fundamentals of modern optics - institute of applied …€¦ ·  · 2012-10-15script fundamentals...

7
Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2012-10-14.docx 1 Fundamentals of Modern Optics Winter Term 2012/2013 Prof. Thomas Pertsch Abbe School of Photonics Friedrich-Schiller-Universität Jena 0. Introduction ............................................................................................... 3 1. (Ray optics - geometrical optics) ............................................................ 15 1.1 Introduction ....................................................................................................... 15 1.2 Postulates ......................................................................................................... 15 1.3 Simple rules for propagation of light ................................................................. 16 1.4 Simple optical components............................................................................... 16 1.5 Ray tracing in inhomogeneous media (graded-index - GRIN optics) .............. 20 1.5.1 Ray equation..................................................................................................... 20 1.5.2 The eikonal equation ........................................................................................ 22 1.6 Matrix optics...................................................................................................... 22 1.6.1 The ray-transfer-matrix ..................................................................................... 23 1.6.2 Matrices of optical elements ............................................................................. 23 1.6.3 Cascaded elements .......................................................................................... 24 2. Optical fields in dispersive and isotropic media ...................................... 25 2.1 Maxwell’s equations...................................................................................... 25 2.1.1 Adaption to optics ............................................................................................. 25 2.1.2 Temporal dependence of the fields .................................................................. 27 2.1.3 Maxwell’s equations in Fourier domain ............................................................ 28 2.1.4 From Maxwell’s equations to the wave equation ............................................. 28 2.1.5 Decoupling of the vectorial wave equation....................................................... 29 2.2 Optical properties of matter .............................................................................. 30 2.2.1 Basics ............................................................................................................... 30 2.2.2 Dielectric polarization and susceptibility ........................................................... 33 2.2.3 Conductive current and conductivity ................................................................ 34 2.2.4 The generalized complex dielectric function .................................................... 35 2.2.5 Material models in time domain ........................................................................ 39 2.3 The Poynting vector and energy balance ......................................................... 40 2.3.1 time averaged Poynting vector ......................................................................... 40 2.3.2 time averaged energy balance ......................................................................... 41 2.4 The Kramers-Kronig relation ............................................................................ 43 2.5 Normal modes in homogeneous isotropic media ............................................. 45 2.5.1 Longitudinal waves ........................................................................................... 46 2.5.2 Transversal waves............................................................................................ 46 2.5.3 Plane wave solutions in different frequency regimes ....................................... 47 2.5.4 Time averaged Poynting vector of plane waves .............................................. 52 2.6 Beams and pulses - analogy of diffraction and dispersion............................... 78 2.6.1 Propagation of stationary beams in homogeneous isotropic media ................ 80 2.6.2 Propagation of Gaussian beams ...................................................................... 94 2.6.3 Gaussian optics ..............................................................................................103 2.6.4 Gaussian modes in a resonator .....................................................................107 2.6.5 Pulse propagation...........................................................................................114 3. Diffraction theory .................................................................................. 122 3.1 Interaction with plane masks ..........................................................................122 3.2 Propagation using different approximations ...................................................123 Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2012-10-14.docx 2 3.2.1 The general case - small aperture..................................................................123 3.2.2 Fresnel approximation (paraxial approximation) ............................................125 3.2.3 paraxial Fraunhofer approximation (far field approximation) .........................125 3.3 Fraunhofer diffraction at plane masks (paraxial) ............................................129 3.3.1 Fraunhofer diffraction pattern .........................................................................129 3.3.2 Examples: .......................................................................................................130 3.3.3 Remarks on Fresnel diffraction ......................................................................135 4. Fourier optics - optical filtering.............................................................. 136 4.1 Imaging of arbitrary optical field with thin lens ...............................................136 4.1.1 Transfer function of a thin lens .......................................................................136 4.1.2 optical imaging ................................................................................................137 4.2 Optical filtering and image processing ...........................................................140 4.2.1 The 4f-setup....................................................................................................140 4.2.2 Examples: .......................................................................................................144 5. The polarization of electromagnetic waves .......................................... 147 5.1 Introduction .....................................................................................................147 5.2 Polarization of normal modes in isotropic media............................................147 5.2.1 Polarization states ..........................................................................................149 6. Principles of Optics in Crystals .......................................................................152 6.1 Susceptibility and Dielectric Tensor ...............................................................152 6.2 The optical classification of crystals ...............................................................156 6.3 the index ellipsoid ...........................................................................................158 6.4 normal modes in anisotropic media................................................................160 6.4.1 Normal modes propagating in principal directions .........................................161 6.4.2 Normal modes for arbitrary propagation direction dispersion relation ........162 6.4.3 special case: uniaxial crystals ........................................................................170 7. Optical Fields in Isotropic, Dispersive and Piecewise Homogeneous Media ................................................................................................... 175 7.1 Basics .............................................................................................................175 7.1.1 definition of the problem .................................................................................175 7.1.2 Decoupling of the vectorial wave equation.....................................................176 7.1.3 interfaces and symmetries..............................................................................178 7.1.4 transition conditions ........................................................................................179 7.2 fields in a layer system matrix method .......................................................180 7.2.1 fields in one homogeneous layer....................................................................180 7.2.2 the fields in a system of layers .......................................................................183 7.3 Reflection – Transmission Problem for Layer Systems .................................186 7.3.1 general layer systems.....................................................................................186 7.3.2 single interface................................................................................................195 7.3.3 Periodic multi-layer systems - Bragg-mirrors - 1D photonic crystals .............206 7.3.4 Fabry-Perot-resonators ..................................................................................215 7.4 Guided Waved in Layer Systems ...................................................................223 7.4.1 Field structure of guided waves......................................................................223 7.4.2 dispersion relation for guided waves ..............................................................225 7.4.3 guided waves at interface - surface polariton.................................................229 7.4.4 guided waves in a layer – film waveguide ......................................................231 7.4.5 how to excite guided waves............................................................................236 8. Statistical optics - coherence theory ..................................................... 238 8.1 Basics .............................................................................................................238 8.2 Statistical properties of light............................................................................244 8.3 Interference of partially coherent light ............................................................250

Upload: vuongthu

Post on 25-May-2018

282 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Fundamentals of Modern Optics - Institute of Applied …€¦ ·  · 2012-10-15Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2012-10-14.docx 1 Fundamentals

Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2012-10-14.docx 1

Fundamentals of Modern Optics Winter Term 2012/2013

Prof. Thomas Pertsch Abbe School of Photonics

Friedrich-Schiller-Universität Jena

0.  Introduction ............................................................................................... 3 1.  (Ray optics - geometrical optics) ............................................................ 15 

1.1  Introduction ....................................................................................................... 15 1.2  Postulates ......................................................................................................... 15 1.3  Simple rules for propagation of light ................................................................. 16 1.4  Simple optical components............................................................................... 16 1.5  Ray tracing in inhomogeneous media (graded-index - GRIN optics) .............. 20 1.5.1  Ray equation ..................................................................................................... 20 1.5.2  The eikonal equation ........................................................................................ 22 1.6  Matrix optics ...................................................................................................... 22 1.6.1  The ray-transfer-matrix ..................................................................................... 23 1.6.2  Matrices of optical elements ............................................................................. 23 1.6.3  Cascaded elements .......................................................................................... 24 

2.  Optical fields in dispersive and isotropic media ...................................... 25 2.1  Maxwell’s equations ...................................................................................... 25 2.1.1  Adaption to optics ............................................................................................. 25 2.1.2  Temporal dependence of the fields .................................................................. 27 2.1.3  Maxwell’s equations in Fourier domain ............................................................ 28 2.1.4  From Maxwell’s equations to the wave equation ............................................. 28 2.1.5  Decoupling of the vectorial wave equation ....................................................... 29 2.2  Optical properties of matter .............................................................................. 30 2.2.1  Basics ............................................................................................................... 30 2.2.2  Dielectric polarization and susceptibility ........................................................... 33 2.2.3  Conductive current and conductivity ................................................................ 34 2.2.4  The generalized complex dielectric function .................................................... 35 2.2.5  Material models in time domain ........................................................................ 39 2.3  The Poynting vector and energy balance ......................................................... 40 2.3.1  time averaged Poynting vector ......................................................................... 40 2.3.2  time averaged energy balance ......................................................................... 41 2.4  The Kramers-Kronig relation ............................................................................ 43 2.5  Normal modes in homogeneous isotropic media ............................................. 45 2.5.1  Longitudinal waves ........................................................................................... 46 2.5.2  Transversal waves ............................................................................................ 46 2.5.3  Plane wave solutions in different frequency regimes ....................................... 47 2.5.4  Time averaged Poynting vector of plane waves .............................................. 52 

2.6 Beams and pulses - analogy of diffraction and dispersion ............................... 78 2.6.1 Propagation of stationary beams in homogeneous isotropic media ................ 80 2.6.2 Propagation of Gaussian beams ...................................................................... 94 2.6.3 Gaussian optics .............................................................................................. 103 2.6.4 Gaussian modes in a resonator ..................................................................... 107 2.6.5 Pulse propagation ........................................................................................... 114

3. Diffraction theory .................................................................................. 122 3.1 Interaction with plane masks .......................................................................... 122 3.2 Propagation using different approximations ................................................... 123

Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2012-10-14.docx 2

3.2.1 The general case - small aperture .................................................................. 123 3.2.2 Fresnel approximation (paraxial approximation) ............................................ 125 3.2.3 paraxial Fraunhofer approximation (far field approximation) ......................... 125 3.3 Fraunhofer diffraction at plane masks (paraxial) ............................................ 129 3.3.1 Fraunhofer diffraction pattern ......................................................................... 129 3.3.2 Examples: ....................................................................................................... 130 3.3.3 Remarks on Fresnel diffraction ...................................................................... 135

4. Fourier optics - optical filtering .............................................................. 136 4.1 Imaging of arbitrary optical field with thin lens ............................................... 136 4.1.1 Transfer function of a thin lens ....................................................................... 136 4.1.2 optical imaging ................................................................................................ 137 4.2 Optical filtering and image processing ........................................................... 140 4.2.1 The 4f-setup .................................................................................................... 140 4.2.2 Examples: ....................................................................................................... 144

5. The polarization of electromagnetic waves .......................................... 147 5.1 Introduction ..................................................................................................... 147 5.2 Polarization of normal modes in isotropic media ............................................ 147 5.2.1 Polarization states .......................................................................................... 149 6. Principles of Optics in Crystals ....................................................................... 152 6.1 Susceptibility and Dielectric Tensor ............................................................... 152 6.2 The optical classification of crystals ............................................................... 156 6.3 the index ellipsoid ........................................................................................... 158 6.4 normal modes in anisotropic media ................................................................ 160 6.4.1 Normal modes propagating in principal directions ......................................... 161 6.4.2 Normal modes for arbitrary propagation direction dispersion relation ........ 162 6.4.3 special case: uniaxial crystals ........................................................................ 170

7. Optical Fields in Isotropic, Dispersive and Piecewise Homogeneous Media ................................................................................................... 175 7.1 Basics ............................................................................................................. 175 7.1.1 definition of the problem ................................................................................. 175 7.1.2 Decoupling of the vectorial wave equation ..................................................... 176 7.1.3 interfaces and symmetries .............................................................................. 178 7.1.4 transition conditions ........................................................................................ 179 7.2 fields in a layer system � matrix method ....................................................... 180 7.2.1 fields in one homogeneous layer .................................................................... 180 7.2.2 the fields in a system of layers ....................................................................... 183 7.3 Reflection – Transmission Problem for Layer Systems ................................. 186 7.3.1 general layer systems ..................................................................................... 186 7.3.2 single interface................................................................................................ 195 7.3.3 Periodic multi-layer systems - Bragg-mirrors - 1D photonic crystals ............. 206 7.3.4 Fabry-Perot-resonators .................................................................................. 215 7.4 Guided Waved in Layer Systems ................................................................... 223 7.4.1 Field structure of guided waves ...................................................................... 223 7.4.2 dispersion relation for guided waves .............................................................. 225 7.4.3 guided waves at interface - surface polariton ................................................. 229 7.4.4 guided waves in a layer – film waveguide ...................................................... 231 7.4.5 how to excite guided waves............................................................................ 236

8. Statistical optics - coherence theory ..................................................... 238 8.1 Basics ............................................................................................................. 238 8.2 Statistical properties of light............................................................................ 244 8.3 Interference of partially coherent light ............................................................ 250

Page 2: Fundamentals of Modern Optics - Institute of Applied …€¦ ·  · 2012-10-15Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2012-10-14.docx 1 Fundamentals

Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2012-10-14.docx 3

0. Introduction 'optique' (Greek) lore of light 'what is light'? Is light a wave or a particle (photon)?

D.J. Lovell, Optical Anecdotes

Light is the origin and requirement for life photosynthesis 90% of information we get is visual

A) Origin of light atomic system determines properties of light (e.g. statistics, frequency,

line width) optical system other properties of light (e.g. intensity, duration, …) invention of laser in 1958 very important development

Schawlow and Townes, Phys. Rev. (1958).

laser artificial light source with new and unmatched properties (e.g. coherent, directed, focused, monochromatic)

applications of laser: fiber-communication, DVD, surgery, microscopy, material processing, ...

Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2012-10-14.docx 4

Fiber laser: Limpert, Tünnermann, IAP Jena, ~10kW CW (world record)

B) Propagation of light through matter light-matter interaction

dispersion diffraction absorption scattering ↓ ↓ ↓ ↓ frequency spatial center of wavelength spectrum frequency frequency spectrum

matter is the medium of propagation the properties of the medium

(natural or artificial) determine the propagation of light light is the means to study the matter (spectroscopy) measurement

methods (interferometer) design media with desired properties: glasses, polymers, semiconductors,

compounded media (effective media, photonic crystals, meta-materials)

Two-dimensional photonic crystal membrane.

Page 3: Fundamentals of Modern Optics - Institute of Applied …€¦ ·  · 2012-10-15Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2012-10-14.docx 1 Fundamentals

Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2012-10-14.docx 5

C) Light can modify matter light induces physical, chemical and biological processes used for lithography, material processing, or modification of biological

objects (bio-photonics)

Hole “drilled” with a fs laser at Institute of Applied Physics, FSU Jena.

Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2012-10-14.docx 6

D) Optics in our daily life

A small story describing the importance of light for everyday life, where all

things which rely on optics are marked in red.

Page 4: Fundamentals of Modern Optics - Institute of Applied …€¦ ·  · 2012-10-15Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2012-10-14.docx 1 Fundamentals

Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2012-10-14.docx 7

E) Optics in telecommunications transmitting data (Terabit/s in one fiber) over transatlantic distances

1000 m telecommunication fiber is installed every second.

Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2012-10-14.docx 8

F) Optics in medicine, life sciences

Page 5: Fundamentals of Modern Optics - Institute of Applied …€¦ ·  · 2012-10-15Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2012-10-14.docx 1 Fundamentals

Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2012-10-14.docx 9

G) Optical sensors and light sources new light sources to reduce energy consumption

new projection techniques

Deutscher Zukunftspreis 2008 - IOF Jena + OSRAM

Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2012-10-14.docx 10

H) Micro- and nano-optics ultra small camera

Insect inspired camera system develop at Fraunhofer Institute IOF Jena

Page 6: Fundamentals of Modern Optics - Institute of Applied …€¦ ·  · 2012-10-15Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2012-10-14.docx 1 Fundamentals

Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2012-10-14.docx 11

I) Relativistic optics

Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2012-10-14.docx 12

K) What is light? electromagnetic wave (c= 3*108 m/s) amplitude and phase complex description polarization, coherence

Spectrum of Electromagnetic Radiation

Region Wavelength(nanometers)

Wavelength (centimeters)

Frequency (Hz)

Energy (eV)

Radio > 1088 > 10 < 3 x 109 < 10-5

Microwave 108 - 105 10 - 0.01 3 x 109 - 3 x 1012 10-5 - 0.01

Infrared 105 - 700 0.01 - 7 x 10-5 3 x 1012 - 4.3 x 1014 0.01 - 2

Visible 700 - 400 7 x 10-5 - 4 x 10-5 4.3 x 1014 - 7.5 x 1014 2 - 3

Ultraviolet 400 - 1 4 x 10-5 - 10-7 7.5 x 1014 - 3 x 1017 3 - 103

X-Rays 1 - 0.01 10-7 - 10-9 3 x 1017 - 3 x 1019 103 - 105

Gamma Rays < 0.01 < 10-9 > 3 x 1019 > 105

Page 7: Fundamentals of Modern Optics - Institute of Applied …€¦ ·  · 2012-10-15Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2012-10-14.docx 1 Fundamentals

Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2012-10-14.docx 13

L) Schematic of optics

geometrical optics

<< size of objects daily experiences optical instruments, optical imaging intensity, direction, coherence, phase, polarization, photons

wave optics

size of objects interference, diffraction, dispersion, coherence laser, holography, resolution, pulse propagation intensity, direction, coherence, phase, polarization, photons

electromagnetic optics

reflection, transmission, guided waves, resonators laser, integrated optics, photonic crystals, Bragg mirrors ... intensity, direction, coherence, phase, polarization, photons

quantum optics

small number of photons, fluctuations, light-matter interaction intensity, direction, coherence, phase, polarization, photons

in this lecture

electromagnetic optics and wave optics no quantum optics advanced lecture

geometrical optics

wave optics

electromagnetic optics

quantum optics

Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2012-10-14.docx 14

M) Literature Fundamental

1. Saleh, Teich, 'Fundamenals of Photonics', Wiley, 1992 2. Mansuripur, 'Classical Optics and its Applications', Cambridge, 2002 3. Hecht, 'Optik', Oldenbourg, 2001 4. Menzel, 'Photonics', Springer, 2000 5. Lipson, Lipson, Tannhäuser, 'Optik'; Springer, 1997 6. Born, Wolf, 'Principles of Optics', Pergamon 7. Sommerfeld, 'Optik'

Advanced 1. W. Silvast, 'Laser Fundamentals', 2. Agrawal, 'Fiber-Optic Communication Systems', Wiley 3. Band, 'Light and Matter', Wiley, 2006 4. Karthe, Müller, 'Integrierte Optik', Teubner 5. Diels, Rudolph, 'Ultrashort Laser Pulse Phenomena', Academic 6. Yariv, 'Optical Electronics in modern Communications', Oxford 7. Snyder, Love, 'Optical Waveguide Theory', Chapman&Hall 8. Römer, 'Theoretical Optics', Wiley,2005.