general company

27
GCFR MAIN HELIUM CIRCULATOR AND ELECTRIC DRIVE GAIA15512 GENERAL ATOMIC COMPANY --z bv DmDm KAPICH and C. Om STERRETT JULY 1979

Upload: others

Post on 28-Mar-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

GAIA1 5512
JULY 1979
DISCLAIMER
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER
Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
I NOTICE Thie report wae prepared aa an account of work sponeored by the United S t a h Government.
Neither the United S t a h nor the Lkpartment of Energy, nor any of their employnn, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or aaeumes any legal liability or responsibility for the accuracy, completeneee or usefulness of any information, apparatus, product or procese diacloeed, or repreeenta that ita use would not infringe privately owned righte.
GCFR MAIN HELIUM CIRCULATOR AND ELECTRIC DRIVE
by D. D. KAPICH and C. 0. STERRETT*
This is a preprint of a paper presented a t the Helium Breeder Associates/Department of Energy G CF R Program Technical Review Meeting, May 31, 1979, Rancho Berpardo, California, and to be published in the Proceedings.
GA-A15512
Contract D E-AT03-76SF71023 * Westinghouse Electric Corporation, East Pittsburgh, Pennsylvania I
GENERAL ATOMIC PROJECT 6112 ~ w p o r t w ~ w m n d m n n n r r n i o n t n r w n * rponaored by the United Stator Covcmmni. Nnther the Umted Stater nor the Umtod States D e p m n t of
JULY 1979 Emrgy, nor any of their employem, nor any of thelr anIradon, Nkontmcton, or thet employees, make8 my warmly. cxpre~ or implred. M amms my k@ lmbillty or rnpondbillty for the accuracy, cmpletsnstl a urfulnstl of my lnforrmtim, rppmms, pmduct or n r w r d h l m d , or repmmts that its ur would not r N O T t C E 7
I GENERAL ATOMIC COMPANY I
GCFR M A I N HELIUM CIRCULATOR AND ELECTRIC DRIVE*
D. D. Kapich General Atomic Company
San Diego, C a l i f o r n i a
C . 0. S t e r r e t t Westinghouse E l e c t r i c Corporat ion
Eas t P i t t sbu rgh , P,ennsylvania
INTRODUCTION
One of t h e major o b j e c t i v e s of t h e helium c i r c u l a t o r s f o r t h e gas-cooled
f a s t breeder r e a c t o r (GCFR) is t o ach ieve t h e h ighes t p o s s i b l e o p e r a t i o n a l
r e l i a b i l i t y . This is no simple t a s k cons ide r ing t h e p l a n t system i n t e g r a t i o n
requirements , a u x i l i a r y suppor t systems, a l l p o s s i b l e t r a n s i e n t requi rements ,
and r e s u l t i n g complexity i n supplying t h e d r i v i n g power, primary coo lan t
flow c o n t r o l , and l u b r i c a t i o n and s e a l i n g . Therefore , t h e des ign of t h e
c i r c u l a t o r i t s e l f is h ighly dependent on t h e type of prime mover s e l e c t e d t o
d r i v e t h e c i r c u l a t o r , e . g . , s e r i e s t u r b i n e , p a r a l l e l t u r b i n e , o r e l e c t r i c
motor.
CIRCULATOR EVOLUTION
The c i r c u l a t o r main d r i v e has evolved from t h e series steam t u r b i n e
d r i v e i n t o t h e var iable-speed, synchronous e l e c t r i c motor d r i v e mounted
e x t e r n a l l y t o t h e r e a c t o r and c o n t r o l l e d by t h y r i s t o r v a r i a b l e f requency
c o n t r o l l e r . This des ign i s a r e s u l t of 18 months of j o i n t e f f o r t by
General Atomic Company and Westinghouse E l e c t r i c Corporat ion.
This being a t h i r d gene ra t i on of main helium c i r c u l a t o r s developed by
General Atomic Company, i t has bene f i t ed from exper ience , bo th p o s i t i v e and
nega t ive , ach iev ing a des ign of which t h e b a s i c phi losophy i s maximum
s i m p l i c i t y , ruggedness, and o p e r a b i l i t y .
*Work supported by Department of Energy, Cont rac t DE-AT03-76SF71023.
The adven t of s o l i d - s t a t e c o n v e r t e r s combined w i t h synchronous motors
h a s pu t a power l i m i t on t h e s e machines a t t h e l e v e l of l a r g e g e n e r a t o r s .
The e l e c t r i c motor , r a n g i n g up t o 50,000 hp, cou ld be mounted e i t h e r
h o r i z o n t a l l y o r v e r t i c a l l y i n a d e s i g n f o r which development r e q u i r e m e n t s
have been w e l l i d e n t i f i e d and a c o n s e r v a t i v e manufac tu r ing p l a n h a s been
e s t a b l i s h e d . Design and a n a l y s i s e f f o r t s by Westinghouse c o n t i n u e i n t h e
a r e a s of e x t e r n a l l y damped b e a r i n g s and s u p p o r t s t r u c t u r e , a iming t o mini-
mize t h e r o t o r dynamic r e s p o n s e throughout t h e e n t i r e speed range . A
two-loop 400-MW(e) p l a n t wi l l . r e q u i r e a 30,000 hp/3000 rpm (max) d r i v e
motor. A pony motor mounted ou tboard is provided a s backup t o t h e main
d r i v e motor f o r shutdown c o o l i n g .
Design and development e f f o r t s o n . t h e c i r c u l a t o r are w e l l under w a y ' a t
General Atomic, w i t h pr imary e f f o r t i n t h e a r e a s of s e l f - a c t u a t e d water-
l u b r i c a t e d b e a r i n g s and c e n t r i f u g a l f l o w compressor of a low d i a m e t e r t y p e ,
s p e c i f i c a l l y aimed a t minimizing t h e PCRV h o r i z o n t a l i n s t a l l a t i o n problems.
DESIGN SELECTION
.Dur ing t h e d e s i g n e v o l u t i o n of t h e GCFR, i t h a s been recognized t h a t
t h e main hel ium c i r c u l a t o r s need t o produce somewhat h i g h e r p r e s s u r e rise
t h a n t h e i r e q u i v a l e n t s i n a t y p i c a l HTGR p l a n t . Because of t h i s , s u b s t a n -
t i a l d r i v i n g power i s r e q u i r e d , making t h e s e l e c t i o n of t h e t y p e of c i r c u -
l a t o r and i t s prime mover somewhat more d i f f i c u l t . Kequl reme~~Ls a l f e c t i n g
t h e c i r c u l a t o r d e s i g n a r e l i s t e d i n T a b l e 1 .
A s t h e GCFR p l a n t d e s i g n h a s evo lved , t h e sys tem p r e s s u r e . d i f f e r e n t i a l
h a s changed f r n m a r e l a t i v e l y h i g h 6.0 p s i t o a more moderate r a n g e o f abou t
35 t o 40 p s i . I n t h e c o u r s e of t h e s e s t u d i e s , v i r t u a l l y a l l p o s s i b l e
c i r c u l a t o r d r i v e r d e s i g n a l t e r n a t i v e s were c o n s i d e r e d . These i u c l u d e d
two-stage, a x i a l - f l o w , high-speed series t u r b i n e s ; m u l t i s t a g e p a r a l l e l ., t u r b i n e s ; and submerged and e x t e r n a l e l e c t r i c motor d r i v e s . F i n a l s e l e c -
t i o n was based on many f a c t o r s , a l l of which p o i n t o u t t h e need f o r h i g h
o p e r a t i o n a l r e l i a b i l i t y and system s i m p l i c i t y .
TABLE 1 REQUIREMENTS AFFECTING CIRCULATOR DESIGN
Primary c o o l a n t sys tem paramete rs ( a d i a b a t i c head , f low e t c . )
NSS paramete rs ( a v a i l a b l e power f o r d r i v i n g ) . .
P a r t load paramete rs ( f low c o n t r o l )
T r a n s i e n t c o n d i t i o n s ( l o o p t r i p , l o s s of f o r c e d c o o l i n g , d e s i g n b a s i s d e p r e s s u r i z a t i o n a c c i d e n t , e t c . )
Other sys tem i n t e g r a t i o n r e q u i r e m e n t s ( a u x i l i a r y sys tems and c o n t r o l s )
Type u f prime mover s e l e c t e d ( r o t a t i n g speed , e t c . )
Maintenance and i n - s e r v i c e i n s p e c t i o n r e q u i r e m e n t s
Other f a c t o r s a f f e c t i n g t h e s e l e c t i o n a r e t h e need f o r fu l l -power /
f u l l - f l o w c i r c u l a t o r t e s t s p r i o r t o i n s t a l l a t i o n i n t h e r e a c t o r and t h e
p r e n u c l e a r fu l l -power/hot- f low t e s t s f o l l o w i n g c i r c u l a t o r i n s t a l l a t i o n i n
t h e r e a c t o r . S e p a r a t i o n o f . t h e c i r c u l a t o r d r i v e from t h e n u c l e a r s team
supply (NSS) sys tem added t o t h e f l e x i b i l i t y i n t h e p l a n t sys tem i n t e g r a t i o n
and t h e o p e r a b i l i t y of t h e pr imary c o o l a n t l o o p s .
The e x t e r n a l e l e c t r i c motor d r i v e concep t h a s shown s e v e r a l d e f i n i t i v e
advan tages i n t h e a r e a o f c i r c u l a t o r b e a r i n g and s e a l d e s i g n , and what is
most i m p o r t a n t , i n t h e a r e a of t h e a u x i l i a r y sys tems r e q u i r e d t o m a i n t a i n
t h e c i r c u l a t o r l u b r i c a t i o n and s e a l i n g under s t e a d y - s t a t e and t r a n s i e n t
c o n d i t i o n s . With rhe e x t e r u a l e l e c t r i c drive, many v i t a l i t e m s such a s
speed p r o b e s , t h r u s t b e a r i n g , and a n t i r o t a t i o n b r a k e have been r e l o c a t e d
o u t s i d e of t h e c i r c u l a t o r b e a r i n g c a r t r i d g e , t h u s improving e a s e o f main-
t e n a n c e and i n c r e a s i n g p l a n t a v a i l a b i l i t y .
ELECTRIC MOTOR DRIVE
A synchronous-type motor w i t h a s o l i d r o t o r and t h e self-commutated
c o n v e r t e r was chosen a s t h e most promising approach f o r t h e GCFR main
hel ium c i r c u l a t o r d r i v e . While s o l i d r o t o r tu rbo- type machines are pre-
dominant ly uocd genera to rs ' , a s n h s t a n t i a l number have been a p p l i e d a s
motors , e . g . , f o r compressor d r i v e s and wind t u n n e l s . The t h y r i s t o r s .
u t i l i z e d f o r f requency c o n t r o l a r e wa te r c o o l e d , and c o n s i d e r a b l y s m a l l e r , . .
c a b i n e t s a r e needed compared t o a i r - c o o l e d t h y r i s t o r s . Also , a i r d u c t s
a r e e l i m i n a t e d , l e s s e n i n g t h e EM1 ( e l e c t r o m a g n e t i c i n t e r f e r e n c e ) e f f e c t s .
The motor i t s e l f i s i n t e r n a l l y a i r c o o l e d , and t h e h e a t i s . r e j e c t e d t o
c o o l i n g w a t e r v i a an i n t e r n a l a i r - to -wate r h e a t exchanger . The main char -
a c t e r i s t i c s of t h e va r iab le - speed e x t e r n a l e l e c t r i c motor d r i v e a r e shown
i n Tab le 2 .
TABLE 2 GCFR M A I N CIRCULATOR BASIC CHARACTERISTICS
Compressor C e n t r i f u g a l , s i n g l e s t a g e
D r i v e r E x t e r n a l t o t h e PCRV, two-pole synchronous motor , i n t e r n a l l y a i r coo led
Flow c o n t r o l
Power
Speed
V a r i a b l e s p e e d , v i a s o l i d - s t a t e a c c o n t r o l l e r
,Approximately 30,'000 hp max
0 t o 3000 rpm
C i r c u l a t o r b e a r i n g Water l u b r i c a t e d , s e l f - a c t u a t e d
C i r c u l a t o r hel.i.um s e a l Helium b u f f e r e d l a b y r i n t h
C i r c u l a t o r w a t e r s e a l Three s t a g e , thermohydrodynamic s l i d i n g , LWR t y p e
Motor b e a r i n g s
T h r u s t bear ill8
O i l - l u b r i c a t e d t i l t i n g pad, e x t e r n a l l y . damped
O i l - l u b r i c a t e d , l o c a t e d i n s i d e motor
Pony motor . Approximately 500 hp, f o u r - p o l e i n d u c t i o n , so l id -coupled 'to main motor
The arrangement of the c i r c u l a t o r s i n s t a l l e d 111 the' PCKV is shown i n
F ig . . 1, and a c r o s s s e c t i o n of. t h e c i r c u l a t o r , motor , and l o o p i s o l a t i n n
v a l v e is shown i n F i g . 2 . The pony motor s h o w n . a t t h e l e f t o f F i g . 2 i s
s i z e d f o r 50% speed d u r i n g subatmospher ic r e f u e l i n g , t h u s c o v e r i n g t h e 10%
speed requ i rement a s backup d u r i n g p r e s s u r i z e d cooldown. I t is a four -po le
i n d u c t i o n motor r a t e d . a t approx imate ly 500 hp. It i s mechan ica l ly des igned
f o r con t inuous o p e r a t i o n a t f u l l main-motor speed. The a n t i r o t a t i o n b rake
and inboard r a d i a l and t h r u s t b e a r i n g s a r e shown a t t h e r i g h t . The e x c i t e r
and d i o d e wheels a r e mounted between t h e main and pony motors .
F i g u r e 3 shows t h e p r i n c i p a l d e s i g n of t h e e x t e r n a l l y damp'ed r a d i a l
b e a r i n g s . The 1 a t e r a l . r e s p o n s e of t h e r o t o r h a s been ana lyzed f o r a number
o f d i f f e r e n t s t i f f n e s s e s and damping c o e f f i c i e n t s a c h i e v a b l e w i t h such a
b e a r i n g . R e s u l t s have shown lqw a m p l i t u d e s through t h e e n t i r e speed range .
ELECTRIC MOTOR DEVELOPMENT PROGRAMS
Table 3 shows t h e development p l a n proposed by Westinghouse Corpora t ion
l e a d i n g t o t e s t and d e l i v e r y of , t h e f i r s t p r o t o t y p e motor . Development
requ i rements of t h e main motor a r e i n t h e a r e a of e x i s t i n g t echnology and
have t o do mainly w i t h producing s a t i s f a c t o r y e x t e r n a l l y damped b e a r i n g s t o
keep t h e l a t e r a l r e s p o n s e of t h e r o t o r a t a n a b s o l u t e minimum. I n a speed
range of 0 t o 3000 rpm, and e s p e c i a l l y w i t h a h o r i z o n t a l motor , t h i s shou ld
n o t be a problem.
TABLE 3 DEVELOPMENT PLAN FOR ELECTRIC MOTOR
Phase 2
Phase 3
Phase 4
Phase 5
Phase 6
Bear ings and s t r u c t u r e a n a l y s i s
Bear ing model test
F u l l - s c a l e b e a r i n g test
F u l l - s c a l e dynamics model
Motor d e t a i l d e s i g n
Manufacture of motor components
Cvmplete manufac tu re of p r o t o t y p e motor
T e s t and d e l i . v e r y of p r o t o t y p e motor
THE REFERENCE DESIGN CIRCULATOR
The d e s i g n approach f o r t h e main c i r c u l a t o r is p r e s e n t e d i n T a b l e 4.
F i g u r e 4 i l l u s t r a t e s t h e r a d i a l d i f f u s e r f o r a two-loop, 400-MW(e) c i r c u l a t o r
[o r a s ix - loop , 1200-MW(e)] . Minimum enve lope d i a m e t e r has been o b t a i n e d
w i t h good e f f i c i e n c y , a l l e v i a t i n g t h e h o r i z o n t a l i n s t a l l a t i o n problems r e l a -
t i v e t o t h e PCRV. The impact of t h e e x t e r n a l motor d r i v e on t h e w a t e r
l u b r i c a t i o n s e r v i c e sys tem r e l a t i v e t o t h e series s team t u r b i n e d r i v e sys tem
is shown i n F ig . 5 , and F ig . 6 is a f l o w diagram of t h e b e a r i n g system.
TABLE 4 DESIGN APPROACH FOR M A I N CIRCULATOR
Maximum u t i l i z a t i o n of proven t e c h n o l o g i e s
E a r l y i d e n t i f i c a t i o n of development r e q u i r e m e n t s
C o n s e r v a t i v e and rugged r o t o r d e s i g n f o r c i r c u l a t o r and d r i v e motor
U s e of known t e c h n o l o g i e s
S i m p l i c i t y of s e a l s and b e a r i n g a u x i l i a r y s u p p o r t sys tems , independent of o t h e r p l a n t sys tems .
Gravi ty- and backf low-actuated l o o p i s o l a t i o n v a l v e s c a p a b l e of f uncti.nila1 tests d u r i n g power u p e r a t i o n
Reduct ion t o a b s o l u t e minimum o r e l i m i n a t i o n of s e r v i c e ' r equ i rements of machine assembly l o c a t e d i n s i d e r e a c t o r c a v i t y
F i g u r e 7 shows t h e c r o s s s e c t i o n of t h e b e a r i n g and seal assembly
w i t h s e l f - a c t u a t e d pump system mounted between t h e two r a d i a l b e a r i n g s .
The b e a r i n g s are w a t e r - l u b r i c a t e d , h y b r i d ( p a r t h y d r o s t a t i c / p a r t '
hydrodynamic) w i t h i n d i v i d u a l o r i f i c e compensated pads . The b e a r i n g
s t i f f n e s s f o r t h e g iven speed r a n g e is on t h e o r d e r of 0.9 x lo5 t o 6 6 4 .5 x lo5 N/cm ( 0 . 5 x 10 t o 2 .5 x 10 l b / i n . ) , e n s u r i n g s u b c r i t i c a l
( l a t e r a l ) speed o p e r a t i o n th rough t h e e n t i r e speed range . The m u l t i s t a g e ,
thermohydrodynamic, s l i d i n g , h i g h - p r e s s u r e w a t e r s e a l i s of t h e LWR pr imary
c o o l a n t pump t y p e w i t h similar s l i d i n g v e l o c i t i e s , and a somewhat lower
wa te r p r e s s u r e compared t o t y p i c a l LWR c o o l a n t .pump s e a l s .
Figure 8 i l l u s t r a t e s t h e two-phase helium water scavenge pump and t h e
bu f f e r helium l a b y r i n t h , which a r e p a r t of t h e system desc r ibed prev ious ly
(Table 4 and F ig . 4 ) . This system was f u l l y proven i n t h e l a r g e HTGR main
c i r c u l a t o r tests conducted i n 1978 a t t h e General Atomic c i r c u l a t o r test
f a c i l i t y .
Figure 9 shows the double shutdown s h a f t s e a l t oge the r w i th t h e bu f f e r
flow l a b y r i n t h s e a l s . The shutdown s e a l s can be a c t u a t e d on ly fo l lowing
t h e a c t u a t i o n of t h e e x t e r n a l brake. The shutdvwn s e a l s , when a c t u a t e d ,
provide redundant i s o l a t i o n of t h e primary coo lan t c a v i t y from t h e bear ing
c a r t r i d g e and t h e r e s t of t h e a u x i l i a r y bear ing system.
CIRCULATOR DEVELOPMENT PROGRAMS
Table 5 summarizes t h e c i r cu l a to r ' deve lopmen t programs. A major
po r t i on of t h e c i r c u l a t o r technology a l r eady e x i s t s ; i t i s based on s e v e r a l
machines developed and t e s t e d o r ' i n s e r v i c e i n HTGRs. One of t he .p l anned
improvements i s adopt ion of t h e s e l f - a c t u a t i n g bear ing system, which would
g r e a t l y s imp l i fy t h e requirements placed on bear ing and s e a l a u x i l i a r y
modules a s shown i n Tables 3 and 4 and F ig . 4 .
TABLE 5 GCFR M A I N CIRCULATOR MAJOR DEVELOPMENT PROGRAMS
Watcr l u b r i c a t e d s e l f - a c t u a t i n g bear ing system test
One-third-scale a i r f low compressor and loop i s o l a t i o n v a l v e t e s t
High-pressure s l i d i n g water s e a l t e s t
Fu l l - s ca l e p ro to type c i r c u l , a t o r and e l e c t r i c d r i v e t e s t i n c i r c u l a t o r test f a c i l i t y
F u l l power prenuc lear ho t f low test w i th c i r c u l a t o r s i n s t a l l e d i n PCRV
The bear ing t e s t r i g (Fig. 10) is capable of t e s t i n g a f u l l - s c a l e
bear ing assembly i n t h e 0- t o 3600-rpm speed range. The main o b j e c t i v e of
t h i s t e s t i s t h e v e r i f i c a t i o n of t h e s e l f - ac tua t ed pump and bear ing
performance. F igure 11 shows a c r o s s s e c t i o n through t h e t e s t r i g . The
pump assembly can be exchanged t o a l low t e s t i n g ' a n d e v a l u a t i o n of s e v e r a l
d i f f e r e n t pump geometr ies . The bear ings a r e equipped wi th induc tance
probes which measure t h e a c t u a l bear ing-to-shaf t e c c e n t r i c i t y produced by , '
t h e e x t e r n a l load on t h e housing. Rad ia l , t a n g e n t i a l , and a x i a l load
c e l l s connect ing t h e bear ing housing t o t h e base frame measure bea r ing
r a d i a l l oads , t o rque , and t h r u s t produced mainly by t h e pump a c t i o n . The
r i g can supply d a t a on bear ing s t i f f n e s s , load-car ry ing capac i ty , f r i c t i o n
t o rque , and pump hydrau l i c performance throughout t h e c i r c u l a t o r o p e r a t i n g
regime. Based on t h e s e d a t a , t h e r o t o r dynamics can be f u l l y v e r i f i e d
p r i o r t o pro to type c i r c u l a t o r d e t a i l de s ign and manufacturing.
F igures 1 2 and 13, show t h e one- th i rd-sca le a i r f l o w test r i g . I ts
primary o b j e c t i v e is t o v e r i f y . the aerodynamic performance of t h r e e
a l t e r n a t e p'ipe d i f f u s e r geometries i n an e f f o r t to ' minimize t h e o u t s i d e
d i f f u s e r d iameter whi le ob t a in ing maximum compressor e f f i c i e n c y . Con-
s i d e r i n g t h e e f f e c t of t h e d i f f u s e r s i z e on t h e PCRV c o s t on t h e one
hand and t h e c i r c u l a t o r d r i v i n g power on t h e o t h e r hand, t h e test should I p rovide va luab le in format ion needed t o op t imize t h i s r e l a t i o n s h i p .
Fig. 1 . 300-MW(e) GCFR nuclear steam supply system
- :q MAIN MOTOR 1 , - C , )
8 - \ CIRCULATOR ROTATING ASSEMBLY
MOTOR SUPPORT BASE VALVE ASSEMBLY DIODE WHEEL ANTI ROTATION BRAKE
Fig. 2. GCFR main circulator horizontal installation
R E T A l F l L M P I NQ)
F I L M R O D Y N A W I C )
Fig. 3. Damped support bearing .*= 3 ,P
Fig. 4. Diffuser for GCFR main cfirculator
F i g . 5 . Impact of,motor drive on circulator service system relarive to - series steam turbine drive system
EXTERNAL MOTOR DRIVEN
+ INTEGRAL BEARING
WATER PUMP
BEARING WATER
RECOVERY
Fig. 6. Main helium circulator bearing and seal system flow diagram
Fig. 7 . Longitudinal section for circulator bearing assembly
Fig. 8. Jet pump system for GCFR-main circulator
Fig. 9. GCFR main circulator seals
Fig. 10. Bearing test rig for GCFR main circulator
Fig. 1 1 . Section through bearing t e s t r i g for GCFR main circulator
TORQUE SENSOR \
1 ' I 8 <:.I- I, L. $ , , , - A
Fig. I 1 2 . One-third-scale air flow test rig for GCFR main'-cikulator
1- --- -- 3556 MM (140 IN.) -
/ Er)l:D.. & ACCESS
Ill= DIA
., (21 IN.)
qLAN VIEW (18.5 IN.) (s4 a.1 SIMULATED STEAM WIRE MESH GEWERATOR C A V ~ ~ Y I " '
TEST IMPELLER I DIFFUSER \-- -4 1 -.: - - 1
TORQUE i2.3IN.l / ~SOU~ON / -i TRANSDUCER TYPA PLC8. VALVE
AXIAL FLOW AIR TURBINE I BURST SHIELD SINOLE STADE . OUTPUT WAFT BEARING HOUSING 2 m . w ~ (la65 IN.) HUB DIA ar.snnm (16x1 IN.) TIP DIA 176.7KW (233 H.P.) AT 8800 R.P.M. (DBIGN SPEED) MAX. FLOW 8.28 KGB (13.8s LBISECI(AT 10% OVERSPEED).
2 2 4 8 h ~ (7 FT4.6 IN.)
\ \
TEST VESSEL . - . INLET
Fig. 13. One-third-scale air flow test rig for GCFR main circulator, plan and elevation views
GENERAL ATOMIC COMPANY P. 0. BOX 81608
SAN DIEGO, CALIFORNIA 92138