gamma and betta function harsh shah

10

Click here to load reader

Upload: cgpit

Post on 08-May-2015

296 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Gamma and betta function  harsh shah

GAMMA AND BETTA

FUNCTION

GROUP - 1

ENROLLMENT NO: 1-12

Page 2: Gamma and betta function  harsh shah

Gamma function :

Gamma function is define by the improper interval

π‘’βˆ’π‘₯

∞

0

π‘₯π‘›βˆ’1 𝑑π‘₯ , 𝑛 > 0

And it is denoted by Ξ“ n.

Alternate form of gamma function ,

Ξ“ n = π‘’βˆ’π‘₯2∞

0 π‘₯2π‘›βˆ’1 𝑑π‘₯

Page 3: Gamma and betta function  harsh shah

Proof by definition

Ξ“ n = π‘’βˆ’π‘₯∞

0 . π‘₯π‘›βˆ’1 𝑑π‘₯

Let x=𝑑2 and 𝑑π‘₯ = 2tdt

Ξ“ n= π‘’βˆ’π‘‘2∞

0. 𝑑2π‘›βˆ’2 𝑑𝑑

=2 π‘’βˆ’π‘‘2∞

0 . 𝑑2π‘‘βˆ’1 𝑑𝑑

Now changing the variable t to x,

Ξ“ n=2 π‘’βˆ’π‘₯2∞

0 π‘₯2π‘›βˆ’1 𝑑π‘₯

Page 4: Gamma and betta function  harsh shah

Proprieties of GAMMA function :

Ξ“ n+1 = n Ξ“ n

Ξ“12 = Ξ 

Page 5: Gamma and betta function  harsh shah

Proof of the property :

1] Ξ“ n+1 = π‘’βˆ’π‘₯∞

0 . π‘₯𝑛 𝑑π‘₯,

Inter changing by parts ,

Ξ“ n+1 = | π‘’βˆ’π‘₯ . π‘₯𝑛|0∞ - π‘’βˆ’π‘₯

∞

0 . π‘₯π‘›βˆ’1 𝑑π‘₯

= 𝑛 π‘’βˆ’π‘₯∞

0 . π‘₯π‘›βˆ’1 𝑑π‘₯

=n Ξ“ n

Hence Ξ“n+1 = n Ξ“ n proved .

This is known as recurrence reduction formula for gamma function.

Page 6: Gamma and betta function  harsh shah

NOTE :

Ξ“ n+1 = n! if n is a positive integer

Ξ“n+1 = n Ξ“n if n is a real number .

Ξ“n = Γ𝑛+1

𝑛 if n is negative fraction.

Ξ“n Ξ“1-n = Ξ 

sin 𝑛 Ξ 

Page 7: Gamma and betta function  harsh shah

(2) Ξ“1

2 = Ξ 

PROOF :

By alternate form of gamma function ,

Ξ“1

2 = 2 π‘’βˆ’π‘₯

2∞

0. π‘₯2(

1

2)βˆ’1 𝑑π‘₯

= π‘’βˆ’π‘₯2. 𝑑π‘₯

∞

0

Ξ“1

2Ξ“1

2 = π‘’βˆ’π‘₯

2𝑑π‘₯

∞

0 . π‘’βˆ’π‘¦

2. 𝑑𝑦

∞

0

changing to polar coordinates x= π‘Ÿ cos πœƒ , 𝑦 = π‘Ÿ sin πœƒ

∴ 𝑑π‘₯𝑑𝑦 = π‘Ÿπ‘‘π‘Žπ‘‘πœƒ

Limits of x x=0 to x β†’ ∞

Limits of y y=0 to y β†’ ∞

Page 8: Gamma and betta function  harsh shah

This shows that the region of integration is the first quadrant.

Draw the elementary radius vector in the region which starts from

the pole extend up to ∞.

Limits of r r=0 to r β†’ ∞

Limits of πœƒ πœƒ =0 to πœƒ β†’ πœ‹

2 .

Ξ“1

2Ξ“1

2 = 4 π‘’βˆ’π‘Ÿ

2∞

0

πœ‹

20

. π‘Ÿπ‘‘π‘Ÿπ‘‘πœƒ

= 4 π‘‘πœƒ (βˆ’1

2)π‘’βˆ’π‘Ÿ

2∞

0

πœ‹

20

. (βˆ’2π‘Ÿ) π‘‘π‘Ÿ

=4

βˆ’2 |πœƒ|0

πœ‹

2 |π‘’βˆ’π‘₯2|0∞ [∡ 𝑒𝑓 π‘Ÿ 𝑓′ π‘Ÿ πœƒπ‘Ÿ = 𝑒𝑓 π‘Ÿ ]

= -2.πœ‹

2(0 βˆ’ 1)

=πœ‹

Ξ“1

2 = πœ‹

Page 9: Gamma and betta function  harsh shah

Examples : Find the value of Ξ“πŸ“

𝟐

Ξ“n = 𝛀𝑛+1

𝑛

Ξ“βˆ’5

2 =

π›€βˆ’5

2+1

5

2

= βˆ’2

5 Ξ“βˆ’3

2

= βˆ’2

5

Ξ“βˆ’3

2+1

βˆ’3

2

=4

15 Ξ“βˆ’1

2

= 4

15

Ξ“βˆ’1

2+1 βˆ’1

2

=βˆ’8

15 Ξ“1

2

= -βˆ’8 πœ‹

15 ∡ π‘“π‘Ÿπ‘œπ‘š π‘π‘Ÿπ‘œπ‘π‘’π‘Ÿπ‘‘π‘¦

Page 10: Gamma and betta function  harsh shah

THANK YOU