genetic recording in yeast using crispr-cas9

26
Yeast Genome Editing Using CRISPR/Cas9 Robert Beem

Upload: robert-beem

Post on 18-Jan-2017

53 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Genetic Recording in Yeast Using CRISPR-Cas9

Yeast Genome Editing Using CRISPR/Cas9

Robert Beem

Page 2: Genetic Recording in Yeast Using CRISPR-Cas9

Project Goal

Analyze activity of self targeting guide RNA (stgRNA) in Saccharomyces cerevisiae

Page 3: Genetic Recording in Yeast Using CRISPR-Cas9

Credit: Samuel Perli

Page 4: Genetic Recording in Yeast Using CRISPR-Cas9

Motivations

• Yeast grows faster amongst eukaryotes• Faster genomic evolution• Protein Evolution and Production• Study limitations of Cas9

Page 5: Genetic Recording in Yeast Using CRISPR-Cas9

Methods

• Plasmid Construction in E. coli (DH5α)

Antibiotic selection

Cas9 (S. pyogenes)

stgRNA

Page 6: Genetic Recording in Yeast Using CRISPR-Cas9

Methods

• Yeast Genome Integration

Homologous recombination

- Tryptophan, Leucine markers

W303-1A + Cas9 & stgRNA

Page 7: Genetic Recording in Yeast Using CRISPR-Cas9

Construction of Cas9 Plasmid

RBM1*

RBM3

RBM4

pTPGI dCas9 VP64

D10A H840A

H840AD10A

pTPGI dCas9TAA

pTPGI Cas9TAA

*starting plasmid

NLS

NLS

NLS

Page 8: Genetic Recording in Yeast Using CRISPR-Cas9

pTPGI Inducible Promoter

Ellis et al., Nature Biotechnology 2009

Gal + aTc TetR

pTPGICas9

Gal aTc Cas9Low Low Low

Low High Low

High Low Low

High High High

NLS

Page 9: Genetic Recording in Yeast Using CRISPR-Cas9

Construction of stgRNA PlasmidRBM2*

RBM7

RBM8

pRPR1 gRNA scaffold RPR t2micron originRBM2

pRPR1 gRNA scaffold RPR t

pRS405

pRPR1 stgRNA scaffold RPR tpRS405

SDS

TTGG AACC

*starting plasmid

Page 10: Genetic Recording in Yeast Using CRISPR-Cas9

Cas9

trp1

trp1-1

Cas9

trp1-1trp1

Homologous Recombination in Yeast

TRP: Bsu36ILEU: BfuAI

Page 11: Genetic Recording in Yeast Using CRISPR-Cas9

Cas9 Genome Integration

trp1-1: nonsense mutation, glu83STOP

RBY1

pTPGI Cas9TAA

W303-1A

Chr IV

Page 12: Genetic Recording in Yeast Using CRISPR-Cas9

stgRNA Genome Integration

leu2-3, 112: frameshift mutation, gly83

RBY2

W303-1A

Chr III

pRPR1 gRNA scaffold RPR tpRS405

SDS

TTGG AACC

Page 13: Genetic Recording in Yeast Using CRISPR-Cas9

Clontech, CRISPR_Cas9 2015

Page 14: Genetic Recording in Yeast Using CRISPR-Cas9

CRISPR/Cas Overview

3 steps:

1. Synthesis

2. Transcription

3. Targeting

Page 15: Genetic Recording in Yeast Using CRISPR-Cas9

CRISPR/Cas Synthesis

Natural:

Genome CRISPR/Cas gene

Artificial:

Integrated Plasmid stgRNA/Cas gene

Page 16: Genetic Recording in Yeast Using CRISPR-Cas9

CRISPR/Cas Transcription

Natural:

Bacterial machinery

Artificial:

Yeast machinery

Page 17: Genetic Recording in Yeast Using CRISPR-Cas9

CRISPR/Cas Targeting

Natural:

Cutting foreign DNA

Artificial:

SDS CCNNGG

PAM

stgRNA scaffold

Page 18: Genetic Recording in Yeast Using CRISPR-Cas9

SDS CCNNGG

PAM

SDS CCNNGG

PAM

NHEJ

Original DNA

Modified DNA

Page 19: Genetic Recording in Yeast Using CRISPR-Cas9

How do we assay Cas9 activity?

• Sequence mutations

• T7 endonuclease assay

Page 20: Genetic Recording in Yeast Using CRISPR-Cas9

New England Biolabs, Genome Editing 2015

Page 21: Genetic Recording in Yeast Using CRISPR-Cas9

T7 Endonuclease Assay

• Shows SDS editing has occurred

• Original Amplification: 1.4 kb

• Edited Amplifications:– 800bp– 600bp

Page 22: Genetic Recording in Yeast Using CRISPR-Cas9

Experimental Steps

Grow

• Gal +/- aTc• 22 hours

Amplify

• Forward primer 600bp upstream• Reverse primer 800bp downstream

Assay

• T7 endonuclease• Gel Electrophoresis

Page 23: Genetic Recording in Yeast Using CRISPR-Cas9
Page 24: Genetic Recording in Yeast Using CRISPR-Cas9

stgRNA T7 Endonuclease Assay(20bp SDS)

+ aTc- no aTc

Page 25: Genetic Recording in Yeast Using CRISPR-Cas9

Summary

• stgRNA is effective in S. cerevisiae

• pTPGI lacking aTc “leaks” Cas9

• Cas9 is significant in low quantities

Page 26: Genetic Recording in Yeast Using CRISPR-Cas9

Future Research

• Longer SDS• Expanding toolkit for genome engineering• Multiple promoters• Protein evolution using stgRNA• Applications:

– Protein engineering– Gene therapy