftft bb ft“M a .. r-.

CL, ft ra o

^ ft ^ [il

ft © H ©© a a

ft p © ft©CUP

IB

po00

ooO fta ft

ii ia g

dp*"'a E- Ki

COI

CQ

wUUU© ©©©©©©©©©©©©© ©©©©©©©©CP©©U©U©UU©©©U©©©©©©©©©©U©©©©©©©©COo©y.

to — a © <’ © o N c: © c — f'j fo < © c n c3 © c — c'. co << © © n co © g -* w eo << © © P'> k © o — c'] © << © 'S n ca © © « w eo <* © vs n^ ^ _ _ _ „ f ;; f,;i f; f.’ fi ,^3 f,] f.3 f- fj fj © CJ CO W CJ C' <* V' <' <:< V" 'C‘ 'C' © © © © © © © ©(Li

COc

Page 50: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

O HH

RP a ©a

/-H <! 'H H/—V NM © a «• aIC 0-, —1 B cd g a9^ r- H V *• e h-H

W >1 © ^ EC ® - a aP, N w ^ © <1^ «TEC ' pd © ’- 2 a

*. ^-. P -1 w V o © o u^ N - ra

I- H H H a© ' «j-a © a - a (« H© N ^cF,<-< a a a a a^ #. ' cc,

© <- aHH CQ 2 H aw © a 'V

2t—4 '© ', o V o

ti, B /-H H H K ©pH B © ' © EC a ' gH ' -< © — <2 a © 'B 9

' a W ^ W JIC Q -I aa -H a

© H g- Vj Q CO P-, wj“ P <2 O O a© H ' a ^ ^ H '© a1—

1

^ H© II <2 II U ' HH'-' H © ^ '-' EC Q -a a_ LO HH J (/) 1- © -

HH B t-H a ' V aCd a P-, h-h Ph •H 2 r=. p; a '-' a oH O HQ - a a ^ p:5 'U'© ' H H-^ © td 2

-< <i; 2 a/-K . ^ ^ © 9- a a <2 CO

> aL':) l:-': © © Sh- a - h' - ta,

10 HL'J

O‘‘3 UK/< f-iI—

I

-ulO «-u

S cl K

&l Cl'

O © WC.3 fl

< a^

1S ir, y 1

© ©

© p I C'l

v.^ © -

©I - £0- Lj

L'^ w-

' LO WLO - w lO

L5 ’“- ’^

w --I <; ^

cl W . to

f-1

,..l

a

^ a Loto C. ’“' C,

O © [-1

© © a

I C‘j G C.! C I-::! H aj ,-! ,.1 a a<j <; <2 d <i

ii^ § ^ ^ ©

H H

OPI

tl I

•U.| i

1

i

' a-a

'

1 o

to

CO

o1^.-a

' H' oa

©a

uCfi

ig[-

o

© Vi

> ©t3

a

©a

ut«

Pi

o

Vi

uK

aoI—

I

Vsc

>-

<c

oV EC

g;I a> ©

si w• a

©w

aCfl

Pi

o

ah

a© *

r«5o

[-'

» © a© © ©H Q

‘ HO ,-2

f-H ^II c

Ha Id O CJ t, 'II a Q ‘-‘1

il tl Pd p-H II a I'-l

II F" to O P

,

<! pH C\i hH 1—1 vo a © atd [>a

Ho 01 -1. Hi- <il « >< o •H O >- P-H F o a © E>

a Ha H'-l ^ W©O' P ,, H

>* H <2 acd ©Pd

>-l <1 ©a

H C E'*aa < HH HH

a (Q r- rd O H t-i 01 E'- '

C'i © CO cd © W >-> cd o a GpjIH W a O r/j pd

© t- © H H - '"5 2 L-J <- K=a • o H <ij {X] HH « C-) H <2 a 9- HH CO © H 2 a aa^^II a a KN cd 0:3 o U3 B n <1 1-M <2 O Pd H 1-4 « • cd

o aHH 1“4 a •

E3a 1" © a o © © © a a Cd II - Pd © cd P>i il © a p II W o a Oa *. *- a © u - a CO M-H r- a a © t-j a NH #- " a © a <d

H al-H HH a © a a a

at, a w . /'S ^ a Um o i'- H a »• o- a - - a. H [-' H©aa Ma Ka ti ^ o o - ' cd M 5; ' a la n /-V II © a /-V I’l II /-> II © a /-s 11 II

t, 9- H-l hH ,H, .>-1(23 ' H-d< < H.J a HH tj >-H a a K—

1

a •H >—

H

-- a a KH a «* HH •P«« a v.‘ © Ha=-i aa II C •

1C. a II Pi n * W II •

-H CO] - LJ a ti t-J a i.-i a ©jtl © tl • i-'C

H Id O<lJ a a NH © a HH a a tl MH

.» • a « <I <H r- M=^; © « P- « a © ' - U*l V » H--I © V ^ r-''j

. ^ a o i-i . • tl a <2 ' o

C' HII © '

©©

VC

H [*' H II ["' <1

©

© Cl © 1

I-I <1 O I

HE-h ©<-^l <1

a CrJ

© cd

c: © a P-.

cd © ‘^ ©a f-H al_i>| t^-4 |.J

pTfS^ ^ ^ ^

' ^

fcj H OK '©

a.H :;•

^ ^ ^ <2 f*=l

pp, EC © lizi S ©_. <; (t?; ^=1 ci|

d Cd H d © a t]© © ed a a a cd

a E“| Hs B 1

© cd cd I

H <2 [-1

B ^-; B di« cd “ <1Cd © a f

‘ c-3 -):-

'’'I

H ^ ^1 [-' i-‘

UO' 00 ©

CSJ - ©ca©

©©

Ph Ph Pd a a a Pd 1- a a pd a a a

LO o© © © c

^ i’U;a H H H <2 E-i ar

C“1 (-'^i r-^j Ic-H (^1 r— I c-'i fin O'!

C-i I™* ^2 '*^ 1^''

cd © Cd a a Cd a Cd t]CLHaacdi-iaaccd

C3o

<rI

CQ

C3 C^ O — 0] © <-1 LO © Ey CO © C 03 © 'C" LO © fv CO © © ’-' 01 CO •C" LO vp N CO © O 01 o; C te © !V CO © O 01 CO 'J' © vO CO © O ’-' 01 © 'C'l ©© © © © © © © © © O © O EV N N EN> CO CO CJ CO CO C" CO 03 CO CO 6' ©©©©©£'©©© O C C O O O © O G O "

Page 51: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

o

u73

CO H

.O L

ci) c;

II O© B-< t l

f

C3©

- aE-i-©

.n -Pi-. ©73 CO COft ‘ f'1

-o pS

- -ift ©1! ft0' ^^ n ^

- - PJ C)«V » » »ast (

H “i - ^

a fe-v, g(jsecswfc-pH ttl Dh K ^

C'J

y ’“I II

3 \ y

;S;B- fc4 CvJ

Is II

© ra ©« bS ©

CS3 03

\ \ „y-N /-S t-H

-

>«t-y -< IJ

c; e wII II

^ ^ CO© yw w ©© e tt

^22

©

'

o

©\If\

wHN

©

HH

o

NH

Cw\

K-4

W

<J! k/< .W

(d, -<

\ <!'

© <3

’-" • ly MII ej vv wt-i © Q <!

© t< « ©a - w <

•“I ©V-/ yft ft

I <!

55

\HH

ft\03\

a\

ft

00,

i;

^ I

IfS

7j

ft W

S Glr-

- t>nJ

pCr^

© >-• k'

O CTj ft

,© P^© ft II

B^ ftS P-i

O ft H

®ft

ft71

PS

©

ft

ft ^a ft CO

_,•H • P-a

11 w © ©II » 1 P'S« - ft pS- II v9 ft

/-i h; »

« P-i II ftw H ft

© tj

ft I

Hft

d73

\11 s73 '-

si©ft U ^S S M

©

©ftft©^ ft

1 73 HI 73' ’-'

: ft >2 HO « '

© 73

'I

©

II fta Ph

CO ftl I!

'© a Q- [-1

I- K!© a ti© ft ft

ft ©B ft]

© ftU 1-1

B-i

© C© t3

Pi

= aSaft © -

Q I

ft © B"

Sft

-J P-H ^_,s -

© a

"

ft Bi

ft©

§a K 1—

1

73 --ft - © -

- — ft-ps • B- © •

© e © ^ © ©ft ft ft pc E- - ft

03 < a <73 ft ft ft P-i B-aft -ft a ft p

< ftS ft « 73 '-' tr^ © —© © ftK « 73 - aI— El a ft ft H ft

<c © a ft NN - ©

© > ©ft

73< ftBi«Ca Bi

73737‘J

P3 -

B ^n ft© '-'

1-H ft

^ft

cs«

ft ft> cu

ft ^ft B-

ft.ft

lO ©

» ry

ft- ft ft EfO - B"

ft in .*-5

©r<j i

p-iiKl 1

i

I w

ft <i &ft © <:

ft

9>- ft ft

a1 - H '

- II ft

Bi|

g!ftft I

©©I

73

KH

aa -

ft 73^ 7< ftft ft

ft g<: ft

CO

ft

ft

ft73

ft I

©

Pft

t^L-^ tftj kHn ft ©ft

© a aH B- «

. <s© ft ft

% cft <?:

g«\ Ed

ftftan Bi

© ©

“S-Ed

a ft n « ^pa w -B-

n ^W « w ftQ > II « QISlSSa n -ft73 a -

© © - II ft<1 !>"*: n ~ ^

1^5

a ftft ©

Cl iJ vE

©UB-'Bi^ ^

ft ft fti-i ft ft

H ^ Bi

fcJ PS © ftft ft ft ft

- PS v<- if if ifif (£i

a Bi E- B« Bi© « s a ft a< s** ^ >*=* ^

ft p5 ft ft ftft ^ ft ft ft ft

00 B-< B- I

CO ft ft 1

© ft ft I

a ft ft I

B-B-ft ft ©»=< t—

I ^ft ft ftft ft ft

Bift I

ft tq I

ft ft '

I

E"'1

I ft I

I ft I

' ft I

>f 2E- Bi E^ [- ftsaoftso'-'i«<2i-'>-'<!'-'ft CS ft ft ft ft ftft ft ft ft ft ft I-

loIm

O'o

o©©

03 CO

CO COc

U tfO

vO N 09 (S' © -1 03 CO <" LO V5 M © O -I 03 7j C' LO vS !V P3 S' © n 03 CO <r< LO \S Cvi W © O 1-1 03 © <’ © V© N C3 O © -< CO CO << LO vS N C3 © O K 03 ©n -I « — 03 03 C3 03 03 00 03 03 03 03 CO CO CO CO CO CO CO C-0 CO © V << \3" C‘ <' << s;' vj" © © © © © © © © © © \S v5 vS \9 vS O vS vS \5 v9 N N ^= N

Page 52: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

Q

LO-*-5 *-5 '

->-5I

I

.

©

I

V9 ,

I © I

' a I

uOh

03U<a

I- IswM wP EJ

> p"'03S

Ph

P3 P

I

Ou

©s

w

03

Q

WP

CL, HH

S HVP.

<--<,S 0i

©HH

H<

03K

WP

© Bo HH

a ^01 £1 •mu,' o ag3

'P=,

H agH ’“' /»S <C'l

P II © -< ©£-n ©

Ph .

H

bn

Oh

aK*^ ©W

/“N

to a'0a a p

H 03/»>» a IN

^-sK.<V—

(

03 a a a ©S •• K ^

U-M -c - w to* » a HH E2 hH ^ 9^

S»/ b=< a 0 K II © H ©Ji CO /C ^ =! a a •« •

1/-- H

.K-=4 •

, 0 HH /«\ a 0 •© K></---N S£t

-o a © H s-=< 'P W=i ^ ©VC H a + td « fc.

b-s| ©M t-1 © a S II w V© ^ kTiw NM

S0 a ^ C--1 ^

y - W a a 0 a S H H II ^ ©II p

,

p-H a •

II &j p 't-H a Q M 03 0 sy p p

QT«=J p. k/< U 11 II II ' £3 II 11 p

Oh Fil «• » w ^ t=i « t>=. aB

« P> T°4 II^Ej /=*\ /-N a a a HH <1 ,-3 » M.

kp>< HH /«N N •

Fr] P V* p. CH Ej © Vv*F»=i w It © II 'mm' N-1 II d M eg P-M B p p 0 © VC , kyw a-.

•n/ aE-^

II 0 P '/*• d li»*"3 M © E=i >=*4 cd l=J fc] r- P p p p lO h«F H G'J © vs VS p ©

E=< /-s

HE-=1 H Sd

‘i':^ a t=i

ep- a H < l! II © HH HH N a H

SII N IN a=< © t--s<

11 N-

J

l^T STi 0 ^ 0 i~=A N p •; ad

/=•. /-IN (?a £3 M=l s=>' [-' H ~i Fs.1^ a a a t—

4

H w 4 P N=»J <; t.i <1 Oj Oi v>» HH 1=1 C^Tj P P l«=l t=. a s=^

K<i © C2; t-j 0

0 aa p., © Ph t4 a ed © © © © © a © ClI o © © © 0 0 0 © ©

'-i© © s © aH « © CL. s 5 e a CL, a a a a 0 a a a © a © © a a a © © a a a a © a a a ©

N> LO C3 vSfl (N »=>i '1? N ® N lOIN U o N ^•1 Ey © C9 IN T,=1 i-H hH 1-1

fcl HH I

,

c3 a II

03 C3 a H|-< © H II

p pp o a H© aH a • '

y HH H H

a 0^ -X-

oi a .

a HOi 03 Pi a

1 03 a a ap p e

©

vOI

PQ

O « U

^Ki\SNKiS'©-<iM©<’‘<L'5v<5NC900-^(M©<''L'5veNt3©0-'WC'3<-'L‘5 0NC9©0«€^©'5<L'3v5!>>C9©0-<M©'<fL'3\StH,C9e'®-<NNiyNNtv©i©e3C'3C3C3ae3C3e.3eN(5'©©©e'©©©©©©©©©©o©o©''t-«,=-’=',-<’-’='-'’-' — wai?3we3aaw(3^WP3«

Page 53: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

f'

J

Uhr

i o (/)K-l

\ F<tiJ

CQ o s- ViWD-,

H-

1

O*—

1

ViPh —)

uPht—

1

TYPE

OiUiu

o

Vj

QwVI

g\ .

KlUOVI

o

Vi

s®K-4 ls2

SPhOH

r-»

I

CQ

o © Vi W4 P-, a F 4—4

lO t- H QTI o a H Phr

1 a <dj Kl P P Pp4

a a d F t-i Cl © 4—4 ©a k y4

>—

1

\ F b Cl E- r'-4»M4»J^ r p

cJ fclk<4K->l w y«V u a a NM

lO H Kl y-S a k/ H *--iF^l a a F w a F-4 /-I

y-. Fh u a <; P c © Kl F E-^ H 4-^*-

ca *5 \ F C3 F l-H © © H 1—4 F a * P Clo rij V-4 CD < w 0 II • o o a a p E^H Vi a F II

1-4 II II HH o H p- © o KlH - d II y-S /-N a p- l-H Kl o © a E- O

O C- H P.K*4J'N y< a y-S a © /-y P a Kl 4—4 kl-4^ ©

O A c /-N fcl tfj d w w 4—4 © © /-N o a < P

p a Eit-^i © t'l

-j.f'l Ph v_y *- o -

E*--'© /*N P © .

F a a w d y-S © d II a H©

(-H kn o CQ a 1-4

1 a II a IIk /4

Pl d II ^1 K) «• N*4 H 1-4 p r w• s © F-i /-s d © a © Kj T—

1

d4—4 fcl

s S a © o Kl © o p> © u * w B • pKi fcj

fcl © 1-4 W a *- o 1—4 « • • «• 1—4 p- p F-H H P' P 4—1 a < k>Kj

• 11 c. a a « r II id fcl Q) W p- (M » p- p Kj Kl P *- © © « y-X P ©«- b w h- F o -j;- w k

•*-4 * II4- 1-

Ul b #V“ V» •VC p © © VC V? • 1—4 t—

4

4—4 a^C* (i S 11 F (a H o • • • s yt © © */C Kl o a ©

fcl >-H H Si fc! SI F H b B © C:Q© H k/W a -i a lr*J

^'1 a H-4 h>-4 F a a B 0 HH H 4—4 H 4—4 a a<1! Sp/ S a

ah-l a K) 4—4 1—4 B »—

4

4—4 a a 4—) !«l a . - s-/ 4—4 a a © ©© © a a c a o © 'J Pil fcn tl-1 © © !2j cS a a a Ci3 a a © e5 E- a H BK © © H © © a a a a a >—

(

S © Ph CL, a a a K l-H © cu a a —4 ©*© Kj a

W©LO

vOO

eg toca ©<M LO— (M

W « Tj< ifl VO N C3 © © -< W © Nl' O C5 © O N CO << LO © IN> C3 C' © ’-1 Cl CD <" L-i O N eg« « « © CD W CD CD <;* C' <' <* t-0 LD LD L‘D LD LD LD LD Ki LD \5 v5 vD v5 \5 vS v5 vD \5W Cl Cl Cl Cl Cl C'l Cl Cl Cl Cl Cl Cl Cl S'] Cl Cl C\1 W Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl (M Cl Cl Cl Cl Cl Cl Cl

i

Page 54: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

QGQSQS5f:C0STK(

1)

.TRMS(

1)

i

i

<>

cH

1

lO<H

<2 S <»pS ^

<^ K,.

r:2 ta»«=><

Ha <1

[z3 S Sis, fcl S ' ' <2“i K) © IIH © « II II ^p 0=) m M a© Ki S - dcs; a w pa 3 s H ©©©“©©cap;KJH©a»Hdtd

u

-"NCJ^^lflONCg

00Im

Page 55: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

lA

Wtx

^ lA

O '

>IAOK Uaw O

^ ®O CVJ

biK S

^ M© q s ® oW Ph H •^ >**^ kn

i-j cn oocn

w i— ^ IS ^I

^ ^ u. n li It

'X>-^,

I NH l-H |>>< I

1 N

' © O •

I Q U '

O '

t\3 N©O <

\

©\0

<!

<i

J '-'-H W - J JII © ^ mJ w « • JN II kJ II <3 II & ' <I II

-fc4 II fc4fcJt4i--i/^hJ /-s • W <3v^ 0 W 0 W<30 «C V' - o -.-.

I © '- ' II »J II til

II <s; © o t, © >..

o©©

8 i

' ©

H -I-

la 1.3

O II

© J

• ©tJ i-i

©!• O

IJ Iv

©M ©

©- H ei-1

o oIN

©«

o\?l

pcn©©a©’-•CJW'^^WvANra©©© -

to©

o oLA vS

oN

© © <1 tA \S N CO © O W CO^ ^ C-] f<] f-j

O'.

I

PE

Page 56: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

uOh

0i

lO

w

w ©B © S« < ©H \ «

lo b s kj'-'

'? S 2;

M-i MH t) © l-l

M © a

O)

©a

wa o cn

I

a § M i

m <s s

>-5 -« ww a- E aW BP - w- a

b a «a b a a a— a #. Ma i-i « a aE w M

K B « 53 BH '- « P B

1 W a '-'

E « H •

fci a pd ^K td I—

'

^ ffi S© 53 aB P

> m i

a , iMs

Pti^ e i=-i a ElWf 1 a © Ei)

••

H © MM

© F EJ E3 * WPr-, PJ E B M«1 M=4

© b W NW a<rf

Ej EJ

bMMM g W

MMMM

a (s © a aMM psJ 0 -*4 MM V" \ a b ^Q F F m a •> MM l-M • J B F<3^p H © v9 w 5pj ^i a p^d II H ** i^-i -::- p3 b \

II MM © M /*S *=j -*- E •

II •-< MM V-MMH © .-V a Cj es; H */»' ^

MM h: -j

v«/ © --N H d -!- a N© +<5

<!ajS- S

-S + \ b

^1

H <:•'

B© ©u a

• © -< « >-2 i-^ ps. © >11 w - »

--N© II ©^k)'-»"-<«©MI—iiiEiM ©t-iww©-;-

a ^ Ej K to ® E“' es i2J c PiS S S ^ II -<^ II II II ti

II 1^ {^ ^1 03 mnBMM'-^aa'-affiWa

BP El

II

II Bb ej

gi

BEi HII aH Ba *™i

a ©Ej ©

i-H a^ '-' a• © \a \ •

II

a a wa a u

a

BEl

ei

BEII gBSgw H afc, B Ha © pH © P5

0iH

1

pq

PE©©C-

©©©©©©©© CMt^ vS lO

— CM « LO \D N 03 (S' © -I CM a C" LO vS N C9 a © CM CO to ve [y C>3 © © I-I W p; Vi lO \5 N P3 (S' © ’-’ « CC LO« _ ^ ^ ^ „ f,] e^;] 1^] ^3 J,] 1^3 1^ 1^] P3 c>5 f3 W a a 03 a 'C"

' CO4 ©

ENB

Page 57: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

w/an,

w lO CL.

I

Ph

*a N - aa » a ©

LO •-•-< r- l-H

- 4-S N K H Hw 10 » U1 CQ <C -

n 'J 0 >H

a 10 N a a < a «•

« » © u ft aw u pS l-H CO > a10 '-' ' 0 a a a-.4 ft, W a H ywarn a a U pS© H ' t-H g *• © a a - •

' 'ft <5 ' V. 0 M-4 a ' a ra ©4-4 /-4 3; ©H © PS PS ra H m ©10 10 H a Ui2i a a ft a ' ^ ©- ,p r

E-; \ a a pH m a - aw 10 E^ «5J CS a - u a P \0 —1 ^ H a l-H - ra PS N - - ©- w E**^ m a H © P a a -^-© ©

4^ I—1 H l-H a < Ph »• ^ N

10 ‘-I E-i ft ft W P a m ft N a •

-I m w a m S CO 1—« i—t © ra P ' ra 'tn OSw H © <i a a *' a t-H E- Xm '© l-H - tH a *-< pe; a § ra a « ra ^ aU 4-4 - Kara II m l-H 'y a ' PS ft

HH N a i-i pS N-10 a a a a 4-S Q3 Ph 'H a X-

/-S • HH a t-.. a «- H 1—

(

a a m ft H - <3 E-I mto to H 1- © H-. ^ P m a 0 a - E-i P a im a H« -1 W a a ^ 0 © H 1-^ '©

ft 4- ^ ft ©

-- O '

Ki '1

K•-I tfl .

a w-tjOHW •“

HI/J lO© -U V-/

cci

uS K1 ©^ ra^ © a

S|iM c» 5©©

^ PI'©

10 1-1

-ulO '

o © aH /

O (fl W tT^

— © p3 oU H

o aE- © W U

t-J ft <5o w « a© S P» ^Qk!^ w a ©

*—* o — p-i a

©a

II He»i r

,

-wci-< © ©II © KI-I cc'H a^ p.iI—

I aw CL. I-H

<;

aa

-- ©a

©HHlm

o ©© u

©

• ah E'l

<t

© a Ham-al^^

a

Ha ©H

a

.1

N —I

, a

HHa esa ©

m© aa© <1E-i

a

<aao

cw a aH-l © P -H

<2.

' a a

© HmQ

si

KI a

cc; cci

a ao o ^u©aa- - ' U' ' >-<

c pa\ \a a© ©

II © © © ft a pj © ftP >1 pI aHH PS © HH Ph © -'

-B-i a > N a © a4-4 ra ^ © Pm ^0 (Si - [-4 4-4

« 0 a -a a a a pS P4,4 U HH pS • a P-i NM f'j • Pm <i N ii a ^ MM

l-M <JJ

g .ia a© * © ' ' a ©

'

©

CO

m ;a aN ' a ©

'

a a •

i-i © ©

gH© ©© u

a- , , _ _ a H^'-•aaagaa^'-'a

a Kia E- H HI- a a aa m cs m

P-( Ph Paa m cc;

Ph a t.a a cc;

P5 >-< a

^ ^ ^ •• a-:<- ^ K

E~i E^ a E-i

ft a a ft I-' a I

<3 NN »—< <5 I—I :

gm m ^ a m

- X- -X-

E-i E-ft a a<l3 N-4 M

. apimaacd — ap-aa

x:ga

» X- X X- X- - a II II

X pS a H »-i

H a E- E- E-< E- E- a i-i ma a a ^ ^ ^ ^ ft i-i E-I H tot=i r 1 >«M ^ t«e NM MM <5 >-4 CO ram ps ps a Ph PS m PS a a © © ©a a a (m a a a a e •- u © fta

w w© I

pp

>-' ft E“ E-<

B- 5 a aK E- « «© © PS PSu E- a a

H b' E-' a

SSSShgm © © © E-j aa a a a PS a

C3 W C'©

© - iMCVJ N M

lO

Oi©©il-

ea « CM©

«^tOv9N©C'© — W«<<lOONP3C'0’^MW<f<lO\9tVC9S'©-"M©iJ'LOv5N>C9ft©-<N©<‘'tOvSNC9C'© — W«<‘LOvSN^ ^ ^ ^ ^ ^ e>j ej pj gkj p.3 {VJ pj JV3 ^ 53 (J3 P3 5,3 P5 5,3 f5 5,3 U5 .^-4 ^ ^4 .5. ^ ,J. te to le ts tj5 LO LO

©

Page 58: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

0_SQS0.SHcC0STIC(

U.

INDATA(

lO

a!

in

ITS

wb

IC

IT)

lO

lO

s '

W lO<5H ^

tJ os yM <s

,

w £ ^ i

© ©

©S;

wp.i

Ph

PS

©o

©f=H

HDP^

UPhl-H

Ph

Pi©Ph

tlPh>-H

Ph

Pifcl

1-1 1:^

H ^ l-J ®CM n -

— W

Pho w

CMR H P-J

H 'WH H ^ >-5 IS

H ^ >-5 Hfl

Pi CM '.' PhHHHH^J O

HH H M H..

P-l

td '

'CM '

"SI-*'' 'CJ

1—I pi '

CM '

Ph ' i-i I

i-J '1<’1 ' ' I

E-i I—I -.V

C, ®

C'1 (dpa. .

© ©CG w

-a 1-^ s< “fc] © csl

PI » Ph

' G'6a

[-<

Ph i

II PIS Ph

fa

'-J if

CM SHH

O piPj Ph

CM

' Cd

cl 'C5'^ ©- © cl>-5 'PI"H fa

«fa, -1

fa « Cl •

fa Ph ed ti

0?

©H©©

Ph H » fcJ ©H a td fa' */>' VC' ' pH © ©

>/. rr. ^ tt“ HH Ph P— (—1 fJH

fa I—' Ph

1—1 Lh EHi ‘'1© S fa |S| '“' H E“' IC)

.<;i_i-i<;^t:-:5£2t-iPita Pi Cd Cd fa © © fa faKPHPHpHl-yfaSfa

ClClClCM C2 Cl

CQ

— Cl © <?• W \£> N C3 S' O CM C2 to \e N. C3 © © -< Cl-I-,-,-,-,-,-,-,-, -,f.3 iHjgv3

1-12

Page 59: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

Q^QS€»5»:C0STK(

1).

OPT(

11

)

B0 \

e CM t«N «,

^ P B— 1- Ift w - o ©IT; P w — - C-i *1 d HH— -B w C- ' H NN M B Pi-i ^ PP N B P

N g1— M P \

H H —1 B *1

B 1 ' » N P E P a » a p^ >—•1 H-l M H p ® :— N 10 LO E P P a —

N

p B ©Irt - w — ^ P H 0 © . \ 1— H-H 1- w 10 P P © P 5 p M (B 0

10 N K 1- — P M » P M w *

— - [-1 © ' ® s b3 p M W B * CC^

W © * »lO P P sH

p t—

1

CO E1— » /-I ^ p p d —

1

B • 9-

H — W 10 w p p J * p ffi ' > © P 0 pP B — — B H H ® ® NN —4 M —

p

P « K H —

H

>- P P a 0 H •

P - W I* _ B H h M P H U p U - d1-1 <J P © p p P- a M M10 H h ' ' B Q . p >- 0 ^qFE P

0 B B •- \-p P . g M B 0 © B

10 H 1-1 LO 0 D P p d © 1— B 1-— . 110-1 — P — H B M P H © P P 0 1

1-1 p — 1-1 1-1 >- © 'M © < t/j M < < « a^ B ."EL, B B - 1—

t

N-« >* B H d p p1— F" to t— E- 0 — B P a M B s a a 1-1 c aCEl (/j — . Ki Q E-ii P <3 ©

B a sM M H a

P01-1- —B S

w W d B B w ^ ••

. © — LO © P B 5 © H d —

1

V—

4

B M '

1*1 . E — . 0 © •— E-i M •— g a P B Wno B P ' i"i — © P 0 w P P p p Kl — •

Q 10 HE t/j

. w Op U^^ *T1

lO '-'

'U1—10 •

W — KCu, HH cj:; r1

HO®E ® «t- C CQ

900^ gp3 ^P ® ®MOO

- LO O ['

C P'1 ® o HO Q O '

U ' - I

10 ® [-

IT5 LO -

E3:

- ' CL,

P P

K 1-1 I

H O 1

I »' »

Ig «-

' - H HL- B S® Pi HO Ph p

O B B< « «H Gi CCi

ci CL, H

Cfl -HHfcl Hi-i O - - N '

• ' » B O •

H E- H(^ —t ^ ^<J W •“* t-fl

a t. ciK •-' Cu C-(

ei fc.

1^0 pH tl

Pi Hw o

P-i kC, P i

N ^ rj F'i

B E-' B H K- N - E-"

C\1 - 1^ CO ' 1-1

PJ . .

p*4

N MB E"" —

<

1 O^ • -_i

o

;

N p: H BB E-" i/j ® H» • r" O B B- H Oi H

II ' H H I

J N

,E-< ->:- p-i

,H -::-

, H -x-

E-^H HH<<C \£\ <2 w ^ K <i<

^HBPi©HC5®HPS — PHChPhHPh

H cp; ® BPi P H CL.

I

h|*— S< — ciH

© Pi'

p p

® HB

*

hSii

LO

P © H i

P H P I

p- E-^

II +B H

cn

I

PP

LO n. ;-i a H B p H a © Ki (/J . \ pa w a - © CO M 10

gw — 0 . 0

«j nB a q a

B M a a - Kl —1

a p n. -p

C'i H B —

1

H C-I a a 1-- 1-1 —1 p< Ph H <1 g

ii'<

a — <1 — < N yi *

/“N © g 1— a N > N PH —1 . •

iO LO H H BP k-H

s cip —, <! B Bi » B Ki p M C3

-H ^ 0 P P © , Pa

a - - N - H-l —

1

W 1— —

,

>- fi 0 p»PH c-i © —, *

II a \to CO p- P P E-' © p g

PhP q P - II u -a -© H-

1

H<3; Pj B © ci -a C'] nJ C3 - a B p P^ y-N a p a C'i

a H0 NH ti © CM . © — 1-1 1-1

*H

' ^ to © a © a p © - Jy ( rj

a p a a - cu Ch- ^ L>]

•^*1 p ©j H t-i 1 a © 1. B B a >—

I

+ MP o— LO w

o

B

EH

p

- -pC3 103 -

H '

X-

p II + Hw —I H II

• K • II E© O H © — O BII CO II II P ^ II ^E- H H - E- -K©K — I--©—'BHPHBKaBE-

II

^ o

E -

B II

tJ BE-t P3H< ©O C

O II

H -

C'3

w ©P P

CO® 03 CO <t ts> ©

wcC' P3

— CIW'S'LO^NCO©© W CO LO © N C3 © O — P3 CO <? LO \e N C? © C — 103 © <- LO <>5 N K © C — C3 © << LO © N c; © e — P3 © V LO © N-H -1 -1 — 1-, — CJ c\] (M c] CJ C3 C-3 C3 C3 C3 CO CO CO CO © © © © CO © V V' C" "S" V V V V V V LO LO LO LO LO LO LO LO

IUK)=B(IO+C(

I)*PI1I(

I,IO^«TI^F(

I)

Page 60: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

e^

©

a

W W,

13 1

ta

© ©/*S L-5 ©

#. ca ••

© -»• H d H

r»M a=^

ca 14 aE) ^

tlj s P_, e MM

?;' 14 P T=J <'

Vr oK-t 5

1 II

^-H II SE

© aV ti< Q «- p >

«>. -*- W ^ G N»«l ^*=-1t>^'

U W t--|F', '

.ti

j- M<l l-r*

P-^w ^ c *

• Pii s H 0) Tr1 ^1 c- as s Vr-'

*"'"' ht- e^^w r—

i

a ti ©

® I—I liii

H [-s ra

© e K© o C=(

jECx3

o ©© fcj

'“'h'E3 C3

E-. H I

© ©

'

© © I

© Ufc< © © o ©

a a a v9 v»/ a E“' © «a M N=t d a 0 KB4 *-1 <(' w ©

© 0 <1 < © © © © a <! © a a F'*-j © s© a © « e S a © © a © © a a © a

ifl <' © ©IM o

CM \©

c9 (S' © — w « <* © v5 f'- e © o '- c: © t« © tv c3 © © - eiL0L'?©©vS©^S©©©©©IVN-EV^=^-^^=EVtV^>KC‘3eg

B-14

Page 61: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

QSQS0^5^:^COSTK(

1).

REX(

8)

1

SUBROUTINE

REX(R,TE,KI

2

REAL

TH(5)

,KI(5)

PQ

Ph

U

l-H Ift /-V

Ph K — (N C5

' SII KCL, M

C^

is

n CdCS -

v&' CsJ

JID W O <?' h-)

(2!

• S tl'J 01H H H 1

,!L. b. w ® ’-'+ + + + .

o h N w lo H t-i

II li 0 0 Ci^ s 0H H II II II II II II "H &

IH « I

— Cl •^1 LQ VPI CS 0cc; 0 cc: 000 a,CL.

\c'i

%

s\

s5o

\

HO

o c5II >-•

T«»l

M «

• '2o 0II '

Sb

A\

C^ iM

0\

03o

\

s3

^It

HO

II

5'^

'2

\3\

3

3

HOIQ

IQ

\o\

IQ0\

0oo

n lO

KN T

/**' KN ^LO -

5- r-!-i

£2P-N •

H + iMO e>l vr

•I

V9 + \© 0 G 0 Q 0 ^II W II II W- KN H ©CO fcj g li, IQ CiH II II fc! S

CO IQ v£> N C3 © O Ql CO 'C* LQ \S N K © O " e-T © LQ \S EV

-15

Page 62: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

QSQSQS:SCOSTia

1)

,DATA(2)

VOrH

I

PP

LO © to • to • \S>

CM © CM o Cl o t© ©t—

1

w o G . to* » • CO • W . »

© • © •- o » t©

o #- • • V© • ©• * « o © • LO V

« © • © © ••

* • © © » • •• • • » VO • .

• « © • • © • © o © V© T?* O© CM © vs © * © » w CM . »C0w » •• #> © © *> N© • #•

© • \S « V© CO •

• M © © d ® • © » © >o . © ©© lO T? \S lO to • • . . fvj

T? #> » lO • 10 • LO • •- *• CM © •• -CM -• • « • CM © CM o CM o © • #- O • © - . ©

• « © ® LO • o © • o © • © CM © • Oeg © o © © CM © © 'i' O © O CO © © © CO © © © CO © o © « to © CM © CM © w»i (2> -1 CM © to O • — © o ©

O.<M W Iv CQ S^ O -I CK! C2 '5' IS N C9 O O M '5* LO v9 tv eg O © -I e: O 'J-' to V© tv C3 S' O W O« « ^ ^ ^ f.] jv] f,] JV3 f,] fj 03 i:; CO « W CO CO C-' vj-' v? v? v? v? Q

&P=2 @XQtT

Page 63: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

o®®®®CM

®<5>

OIfl

NCO

®®®®lOCM

®®®®®®®CO

®®®w

o

©

d« es

fcl ^ oJ S © BW (L, gB b-' cfi &. aw ©

• ft, H Ha « «) jl-H ft, H-,

E O II

^ II

ftS • W fcl

^ a » »a II fee fci

w a

® ® -F4

® ® iH® ® 1

® ® PP® ®® ®

a ® ®1—, ® ® N ®

• CM ®a ® ®a a U5 to CMt—

,

H t„a « '5' CO

NH a ©a a t—

,

© a . S'C/) © © ® o © © © © © © -<HH H a o © '© © © HN ©

Ed Q o a © © w H © ©a o © © o • /-s -s: © © II

cu a a o G w, Q © E3 a © ^-H ©hH a a © © H © W © © r- © aPu H • • C . CM w C£l © ©

p e ® C'3 a ©© " a e © W © ©

>< oa H -( a • ©E m a CQ (Zn (A • H © ©

© © ® Cfl ® Ki a © © © © a ® w © © © < © © . © to®

© fc] es ft,

® P- K© ^ fc,

© H < ©O

,

B© fti K

• © < ©« cs: —<;< EJ © ©

_i P © © a a oH © © a a ©

o a a © a H © a© Ph e © & © d © P-© s « 5 © >- >1 < ©© © H a © H© a © a S «

© a 3 pq • K a LO cs• © a ft^H C=.l o © c E- <' ©© Pi a aCM K W a eS I—, Ka P a a II II a

H H II H a aII a »—1 It II p a a aa a E N-4 a P P NH

a

CTj

aa©a ©fc. a a

CM <c ©tJ ft, B

W *ft, Ed aa a « ta —© © aa — ^ K) *

« H a H Ed< © © a

s a Es, J aHH D c <5!

oa © > o< a a '-'

H --- - Ed J< K > E,e H < - ft,

m © a <K —CQ canw -a a ©a a < H aS ft, au >=< ,a a— ft-, a I-

E_^© H

H b < ©KSfei

^ e a © J©< — ©>a © O' ©

Page 64: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

®®®®

®®®®®lO03

IM

®®©©®

®®®to

OS NCO

®®®®®«oiM

®®®®®®

© © © ©• 05 © • « © ©

© ©10 ©S'»

CO N• CO© • «-

® ® © © ©® ® ® ©® © © © U© ® © ©® © © ®® ® © ©© © ® ©® © tv © ® © N ©

03 ®® ®1/5 to^ tv<? ca»=} •

S'

c? 05

03 ®lO O'1—

t ^Tj? IV

ca

Ui

H

© K) © 05 " © © O) © « © P <1© h-< © t-H © MM © 1-3

© © © © W © D9 ©© © II <1 © © II •> ta© MM © M |J © MM © N=.i fe; dJ ta05 * © Tm P © © d. Dh © Ph Dm© <? © © © MM MM MM Kl© W © © S e © © © H H Dm Dm

• MM • © >-< M . . MM • o U <3• MM © ti . e © • W © (v

KiCQ©

P5

©®©©©©©«

oc

I

w

© mJ © W 1—1 P

© mJ © H DJ ©s © s ® Ed © E5m © MMMM © s © © Ed © ©<3 © © © MM Oh © © ©© H O © Dm © H pe! G1 © © OJ

© W • Ea Dm ED, & © ©\ Ed Dm 03 P-M a • © V©

Page 65: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

o®®®N

®®®®®CO

®®®®®®

®®®®®®®CM

®®®1ft

N00

®®®Ift

NCO

®®®1ft

NGO

oo

®®®Ift

r-CO

® © © ®® ® © ©® ® ® ©1ft Ift Ift Ift

N N N N00 CO CO tt

N CO O'

tb Cm G G6 N © © N © © N ® © N ®W CM ® ca CM © G CM © G C3 ©a © © a © ® ® © a o> ©r Ift Ift * tft tft #- tft Ift Ift ifl© tN. »M N & Ns Nj' ca E3 Nj* 03 s 00 m egf ^ • (V • r e- T-M •

E-- . \S> H . Eb • 03 H • ©tb CO -I G CO G CO Gd d d dca II ca II Kj II w il

\ NH \ \ M-

(

\G © G G G G G

t—

j

t—

4

1—4

1 © —1 © 1 © w 1 © N

P © tft © G G P © M p © COH © CN i~l © i-H © eg ^ ®

tft • G 1ft • © lO • © 1..“ lO •

G E-i N CO O G E^ O tN- I?3 © G E^ W N — © G h* N tN« "© © G V9 ca 03 CM © © G O 03 eg CM U © G W 03 eg CM © © G v9 © eg

ON

«

©

v9 \ V9 . 4—

1

© \ © . HM © \ CO . V4© CO vG> Lft V9 P © Q © Lft v£> © CO CO Lft ©

[-* • vG> —4 • P • © T-4 • • CO —4 •

© pM vD © G © 03 ©|:ij © V* CO G O tft 1=1 G © lft © —4

© • • CO © * • V? © • « O© 1—1 tft CM © T-J G © 1—4 CO CM © eg G © —4 © CM Vft ©1—4 • —14 vS CQ 4—4 CM • 1-4 W <? 1—

1

« • Lft ©1—4 tyj • • « © K • • • © K • •

© ca tl © Lft w © © CM © Kl II © CO © eg 1—4 W © K II © CM 4—4 © CM Lft

© 4—1 © 1 CM © t=H © 4—4 G © 1

GCM CM tft © 4—4 G © 1

GCJ eg ©

© © C-'l VS) © © © CO © © © © © N• tft p tft W lft © to CO © * P tft e lft CO ©P w CM 1-4 CM P Kl CM E-")

1-' w P K CM E-< i““

' &

€3Q CO

K1cd ra K)© M 1—

El E-< raE-i ra m ©G © © otJ © ©KltJ K E-< C£3 G <1 E-<

G f-: e£, t! E-

>I- H ©E- eu, ®© '-' ©

tffl © G ©ca ^ Lft^ G tNa

G © ta ©©©©G •

S >-< CM

s ^ ^ ©W © S II

H © G H Hca ra w GO fc!>=' S 1^ PK) *-• H U

Page 66: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

®®®®

®©®w|yCO

®iM

©®®IC

CO

®

O ®W if\J ® 0-

fi ® ©- Sfi to ©0 '^03 h

c- T»^ • <1H • ©tu 03 evi P

* 03& S03 il E“1

\ >“-l

E~,

S1 © WP © CO 0H (S> ’-1 "“I aCQ to . © t.

O ESa '*J © Eu, ©© Ei © (S ca 03© \ © • V' O H\& CO O LO © P-j

. © P ^© LO vs> H H© T"1 1—

1

KM. . T=l P C-J

V© C3 fe © — 0 0 S' 03m © to . rt vg, Js, Ed !-=•

• © 03 • • • P p© e-j to © 03 II, © 0 i-i CO to S3 S cSC3 LO © « es © 1 ea C'3 -s*

N

© to © , © cs; vs ca <? H 003 0 Lo © p 0 ca s E-"

'=1 Lo H ca 0 f-l V=l 1=1 © ©t“i 1=1 v© <? o ©

<fi

P<o

REX,

Pao

§<

< p<c5 a

03 sa © 1—1

HM •

03kM

p pKM H 03

oo © toW © LOP-. W • ••

K*1 -toPi

©aa ••

P H >=i toa

<i © sKM wM

iM < H • P3

1=1 ti-,

- \Pn ©

H p -1

11 <! I! a \Q t:i H © ©

K=1 J 03 03 ©tQ KM •

H KM pS 03 -1

to ^ a a P. . K

m < '?'

H P“l E-ii

K CO p:;

W ^ fe) HhJ s p ©

© P 03

— -tow CL, 1=1 G S3c&'-’ 03 P-H

go

s a*-. a^-1PH ^E3 © II

C=4 C=’ S1 1S ^ CD kJ H M1 Pi KM

0003 PS

© © © &E © 1-1 II © C3

II BK • ti a a © 0W © P! P © * &t-j s « h=M a aa a

a PS il, E:^! h wi

fc3 & KM |]t--l

f=^ @ a

PQ

.-20

Page 67: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

NBS«n4A (REV. 2<-60)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATASHEET (See instructions)

1. PUBLICATION ORREPORT NO.

2. Performing Organ. Report No. 3. PubI ication Date

NBSIR 81 2378November 1981

4. TITLE AND SUBTITLE

HEAT TRANSFER ANALYSIS OF UNDERGROUND HEAT AND CHILLED-WATER DISTRIBUTION SYSTEMS

AUTHOR(S)T . Kusuda

6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions)

NATIONAL BUREAU OF STANDARDSDEPARTMENT OF COMMERCEWASHINGTON, D.C. 20234

7. Contract/Grant No.

8. Type of Report & Period Covered

9.

SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESSrStreeL City, Stotf, ZIP) _ _fj’-j- j^_g0j-Yic6S I Naval Facllitlss Engrg. Council, USN, wasnington, DC ZUiyo

Directorate of Civil Engrg., USAF, Washington, DC 20330

Office of Chief of Engrs., U.S. Army, Washington, DC 20304

10.

SUPPLEMENTARY NOTES

I I

Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11.

ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significantbi bliography or literature survey, mention it here)

Simplified calculation procedures for determining heat exchange between the earth

and a multiplicity of buried pipes having different temperature and thermal insulation

are presented. The procedures deal with cases where pipes are buried side by side, as

well as those when several pipes are bundled in a conduit. The effects of seasonal

variation of earth temperature are treated in a quasi-steady-state equation that

includes the soil thermal properties, depth of burial, pipe sizes, and relative

locations of pipes. Sample calculations are included, together with the Fortran

program listing and thermal properties of earth to be used for the calculations.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

computer program; earth temperature; heat transfer; pipes; thermal insulation;

thermal properties; underground systems.

13. AVAILABILITY14. NO. OF

PRINTED PAGESUni imited

1 1

For Official Distribution. Do Not Release to NTIS 62Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.20402. 15. Price

Order From National Technical Information Service (NTIS), Springfield, VA. 22161 $8.00

USCOMM-DC 6043-P80

Page 68: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS

r

:^

,

,

^- 7— IIS V . . rv" W-' i.

. teTSX3^ti6iWiTOfO,,t!T&^^^'

l^ir 4yi>Mw».fi>

m.m

. •>. ..«•«- .1 i-,-1..'

''

_£» +TiiA

fji-'cS' ' '

"' ’

* ;•'

'V 0. .vv. A.

y h«' '.'VOfi #i’.’ 'i^ 'i?^...

i5«iur

T:iij3

A6i"

,<i. .2

/>J'V

.1.' '(\f

H, <

;<i r:

•.: ‘3...

m.

tfejr,;*-'-

Iv.*7.

*. X|i •

sS'' .S

I^

fm:-.

rtj^hdi^T''iilii

Page 69: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS
Page 70: Heat transfer analysis of underground heat and chilled ... · MATlOlfALBUKKAT' orstandABUS LIRRART NBSIR81-2378 DEC71981 HEATTRANSFERANALYSISOF UNDERGROUNDHEATAND CHILLED-WATERDISTRIBUTIONSYSTEMS