gnss orbit modeling: non-conservative forces and ... · 3.1 model: ceres data and box-wing...

48
Institute for Astronomical and Physical Geodesy Colloquium Satellite Navigation Munich, 24.01.2012 1 GNSS Orbit Modeling: Non-conservative Forces and Deviations from Nominal Attitude M.Sc. Carlos Javier Rodriguez Solano Acknowledgements: Univ.-Prof. Dr.phil.nat. Urs Hugentobler Dr.-Ing. Peter Steigenberger Colloquium Satellite Navigation

Upload: others

Post on 17-Aug-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

1

GNSS Orbit Modeling:

Non-conservative Forces and

Deviations from Nominal Attitude

M.Sc. Carlos Javier Rodriguez Solano

Acknowledgements:

Univ.-Prof. Dr.phil.nat. Urs Hugentobler

Dr.-Ing. Peter Steigenberger

Colloquium Satellite Navigation

Page 2: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

2

Content

● Master Thesis: Rodriguez-Solano CJ, Hugentobler U, Steigenberger P (2012) Impact of albedo radiation on GPS satellitesGeodesy for Planet Earth, IAG Symposia 2009, Vol. 136, Springer

● PhD 1st year:Rodriguez-Solano CJ, Hugentobler U, Steigenberger P, Lutz S (2011) Impact of Earth radiation pressure on GPS position estimatesJournal of Geodesy, doi: 10.1007/s00190-011-0517-4

● PhD 2nd year:Rodriguez-Solano CJ, Hugentobler U, Steigenberger P (2012)Adjustable box-wing model for solar radiation pressure impacting GPS satellitesAdvances in Space Research, accepted

Page 3: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

3

Content1. Basic concepts

1.1 Satellite – Earth – Sun geometry1.2 Nominal attitude of GNSS satellites

2. Motivation2.1 Orbit related frequencies in geodetic parameters2.2 SLR – GPS residuals

3. Earth radiation pressure3.1 Model: CERES data and box-wing satellite3.2 Impact on GPS orbits and SLR measurements3.3 Impact on geodetic parameters

4. Solar radiation pressure4.1 Adjustable box-wing model4.2 Impact on GNSS orbits

5. Non-nominal attitude5.1 Solar panel rotation lag angle5.2 Yaw maneuvers during eclipse seasons

6. Conclusions & Outlook

Page 4: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

4

1. Basic Concepts● Non-conservative forces = non-gravitational forces

● For GNSS satellites, at an altitude of ~20,000 km,non-conservative forces are very important forprecise orbit determination and predictionmismodeling issues or no models are usedgravitational forces have a low contribution to the orbit error budget

● IGS (International GNSS Service) provides most precise orbits:~ 2.5 cm for GPS~ 5.0 cm for GLONASS

● Basically two types of models:empirical models, based on in-orbit behavioranalytical/physical models, based on pre-launch information

Page 5: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

5

1. Basic Concepts● Modeling of non-conservative forces is a complex task!

● Acceleration due to solar radiation pressure

● Satellite attitude, orientation in space

● Satellite properties

Page 6: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

6

1.1 Satellite – Earth – Sun geometry

● β0 Sun elevation angle above the orbital plane● Δu Argument of latitude w.r.t. argument of latitude of Sun● ψ Angle satellite – Earth – Sun, ε = π – ψ● XYZ Body-fixed orthogonal frame● DYB Sun-fixed orthogonal frame

Page 7: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

7

● β0: Sun elevation angle above the orbital plane

GPS orbital planes for 2007

● Period of β0: ~351 days 1.04 cycles per year

● GPS draconitic year rotation period of the Sun around GPS constellation

1.1 Satellite – Earth – Sun geometry

Page 8: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

8

1.2 Nominal attitude of GNSS satellites● Satellites accomplish at any time two conditions:

- navigation antennas point to the Earth navigation signals- solar panels point to the Sun power supply

yaw-steering attitude

Page 9: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

9

Content1. Basic concepts

1.1 Satellite – Earth – Sun geometry1.2 Nominal attitude of GNSS satellites

2. Motivation2.1 Orbit related frequencies in geodetic parameters2.2 SLR – GPS residuals

3. Earth radiation pressure3.1 Model: CERES data and box-wing satellite3.2 Impact on GPS orbits and SLR measurements3.3 Impact on geodetic parameters

4. Solar radiation pressure4.1 Adjustable box-wing model4.2 Impact on GNSS orbits

5. Non-nominal attitude5.1 Solar panel rotation lag angle5.2 Yaw maneuvers during eclipse seasons

6. Conclusions & Outlook

Page 10: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

10

2. Motivation

● GPS draconitic year:~351 days 1.04 cpy

● Station coordinatesRay et al. (2009)

● Geocenter positionHugentobler et al. (2006)

2.1 Orbit related frequencies in geodetic parameters

Page 11: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

11

2.2 SLR – GPS residuals● SLR – GPS range residuals based on reprocessed orbit series 1995.0 – 2009.0

from ESOC (ESA)

● A bias of ~1.8 cm and eclipse season (attitude) effects remain

Page 12: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

12

Content1. Basic concepts

1.1 Satellite – Earth – Sun geometry1.2 Nominal attitude of GNSS satellites

2. Motivation2.1 Orbit related frequencies in geodetic parameters2.2 SLR – GPS residuals

3. Earth radiation pressure3.1 Model: CERES data and box-wing satellite3.2 Impact on GPS orbits and SLR measurements3.3 Impact on geodetic parameters

4. Solar radiation pressure4.1 Adjustable box-wing model4.2 Impact on GNSS orbits

5. Non-nominal attitude5.1 Solar panel rotation lag angle5.2 Yaw maneuvers during eclipse seasons

6. Conclusions & Outlook

Page 13: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

13

● Acceleration not taken into account by all IGS analysis centers

● Irradiance [W/m2] at satellite position:– Earth scattering properties approximated as a Lambertian sphere– Earth reflected radiation in the visible (albedo)– Earth emitted radiation in the infrared

● Types of radiation models:1) Analytical: constant albedo, Earth as source point

2) Numerical: latitude-, longitude- and time-dependent reflectivity and emissivity from NASA CERES project

( )( )

( )( ) ( ) rhR

EAhEE

sunEAERM ˆ

41sincos

32, 22 ⎥⎦

⎤⎢⎣⎡ −

++−+

=− παψψψπ

παψ

r

AE = πRE2, RE = 6378 km, ESUN = 1367 W/m2, h = satellite altitude, α = albedo (≈ 0.3)

3. Earth radiation pressure

Page 14: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

14

3.1 Model: CERES data and box-wing satelliteCERES(Clouds and Earth´sRadiant Energy System)NASA EOS project

Reflectivity (visible)

Emissivity (infrared)

CERES data, monthly averages, July 2007

Page 15: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

15

● Box-wing model

● Three main satellite surfaces:1) +Z side, pointing always to the Earth2) Front-side of solar panels, pointing always to the Sun3) Back-side of solar panels

● Main dependency on ψ, the angle satellite – Earth – Sun

3.1 Model: CERES data and box-wing satellite

Page 16: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

16

3.1 Model: CERES data and box-wing satellite

Earth shadow

Solar panels maximal exposure

● Earth radiation pressure acceleration = irradiance (CERES data) + box-wing satellite

● GNSS satellites with different β0 angles:β0 ~ 0° for GPS-IIA, GPS-IIR and GLO-Mβ0 ~ 50° for GLONASS

Page 17: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

17

3.2 Impact on GPS orbits and SLR measurements● Computation of GPS orbits as done by CODE for one year (2007) of tracking data

● Orbit differences = perturbed orbit (Earth radiation pressure) – reference orbit

SVN35

SVN36

Page 18: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

18

3.2 Impact on GPS orbits and SLR measurements● SLR – GPS residuals for year 2007

● GPS satellites with laser retro-reflector array: SVN35 / SVN36 or PRN05 / PRN06

Without Earth radiation pressure

With Earth radiation pressure

With T20

Without T20

With T20

● Earth radiation pressure = CERES data + box-wing model + antenna thrust

● T20 model a priori solar radiation pressure model (Fliegel et al., 1992)

Page 19: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

19

3.3 Impact on geodetic parameters

Page 20: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

20

3.3 Impact on geodetic parameters ● Reprocessing of 9 years (2000-2008) of GPS tracking data

● Reduction of orbit related errors in North-component daily coordinates

Page 21: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

21

3.3 Impact on geodetic parameters ● Almost no improvement of GPS-derived geocenter (Z-component)

● Cause for remaining errors on SLR – GPS bias, coordinates and geocenter?

Modeling of solar radiation pressure

Page 22: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

22

Content1. Basic concepts

1.1 Satellite – Earth – Sun geometry1.2 Nominal attitude of GNSS satellites

2. Motivation2.1 Orbit related frequencies in geodetic parameters2.2 SLR – GPS residuals

3. Earth radiation pressure3.1 Model: CERES data and box-wing satellite3.2 Impact on GPS orbits and SLR measurements3.3 Impact on geodetic parameters

4. Solar radiation pressure4.1 Adjustable box-wing model4.2 Impact on GNSS orbits

5. Non-nominal attitude5.1 Solar panel rotation lag angle5.2 Yaw maneuvers during eclipse seasons

6. Conclusions & Outlook

Page 23: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

23

4. Solar radiation pressure● CODE empirical model:

• 5 empirical acceleration parameters [m/s2] per arc• constant and periodic in DYB directions

● Analytical models:• knowledge e.g. from satellite manufacturers• nominal attitude• physical interaction between radiation and satellite surfaces

● Examples: T20/T30 (Fliegel et al., 1992, 1996)UCL (Ziebart et al., 2005)

• 3 stochastic pulses per day- radial- along-track- cross-track

Page 24: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

24

4.1 Adjustable box-wing model● Physically based model:

Simple box-wing model for SRP

● Four main surfaces:

• Solar panels front • Bus +X side• Bus +Z side• Bus –Z side

Page 25: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

25

● Physically based model:Simple box-wing model for SRP

● Four main surfaces:

● Model capable of fitting the GNSS tracking data

adjusting the optical properties of the satellite’s surfaces

● Additionally: Adjustment of y-bias and stochastic pulses

● Model tests based on IGS tracking data of full year 2007

• Solar panels front • Bus +X side• Bus +Z side• Bus –Z side

4.1 Adjustable box-wing model

Page 26: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

26

4.1 Adjustable box-wing model

● Models tested and working for:

GPS IIR GLONASSGPS IIA GLONASS-M

box-wing cylinder-wing

Page 27: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

27

● Results for all GPS satellites as function ofβ0: the Sun elevation angle above the orbital plane

● Reflectivity: fraction of specularly reflected photons

● +Z surface: pointing always to the Earth (navigation antennas)

GPS IIAGPS IIR

+Z bus reflectivity

4.1 Adjustable box-wing model

Page 28: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

28

● Absorption + diffusion highly constrained, correlation with other parameters

● +Z surface: pointing always to the Earth (navigation antennas)

● Modeling problems for Block IIR satellites

GPS IIAGPS IIR

+Z bus absorption + diffusion

4.1 Adjustable box-wing model

Page 29: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

29

● Absorption + diffusionhigh constrained, correlation with other parameters

● –Z surface: pointing always away from the Earth

● Asymmetry between +Z and –Z surfaces of Block IIR satellites

GPS IIAGPS IIR

–Z bus absorption + diffusion

4.1 Adjustable box-wing model

Page 30: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

30

4.2 Impact on GNSS orbits● Orbit prediction error after 7 days, for all GPS satellites

GPS IIAGPS IIRCODE model Box-wing model

Eclipse seasons yaw maneuvers

Page 31: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

31

4.2 Impact on GNSS orbits● Orbit prediction error after 7 days, for all GLONASS satellites

GLONASSGLONASS-MCODE model Box-wing model

● Similar performance between CODE and box-wing model

Page 32: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

32

4.2 Impact on GNSS orbits● Box-wing minus CODE differences of few centimeters in the orbits

● Radial shift of Block IIA orbits in the “correct” directionFurther reduction of SLR – GPS bias possible

GPS IIA, PRN 06 GPS IIR, PRN 17

Page 33: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

33

● Acceleration from different solar radiation pressure models:

Analytical/physical models

Empirical models

Adjustable box-wing

GPS IIA

GPS IIR

4.2 Impact on GNSS orbits

Page 34: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

34

Content1. Basic concepts

1.1 Satellite – Earth – Sun geometry1.2 Nominal attitude of GNSS satellites

2. Motivation2.1 Orbit related frequencies in geodetic parameters2.2 SLR – GPS residuals

3. Earth radiation pressure3.1 Model: CERES data and box-wing satellite3.2 Impact on GPS orbits and SLR measurements3.3 Impact on geodetic parameters

4. Solar radiation pressure4.1 Adjustable box-wing model4.2 Impact on GNSS orbits

5. Non-nominal attitude5.1 Solar panel rotation lag angle5.2 Yaw maneuvers during eclipse seasons

6. Conclusions & Outlook

Page 35: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

35

5.1 Solar panel rotation lag angle● Box-wing model (alone) is not enough to fit GNSS tracking data ● Solar panel rotation around y-axis lagging by few degrees behind motion of the Sun

Page 36: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

36

5.1 Solar panel rotation lag angle

GPS IIA: 1.5 ± 0.5 deg

GPS IIR: 0.4 ± 0.3 deg

GLONASS: 3.6 ± 0.8 deg

GLONASS-M: 0.3 ± 0.1 deg

● Estimated angle deviation from nominal attitude● Results for all GPS and GLONASS satellites for 2007

Page 37: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

37

http://www.russianspaceweb.com/uragan.html

GLONASS GLONASS-M

5.1 Solar panel rotation lag angle

Page 38: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

38

● How to validate that orbit gets more physical?

● Improvement visible in radial pseudo-stochastic pulses

● CODE empirical model:

GPS IIAGPS IIR

5.1 Solar panel rotation lag angle

Page 39: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

39

● How to validate that orbit gets more physical?

● Improvement visible in radial pseudo-stochastic pulses

● Box-wing model:

GPS IIAGPS IIR

5.1 Solar panel rotation lag angle

Page 40: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

40

● How to validate that orbit gets more physical?

● Improvement visible in radial pseudo-stochastic pulses

● Box-wing model without rotation lag:

GPS IIAGPS IIR

5.1 Solar panel rotation lag angle

Page 41: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

41

5.2 Yaw maneuvers during eclipse seasons● GPS IIA satellites (Bar-Sever, 1996):

• Finite hardware yaw rate noon turn• Occultation of Sun sensors shadow-turn• Yaw angle at shadow end post-shadow recovery

Page 42: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

42

● GPS IIR satellites (Kouba, 2009):• Finite hardware yaw rate noon turn• Finite hardware yaw rate shadow-turn

5.2 Yaw maneuvers during eclipse seasons

Page 43: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

43

5.2 Yaw maneuvers during eclipse seasons● GLONASS-M satellites (Dilssner et al., 2010):

• Finite hardware yaw rate noon turn• Occultation of Sun sensors shadow-turn

Page 44: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

44

5.2 Yaw maneuvers during eclipse seasons● Specially problematic post-shadow recovery of GPS IIA satellites

● Yaw angle during maneuvers used in adjustable box-wing model

● For example, acceleration caused by +Y surface:

Page 45: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

45

5.2 Yaw maneuvers during eclipse seasons

● Impact on GPS IIA orbits:

● However, no improvementachieved on orbit predictions:

Further investigations needed!

Page 46: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

46

Content1. Basic concepts

1.1 Satellite – Earth – Sun geometry1.2 Nominal attitude of GNSS satellites

2. Motivation2.1 Orbit related frequencies in geodetic parameters2.2 SLR – GPS residuals

3. Earth radiation pressure3.1 Model: CERES data and box-wing satellite3.2 Impact on GPS orbits and SLR measurements3.3 Impact on geodetic parameters

4. Solar radiation pressure4.1 Adjustable box-wing model4.2 Impact on GNSS orbits

5. Non-nominal attitude5.1 Solar panel rotation lag angle5.2 Yaw maneuvers during eclipse seasons

6. Conclusions & Outlook

Page 47: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

47

6. Conclusions & Outlook● Non-conservative forces play a key role for GNSS precise orbit determination

● Mismodeling effects of Earth radiation pressure and solar radiation pressure:Orbit differences at the few cm levelSystematic effects on orbitsPotential to solve problems on SLR, station coordinates and geocenter

● Attitude of satellite is needed for non-conservative force modelsDeviations from nominal attitude degrade accuracy of modelsSolar panel rotation angle, not previously identified for GNSS satellites

● Long time series to be computed with new solar radiation pressure model

● Importance of other effects?Shadowing between satellite surfacesThermal (heating/cooling) effects

Page 48: GNSS Orbit Modeling: Non-conservative Forces and ... · 3.1 Model: CERES data and box-wing satellite 3.2 Impact on GPS orbits and SLR measurements 3.3 Impact on geodetic parameters

Institute for Astronomical and Physical Geodesy

Colloquium Satellite Navigation Munich, 24.01.2012

48

References● Bar-Sever YE (1996) A new model for GPS yaw attitude. Journal of Geodesy 70(11):

714-723

● Dilssner F, Springer T, Gienger G, Dow J (2010) The GLONASS-M satellite yaw-attitude model. Advances in Space Research 47(1): 160-171

● Kouba J (2009) A simplified yaw-attitude model for eclipsing GPS satellites. GPS Solutions 13(1): 1-12

● Fliegel H, Gallini T, Swift E (1992) Global Positioning System Radiation Force Model for Geodetic Applications. Journal of Geophysical Research 97(B1): 559-568

● Fliegel H, Gallini T (1996) Solar Force Modelling of Block IIR Global Positioning System satellites. Journal of Spacecraft and Rockets 33(6): 863-866

● Hugentobler U, van der Marel, Springer T (2006) Identification and mitigation of GNSS errors. Position Paper, IGS 2006 Workshop Proceedings

● Ray J, Altamimi Z, Collilieux X, van Dam T (2008) Anomalous harmonics in the spectra of GPS position estimates. GPS Solutions 12: 55-64

● Ziebart M, Adhya S, Sibthorpe A, Edwards S, Cross P (2005) Combined radiation pressure and thermal modelling of complex satellites: Algorithms and on-orbit tests. Advances in Space Research 36: 424-430