gavin brennen lauri lehman zhenghan wang valcav zatloukal jkp

24
Gavin Brennen Lauri Lehman Zhenghan Wang Valcav Zatloukal JKP Ubergurgl, June 2010 Anyonic quantum walks: Anyonic quantum walks: The Drunken Slalom The Drunken Slalom

Upload: vanya

Post on 22-Feb-2016

25 views

Category:

Documents


0 download

DESCRIPTION

Anyonic quantum walks: The Drunken Slalom. Gavin Brennen Lauri Lehman Zhenghan Wang Valcav Zatloukal JKP. Ubergurgl, June 2010. Anyonic Walks: Motivation. Random evolutions of topological structures arise in: Statistical physics (e.g. Potts model ): - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Gavin Brennen Lauri Lehman Zhenghan Wang  Valcav  Zatloukal JKP

Gavin BrennenLauri Lehman

Zhenghan Wang Valcav Zatloukal

JKP

Ubergurgl, June 2010

Anyonic quantum walks:Anyonic quantum walks:The Drunken SlalomThe Drunken Slalom

Page 2: Gavin Brennen Lauri Lehman Zhenghan Wang  Valcav  Zatloukal JKP

Random evolutions of topological structures arise in:•Statistical physics (e.g. Potts model):

Entropy of ensembles of extended object •Plasma physics and superconductors:

Vortex dynamics•Polymer physics:

Diffusion of polymer chains•Molecular biology:

DNA folding•Cosmic strings•Kinematic Golden Chain (ladder)

Anyonic Walks: Motivation

Quantum simulation

Page 3: Gavin Brennen Lauri Lehman Zhenghan Wang  Valcav  Zatloukal JKP

Anyons

2ie

Bosons

Fermions

U

ei 2

Anyons

3D

2D

View anyon as vortex with flux and charge.

•Two dimensional systems •Dynamically trivial (H=0). Only statistics.

Page 4: Gavin Brennen Lauri Lehman Zhenghan Wang  Valcav  Zatloukal JKP

Ising Anyon Properties• Define particles:

• Define their fusion:

• Define their braiding:

,,1

1

11

B

,,1,Fusion Hilbert space:

Page 5: Gavin Brennen Lauri Lehman Zhenghan Wang  Valcav  Zatloukal JKP

Ising Anyon Properties• Assume we can:

– Create identifiable anyons pair creation

– Braid anyons Statistical evolution: braid representation B

– Fuse anyons

time

,1,B

1

1

1

B

1

1

Page 6: Gavin Brennen Lauri Lehman Zhenghan Wang  Valcav  Zatloukal JKP

Approximating Jones Polynomials

Knots (and links) are equivalent to braids with a “trace”.

[Markov, Alexander theorems]

“trace”

Page 7: Gavin Brennen Lauri Lehman Zhenghan Wang  Valcav  Zatloukal JKP

Approximating Jones Polynomials

Is it possible to check if two knots are equivalent or not? The Jones polynomial is a topological invariant: if it differs, knots are not equivalent. Exponentially hard to evaluate classically –in general.Applications: DNA reconstruction, statistical physics…

[Jones (1985)]

“trace”

Page 8: Gavin Brennen Lauri Lehman Zhenghan Wang  Valcav  Zatloukal JKP

Approximating Jones Polynomials

4

1t

4 t

[Freedman, Kitaev, Wang (2002); Aharonov, Jones, Landau (2005);et al. Glaser (2009)]

With QC polynomially easy to approximate: Simulate the knot with anyonic braiding

tt

1

Take “Trace”

“trace”

Page 9: Gavin Brennen Lauri Lehman Zhenghan Wang  Valcav  Zatloukal JKP

Classical Random Walk on a line

Recipe:1)Start at the origin2)Toss a fair coin: Heads or Tails3)Move: Right for Heads or Left for Tails4)Repeat steps (2,3) T times5)Measure position of walker6)Repeat steps (1-5) many times

Probability distribution P(x,T): binomial Standard deviation:

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

T~x2

Page 10: Gavin Brennen Lauri Lehman Zhenghan Wang  Valcav  Zatloukal JKP

QW on a line

Recipe:1)Start at the origin2)Toss a quantum coin (qubit):

3)Move left and right:4)Repeat steps (2,3) T times5)Measure position of walker6)Repeat steps (1-5) many times

Probability distribution P(x,T):...

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

2)/10(1H2)/10(0H

1,1xx,1S,1,0xx,0S

1111

21H

Page 11: Gavin Brennen Lauri Lehman Zhenghan Wang  Valcav  Zatloukal JKP

QW on a line

Recipe:1)Start at the origin2)Toss a quantum coin (qubit):

3)Move left and right:4)Repeat steps (2,3) T times5)Measure position of walker6)Repeat steps (1-5) many times

Probability distribution P(x,T):...

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

1,1xx,1S,1,0xx,0S

2)/10(1H2)/10(0H

1111

21H

Page 12: Gavin Brennen Lauri Lehman Zhenghan Wang  Valcav  Zatloukal JKP

CRW vs QW

QWCRW

Quantum spread ~T2, classical spread~T [Nayak, Vishwanath, quant-ph/0010117;

Ambainis, Bach, Nayak, Vishwanath, Watrous, STOC (2001)]

22 xx

P(x,

T)

Page 13: Gavin Brennen Lauri Lehman Zhenghan Wang  Valcav  Zatloukal JKP

QW with more coins

Variance =kT2

More (or larger) coins dilute the effect of interference (smaller k)New coin at each step destroys speedup (also decoherence) Variance =kT[Brun, Carteret, Ambainis, PRL (2003)]New coin every two steps?

dim=2

dim=4

Page 14: Gavin Brennen Lauri Lehman Zhenghan Wang  Valcav  Zatloukal JKP

QW vs RW vs ...?• If walk is time/position independent then

it is either: classical (variance ~ kT) or quantum (variance ~ kT2)

• Decoherence, coin dimension, etc. give no richer structure...

• Is it possible to have time/position independent walk with variance ~ kTa for 1<a<2?

• Anyonic quantum walks are promising due to their non-local character.

Page 15: Gavin Brennen Lauri Lehman Zhenghan Wang  Valcav  Zatloukal JKP

Ising anyons QW

QW of an anyon with a coin by braiding it with other anyons of the same type fixed on a line.

Evolve with quantum coin to braid with left or right anyon.

sb1s1 2 s 1s 1n n

1sb

Page 16: Gavin Brennen Lauri Lehman Zhenghan Wang  Valcav  Zatloukal JKP

Ising anyons QWEvolve in time e.g. 5 steps

What is the probability to find the walker at position x after T steps?

Page 17: Gavin Brennen Lauri Lehman Zhenghan Wang  Valcav  Zatloukal JKP

Hilbert space:

n~2~2

(n)H(n)HHH(n)

n

positionanyonsqubit

Ising anyons QW

P(x,T) involves tracing the coin and anyonic degrees of freedom:

add Kauffman’s bracket of each resulting link (Jones polynomial)P(x,T), is given in terms of such Kauffman’s brackets: exponentially hard to calculate! large number of paths.

Markov122001 )B(B)BΨΨtr(B

Page 18: Gavin Brennen Lauri Lehman Zhenghan Wang  Valcav  Zatloukal JKP

TIM

E

Trace (in pictures)

Markov122001 )B(B)BΨΨtr(B

0

1B

2B

0

Trace & Kauffman’s brackets

Page 19: Gavin Brennen Lauri Lehman Zhenghan Wang  Valcav  Zatloukal JKP

Ising anyons QWEvaluate Kauffman bracket.

Repeat for each path of the walk.

Walker probability distribution depends on the distribution of links (exponentially many).

A link is proper if the linking between the walk and any other link is even.

Non-proper links Kauffman(Ising)=0

B

1

1

Page 20: Gavin Brennen Lauri Lehman Zhenghan Wang  Valcav  Zatloukal JKP

Locality and Non-LocalityPosition distribution, P(x,T):

L

τ(L)z(L)

T propernonisLif0properisLif1)(

21T)P(x,

•z(L): sum of successive pairs of right steps•τ(L): sum of Borromean rings

Very localcharacteristic

Very non-localcharacteristic

Page 21: Gavin Brennen Lauri Lehman Zhenghan Wang  Valcav  Zatloukal JKP

Ising QW Variance

The variance appears to be close to the classical RW.

step, T

Varia

nce

~T

~T2

Page 22: Gavin Brennen Lauri Lehman Zhenghan Wang  Valcav  Zatloukal JKP

Ising QW Variance

Assume z(L) and τ(L) are uncorrelated variables.

local vs non-local

T)(x,rT)(x,rNNT)(x,δPT)(x,PT)(x,P oddτevenτ

total

properQWRWAQW

step, T step, T

Page 23: Gavin Brennen Lauri Lehman Zhenghan Wang  Valcav  Zatloukal JKP

Anyonic QW & SU(2)k

The probability distribution P(x,T=10) for various k. k=2 (Ising anyons) appears classical k=∞ (fermions) it is quantumk seems to interpolate between these distributions

position, x

index k

prob

abilit

yP(

x,T=

10)

2a1a

Page 24: Gavin Brennen Lauri Lehman Zhenghan Wang  Valcav  Zatloukal JKP

•Possible: quant simulations with FQHE, p-wave sc, topological insulators...?

•Asymptotics: Variance ~ kTa 1<a<2 Anyons: first possible example

•Spreading speed (Grover’s algorithm) is taken over by •Evaluation of Kauffman’s brackets (BQP-complete problem)

•Simulation of decoherence?

Conclusions

Thank you for your attention!