generation iv systems: key technological challenges for fission reactors and what it means for...

21
Generation IV Systems: Key Technological Challenges for Fission Reactors and What It Means for Fusion David Petti R&D Technical Director Next Generation Nuclear Plant Deputy Director Fusion VLT APS-DPP Oct. 31, 2006

Upload: kathryn-hamilton

Post on 17-Dec-2015

220 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Generation IV Systems: Key Technological Challenges for Fission Reactors and What It Means for Fusion David Petti R&D Technical Director Next Generation

Generation IV Systems: Key Technological Challenges for Fission Reactors and What It Means for Fusion

David Petti

R&D Technical DirectorNext Generation Nuclear Plant

Deputy Director Fusion VLT

APS-DPPOct. 31, 2006

Page 2: Generation IV Systems: Key Technological Challenges for Fission Reactors and What It Means for Fusion David Petti R&D Technical Director Next Generation

2

Overview• A number of Generation-IV nuclear systems are under study

worldwide• There are many technology challenges that these advanced

fission reactors (Generation IV) and fusion have in common.• Examples of the overlap are:

– power conversion technologies, – materials corrosion: high temperature materials and coolant

compatibility – welding and joining technologies,– materials response under neutron irradiation, – first-principles materials modeling, – high temperature materials design rules, and – tritium/hydrogen behavior in materials

• The fusion community can help advance its technology development activities by actively engaging and leveraging much of the common cross-cutting research.

Page 3: Generation IV Systems: Key Technological Challenges for Fission Reactors and What It Means for Fusion David Petti R&D Technical Director Next Generation

3

The National Energy Policy Endorses Nuclear Energy as a Major Component of Future U.S. Energy SuppliesExisting Nuclear Plants• Expedited NRC licensing of advanced

reactors• Update and relicense nuclear plants• Nuclear energy’s role in improved air quality• Geologic repository for nuclear waste• Price-Anderson Act renewal

New Nuclear Plants• Advanced fuel cycle/pyroprocessing• Next-generation advanced reactors

Reprocessing• International collaboration• Cleaner, more efficient, less waste, more

proliferation-resistant

Page 4: Generation IV Systems: Key Technological Challenges for Fission Reactors and What It Means for Fusion David Petti R&D Technical Director Next Generation

4

Generation IV Technology Roadmap• Identifies systems that are deployable by 2030 or

earlier

• Over 100 concepts were submitted for evaluation

• Six ‘most promising’ systems that offer significant advances towards:

– Sustainability

– Economics

– Safety and reliability

– Proliferation resistance and physical protection

• Each system has R&D challenges. None are certain of success.

• Summarizes R&D activities and priorities for the systems and lays the foundation for Generation IV R&D program plans

http://gif.inel.gov/roadmapVery-High-Temperature Reactor System (safety, hydrogen production)

Lead-Cooled Fast Reactor System (sustainability, safety)

Gas-Cooled Fast Reactor System (sustainability,economics)

Supercritical-Water-Cooled Reactor System (economics)

Molten Salt Reactor System (sustainability)

Sodium-Cooled Fast Reactor System (sustainability)

Page 5: Generation IV Systems: Key Technological Challenges for Fission Reactors and What It Means for Fusion David Petti R&D Technical Director Next Generation

5

Chartered July, 2001 • Brings international perspective:

– Generation IV Technology Goals

– Evaluation of Systems and R&D

• Endorses key elements:

– Six Gen IV Systems announced Sep ‘02

– Generation IV Roadmap

• Identifies areas of multilateral collaborations and establishes guidelines for collaborations

• Regularly reviews progress on collaborations

• Observers from:

– International Atomic Energy Agency

– OECD/Nuclear Energy Agency

– European Commission

– Nuclear Regulatory Commission

– Department of State

Generation IV International Forum (GIF)

South Korea

U.S.A.Argentina

Brazil

Canada

France JapanSouth Africa

United Kingdom

Switzerland

European Union

Page 6: Generation IV Systems: Key Technological Challenges for Fission Reactors and What It Means for Fusion David Petti R&D Technical Director Next Generation

6

Molten Salt Reactor (MSR)

Characteristics

• Fuel: liquid Na, Zr, U and Pu fluorides

• 700–800°C outlet temperature

• 1000 MWe

• Low pressure (<0.5 MPa)

Benefits

• Waste minimization

• Avoids fuel development

• Proliferation resistance through low fissile material inventory

Page 7: Generation IV Systems: Key Technological Challenges for Fission Reactors and What It Means for Fusion David Petti R&D Technical Director Next Generation

7

Sodium-Cooled Fast Reactor (SFR)

Characteristics• Sodium coolant• 550°C Outlet Temp• 150 to 500 MWe• Metal fuel with pyro processing / MOX fuel with advanced aqueous

Benefits• Consumption of LWR actinides

• Efficient fissile material generation

Page 8: Generation IV Systems: Key Technological Challenges for Fission Reactors and What It Means for Fusion David Petti R&D Technical Director Next Generation

8

Lead-Cooled Fast Reactor (LFR)

Characteristics

• Pb or Pb/Bi coolant

• 550°C to 800°C outlet temperature

• 120–400 MWe

• 15–30 year core life

Benefits

• Distributed electricity generation

• Hydrogen and potable water

• Cartridge core for regional fuel processing

• High degree of passive safety

• Proliferation resistance through long-life cartridge core

Page 9: Generation IV Systems: Key Technological Challenges for Fission Reactors and What It Means for Fusion David Petti R&D Technical Director Next Generation

9

Gas-Cooled Fast Reactor (GFR)Characteristics

•He or supercritical CO2 coolant

•High (>800 °C ) outlet temperature

•High thermal efficiency (>40%)

•600-2000 MWth

•Several fuel options and core configurations

Benefits

•Utilize fuel efficiently through high energy extraction and recycle

•Destroy long-term radioisotopes efficiently

Page 10: Generation IV Systems: Key Technological Challenges for Fission Reactors and What It Means for Fusion David Petti R&D Technical Director Next Generation

10

Supercritical-Water-Cooled Reactor (SCWR)Characteristics

• Water coolant at supercritical conditions, single phase fluid

• 550°C outlet temperature

• 1700 MWe

• Simplified balance of plant

Benefits

• Efficiency near 45% with excellent economics

• Thermal or fast neutron spectrum

Page 11: Generation IV Systems: Key Technological Challenges for Fission Reactors and What It Means for Fusion David Petti R&D Technical Director Next Generation

11

Very-High-Temperature Reactor (VHTR)Characteristics

• He coolant (inert, single-phase)

• 1000°C outlet temperature

• 600 MWe

• Solid graphite block core based on GT-MHR

Benefits

• High thermal efficiency

• Hydrogen production

• Process heat applications

• High degree of passive safety

Page 12: Generation IV Systems: Key Technological Challenges for Fission Reactors and What It Means for Fusion David Petti R&D Technical Director Next Generation

12

DOE has selected the VHTR system for the Next Generation Nuclear Power (NGNP) Project. The NGNP is the Leading Generation IV Technology for Near-Term Demonstration in Idaho

• The purpose of the NGNP Project is to demonstrate emissions-free nuclear-assisted electricity and hydrogen production by ~2018-2021

Page 13: Generation IV Systems: Key Technological Challenges for Fission Reactors and What It Means for Fusion David Petti R&D Technical Director Next Generation

13

Power Conversion Technology

Prismatic Very High Temperature Reactor: Brayton Cycle for Power Conversion

ARIES-AT: Brayton Cycle for Power Conversion

Page 14: Generation IV Systems: Key Technological Challenges for Fission Reactors and What It Means for Fusion David Petti R&D Technical Director Next Generation

14

Coolant/Structural Material Corrosion

• Lead cooled fast reactor: corrosion with ferritic steel

• US ITER TBM: PbLi corrosion with advanced ferritic steel

Page 15: Generation IV Systems: Key Technological Challenges for Fission Reactors and What It Means for Fusion David Petti R&D Technical Director Next Generation

15

Coolant/Structural Material Corrosion

• Very High Temperature Reactor: He impurities effects on high temperature structural materials (Superalloy systems)

• US ITER TBM: Influence of He impurities effects on high temperature structural material (Superalloy systems)

Page 16: Generation IV Systems: Key Technological Challenges for Fission Reactors and What It Means for Fusion David Petti R&D Technical Director Next Generation

16

Welding/Joining Technology

• Ferritic steels are used in both advanced fission plants (sodium fast reactor, Pb fast reactor) and ITER Test Blanket Modules

• High temperature Ni superalloys are currently envisioned for heat exchangers at high temperature (> 900°C)

• Welding and joining technologies are needed for each system

• Post-weld heat treatments on componments to get proper microstructure

• Joints in heat exchangers and other components

• Dissimilar materials weld issues

Page 17: Generation IV Systems: Key Technological Challenges for Fission Reactors and What It Means for Fusion David Petti R&D Technical Director Next Generation

17

Material Response Under Irradiation• Both fission and fusion systems will be subject to neutron

damage• Key materials common to both systems include:

– Advanced ferritic steels (improved creep resistance) • Cladding in fast reactors• Blanket structure in fusion

– SiC composites• Control rod guide tubes in very high temperature reactors• Flow channel inserts in ITER TBM and blanket structure in

ARIES-AT– Slight differences exist in temperatures and level of damage.

Major difference is He/dpa expected in fission versus fusion

Page 18: Generation IV Systems: Key Technological Challenges for Fission Reactors and What It Means for Fusion David Petti R&D Technical Director Next Generation

QuickTime™ and aCinepak decompressor

are needed to see this picture.

First principles modeling of material damage phenomena occurring over a range of both space and time scale is recognized as an important element of bridging gaps and filling in uncertainties in material response under irradiation in both fission and fusion systems

First Principles Materials Modeling

Page 19: Generation IV Systems: Key Technological Challenges for Fission Reactors and What It Means for Fusion David Petti R&D Technical Director Next Generation

19

High Temperature Materials Design Rules• Because of the impact of high temperature on

thermal efficiency of both fission and fusion systems, there is a strong push to develop materials that can accommodate high temperature operation (700-1000°C)– VHTR for fission– DEMO embodiment of ITER TBM and ARIES-AT

for fusion• High temperature design rules (ASME code case)

that account for behavior in nuclear environment and at high temperature are needed

• US VHTR personnel are starting this activity

Page 20: Generation IV Systems: Key Technological Challenges for Fission Reactors and What It Means for Fusion David Petti R&D Technical Director Next Generation

20

Tritium permeation barriers are needed to ensure that at high temperatures permeation through the heat exchanger

can meet safety limits of ~ 1-10 Ci/day

• Fusion strives to keep blanket inventory to 100-500 g. High partial pressure of tritium in some blankets makes control of permeation difficult

• Very High Temperature Reactor: ternary fission produces about 1 to 2 g of tritium at equilibrium. A key issue is to limit permeation into hydrogen product in hydrogen plant

Page 21: Generation IV Systems: Key Technological Challenges for Fission Reactors and What It Means for Fusion David Petti R&D Technical Director Next Generation

21

Summary

• There are many technology challenges that advanced fission reactors (Generation IV) and fusion have in common.

• The fusion community can help advance its technology development activities by actively engaging and leveraging much of the common cross-cutting research.– Decrease in resources for fusion technology

makes this more difficult– More integration of the fission and fusion

technology communities in the US would help